Encoding into SAT

Armin Biere

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

SAT/SMT/AR Summer School 2018

Manchester, UK
July 3, 2018



Dress Code Summer School Speaker as SAT Problem

® propositional logic:

= variables tie shirt

= negation - (not)
= disjunction V (or)
= conjunction A (and)

® clauses (conditions / constraints)

1. clearly one should not wear a tie without a shirt —tie v shirt
2. not wearing a tie nor a shirt is impolite tie v shirt
3. wearing a tie and a shirt is overkill —(tie Ashirt) = —tieV —shirt

® |s this formula in conjunctive normal form (CNF) satisfiable?

(-tie vshirt) A (tie v shirt) A (-tie v -shirt)
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PREFACE v

Special thanks are due to Armin Biere. Randy Bryvant. Sam Buss. Niklas Eén.
lan Gent, Marijn Heule, Holger Hoos., Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz. Niklas Sorensson, Udo Wermuth, Ryvan Williams, and . .. for their detailed
comments on my early attempts at exposition. as well as to numerons other cor
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

Wow  Section 7.2.2.2 has turned out to be the longest section, by far. in
The Art of Computer Programming. The SAT problem is evidently a “killer
app. because it is kev to the solution of so manyv other problems. Consequently
I can only hope that my lengthy treatment does not also kill off my faithful
readers!  As | wrote this material, one topic alwavs seemed to flow naturally
into another. so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn't allow for a Section
7.2.2.2.1.)
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What is Practical SAT Solving?

reencoding

encoding -

Inprocessing

= simplifying |

= search
CDCL




Schur(2) =45 see also:  Marijn Heule, “Schur Number Five”, AAAI1S.

Schur(k) = n_iff

n is the largest number such that
N ={1,...,n} can be colored with k colors
andif i4+j=k for i,j,ke N then they do not have the same color

such equations are not monochromatic

1+1=2 242=4 143=4
14+4=>5 24+3=5
encoded in SAT  (x = 1 iff x is colored with first color)

()?1\/)?1\/)?2)/\()61 \/xl\/xz) A (322\/)?2\/924)/\()62\/)62\/)64) A ()fl V X3 \/)Z4)/\(x1\/x3 \/X4)

X1 VX4 VX5)N(X1 VX4 VX5) N (X2VX3VX5)A(X2V X3V X5
5 5



DIMACS Encoder for Schur(2)

1+3=4

#include <stdio.h>
#include <stdlib.h>
int main (int argc, char ** argv) ({
int n = argc > 1 ? atoi (argv([l]) : 5;
printf ("p cnf %d 0\n", n); // FIXME
for (int i = 1; 1 <= n; 1i++)
for (int j = i; J <= n; J++) {
int k =1 + 7;
if (k <= n)
printf ("%d %d %d O0\n", i, Jj, k),
printf ("%d %d %d O0\n", -i, -3, -k);
}

return O;

see also: Heule, Kullmann, Marek, “Solving and Verifying the boolean Pythagorean Triples problem via Cube-and-Conquer”, SAT’16.



DIMACS Encoder for Pythagorean Triples Problem

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char ** argv)

32442 =57

{

int n = argc > 1 ? atoi (argv[l]) : 7825;

printf ("p cnf %d 0\n", n);
for (int 1 = 1; i <= n; i++)

for (int j = 1; J <= n;

int k = sqgrt (i*i + 3*7);

// FIXME

if (k <= n && i*i + j*j == k*k)

printf ("%d %d %d 0\n",
printf ("%d %d %d 0\n",

}

return O;

Jr kK)o

_il _jr _k) ’

see also:  Marijn Heule, “Schur Number Five”, AAAI'18.



Equivalence Checking If-Then-Else Chains

original C code

if(la && 'b) h();
else 1f('a) gl();
else f£();

4

if(la) {
1f(!'b) h();
else g();

} else f();

optimized C code

if(a) £();
else 1f(b) gl();
else h{();

i

if(a) £();
else {
1if(!'b) h();
else g(); }

How to check that these two versions are equivalent?



Compilation

original = if —a N\ —b then h else if —a then g else f
= (—aA—-b)ANhV —(—-aA\—-b)N\if —a then g else f
= (maAN-b)ANh NV —(maAN-b)N(—aNg V alf)
optimized = if athen f else if b then g else &

alf VvV —aNif b then g else h
aNf NV —anN(bNgV —bANh)

(maAN=b)ANh NV =(maN—D)N(—aNg NV aNf) < aANfN —-aAN(bANgV —bAh)

satisfying assignment gives counter-example to equivalence



Negation Normal Form

Assumption: we only have conjunction, disjunction and negation as operators.

Formula is in Negation Normal Form (NNF),
If negations only occur in front of variables

= all internal nodes in the formula tree are either ANDs or ORs

linear algorithms for generating NNF from an arbitrary formula

NNF generations includes elimination of non-monotonic operators (XOR, XNOR)
NNFof f« g isNNFof fAgV fAg

In this case the result can be exponentially larger without sharing
(parity, counting, adders, ...).




NNF Algorithm

Formula formulaZnnf (Formula £, Boole sign)

{

if (is_wvariable (f))

return sign ? new_not_node

(f)

if (op (f) == AND || op (f) == OR)

{

1l = formulaZ2nnf (left _child
r = formulaZ2nnf (right_child
== AND)

flipped_op = (op (f)

t;

(f), sign);
(f), sign);
? OR : AND;

return new node (sign ? flipped op : op

}

else

{

assert (op (f) == NOT);

return formulaZ2nnf

(child

(£),

!'sign);

(£),

1,



Simple Translation of Formula into CNF

Formula formulaZcnf (Formula f)

{

if (is_cnf (f)) return £f;

if (op (f) == AND)
{
1 = formulaZ2cnf (left_child (f));
r = formulaZ2cnf (right_child (f));
return new_node (AND, 1, r);
}
else
{
assert (op (f) == OR);
1 = formulaZ2cnf (left_child (f));
r = formulaZ2cnf (right_child (f));
return merge_cnf (1, r);



Merging two CNFs

Formula merge_cnf (Formula £, Formula g)
{
res = new_constant_node (TRUE);
for (¢ = first_clause (f); c; c = next_clause (f, c))
for (d = first_clause (g); d; d = next_clause (g, d))
res = new_node (AND, res, new_node (OR, c, d));

return res;



Formula to NNF to CNF

Formula encode (Formula f)

{

Formula nnf = formula2nnf (£, 0); // cheap

Formula cnf = formula2cnf (nnf); // expensive

return cnf;

® NNF translation is linear (even for circuits)
® one merge operation is already quadratic = NNF to CNF exponential

= whole “Formula to NFF to CNF” flow exponential
= exponential in the number of alternations between OR and AND

B sometimes compact: (anc) Vb = (aVvb)N(cVDb) preprocessing!



Tseitin Transformation: Circuit to CNF

P

Bon

oN(x—=>a)N(x—=>c)N(x—alc)N ...

oN(XVa)N(XVc)A(xVave)A ...




Tseitin Transformation: Gate Constraints

Negation: Xy (x—=y)AH—x)

<~

& (XVY)A(Vx)
Disjunction:  x <« (yVz) y—=x)Az—=x)A(x— (yV2))
FVX)AEZVX)A(XVyVz)

(0

Conjunction:  x <+ (yAz)
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Improving on Tseitin Encoding

® “cone of influence reduction” removes unrelated sub-formulas

® flatten associative operators (AND, OR) into multi-arity operators
= without destroying sharing thus only applied to trees

® structural hashing of common sub-expression

= switch to NNF based encoding close to leafs of the formula / circuit
= as proposed by [Boy de la Tour’90]

= but see also NiceDAGs [ChambersManoliosVroon’09]

= polarity based encoding
= first described by [PlaistedGreenbaum’86]
= can save half of the clauses

® technolog based encoding [E€nMishchenkoSorensson’07]
= use heavy-weight circuit optimization for circuit chunks

Most of these Optimizations can be achieved by Preprocessing!

= variable elimination

= AlGs

= variable elimination

= blocked clause elimination



Example for Checking Aliasing

original optimized

assert (i = k); int t = a[k];

a[i] = alk]; ai] =t;

a[j] = alk]; af] =t

i £k t =read(a, k)

b1 = write(a,i,t) c1 = write(a, i,1) static-single assignment (SSA)

by = write(bl,j,s) CHy) = write(cl,j,t)
s =read(by,k)

original # optimized  iff by # ¢

by # ¢ iff 31 with read(by,l)# read(cp,!)



Aliasing Example Continued 1

thus original # optimized iff

i £k

t =read(a,k)

b1 = write(a,i,t)

by = write(bl,j,s)

c1 = write(a, i,t)

cy) = write(cy, j, 1)

s =read(by,k)
read(b,,!) # read(cy,!)

satisfiable



Aliasing Example Continued 2

thus original # optimized iff

i #k

t =read(a, k)

b1 = write(a,i,t)
by, = write(by, J,s)
c1 = write(a, i,t)
Cy) = write(cl,j,t)
s =read(by,k)
u=read(b,,l)

v =read(cp,!)

UV

satisfiable



Aliasing Example Continued 3

after eliminating ¢,

i #k

t =read(a,k)

b1 = write(a,i,t)

by, = write(by, J, )

c; = write(a, i,t)

Cy) = Wl’ite(C],j,t)

s =read(by,k)

u =read(by,!)

v=(i=j ? t:read(cy,l))

UV



Aliasing Example Continued 4

after eliminating ¢, ¢

i £k

t =read(a,k)

b1 = write(a,i,t)

by, = write(bq, Jj, )

c; = write(a,i,t)

Cy) = Write(q ,j7t)

s =read(by,k)

u=read(b,,l)

v=({Il=j ?2¢t:(I=i? t:read(a,l)))
UuFv



Aliasing Example Continued 5

after eliminating ¢y, ¢y, b>

i £k

t =read(a,k)

b1 zwrite(a,i,t)

by, = write(bq, Jj, )

c; = write(a,i,t)

(6) :Write(cl,j,t)

s =read(by,k)

u=(=j ? s:read(by,l))
v=({Il=j?2¢t:(I=i? t:read(a,l)))
UFv



Aliasing Example Continued 6

after eliminating ¢, ¢y, by, by

i £k
t =read(a,k)
b1 = write(a,i,t)
bz—WrIte(bl J,S )

= write(a, i,1)
C2—Wr|te(C1 j,t)
s= (k=i ? t:read(a,k))
u=(I=j?s:(Il=i? t:read(a,l)))
v=({Il=j?2¢t:(l=i? t:read(a,l)))
UuFv



Aliasing Example Continued 7

result after “write” elimination

i £k

t =read(a,k)

s= (k=i ? t:read(a,k))
u=(I=j?s:(Il=i? t:read(a,l)))
v=(I=j?2¢t:(l=i ? t:read(a,l)))

UV



Aliasing Example Continued 8

after eliminating conditionals (if-then-else)

i #+k

t =read(a,k)

k=i — s=t

k#i — s=read(a,k)

=] > u=s

£ jANl=i — u=t

l# jAl#i — u=read(a,l)
=] = v=t

£ jNl=i — v=t

| # jAl#i — v=read(a,l)
uFv

now treat “read” as uninterpreted function (say f)



Aliasing Example Continued 9

after “Ackermanization” using x=read(a,k), y=read(a,l)

i £k
I =X
k=i — s=t
k#i — s=x

=] > u=s

£ jNl=i — u=t
£ JNLF#T — u=y
=] = v=t

£ jNl=i — v=t
£ JANLF#T — v=Y
uFv

k=1 — x=y

10 variables remain
use 4-bit bitvectors to encode 0..15



Bit-Blasting of Bit-Vector Equality

equality x=y of 4-bit bitvectors x,y as new literal /,—,

x3,%0,Xx1,X%0la = [¥3,Y2,Y1,Y04

3

fx:y < /\ Xi <7V
=0

and then use Tseitin encoding



Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers x,y with result s also 4-bit: s=x+Yy

[S37S27S1750]4 — [x37x27x17x0]4+ [y37y27y17y0]4

53, - ]2 = FullAdder(x3,y3,¢2)

:51761:2 = FullAdder xlaylac())

(

57,c0]2 = FullAdder(xp,y2,c1)
(
(

50,c0l2 = FullAdder(xq,yo,false)
where

[s,0]p = FullAdder(x,y,i) with
§ = X XOry Xxor i

o = (xAY)VxAD)V(AD) = (x+y+i)>2)



Intermediate Representations

® encoding directly into CNF is hard, so we use intermediate levels:
1. application level (SSA, encoding execution semantics)
2. bit-precise semantics world-level operations (bit-vectors)
3. bit-level representations such as And-Inverter Graphs (AIGs)
4. conjunctive normal form (CNF)

® encoding “logical” constraints is another story



XOR as AlG

X Y

negation/sign are edge attributes
not part of node

xxory = (XAy)V(xAY) = (XAY)A(xAY)
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Complexity of Bit-Blasting

® can handle arbitrary strange computations
= |n essence anything your computer can compute

= |ike non-linear constraints, division, modulo, bit-wise operators, shift, ...
= floating points (well ... see Martin Brain’s talk tomorrow)

= can make full use of power of SAT solvers (including preprocessing)

® sometimes generates big and hard SAT formulas
= deciding bit-vector logic NEXPTIME complete [KovasznaiFrohlichBiere’12]

= since bit-width is encoded logarithmically

= even one 32-bit multiplication needs 2000+ AlG nodes

® software engineering for bit-blasting is tricky
= SAT solvers not good at structural hashing [HeueldarvisaloBiere’13] [HeuleBiere’13]

= so need to maintain an intermediate format like AlGs

= not easy in an incremental setting (inprocessing?)



[ BTOR ]—> parse
[ SMT ]_> rewrite
O1

O1 = bottom up simplification
O2 = global but almost linear
O3 = normalizing (often non-linear) [default]

Lingeling / PicoSAT / MiniSAT / CaDiCalL

SAT Solver

subst ’[ Expr ]
02 +
{ Expr j—» slice synthesize
norm *
03 [AIG Vector j
Y
optimize
Y
[ AIG
K
4_[ CNE jk encode




Encoding Logical Constraints

® Tseitin construction suitable for most kinds of “model constraints”
= assuming simple operational semantics: encode an interpreter

= small domains: one-hot encoding large domains: binary encoding

check out “order encoding” too

® harder to encode properties or additional constraints

= temporal logic / fix-points

= environment constraints

® example for fix-points / recursive equations: x=(aVy), y=(bVx)
= has unique least fix-point x=y=(aVb)
= and unique largest fix-point x=y=1true but unfortunately ...
= .. only largest fix-point can be (directly) encoded in SAT

= otherwise need stable models / logical programming / ASP



Encoding Reachability in Prolog for Graph with 2 Nodes

a = b
edge (a,b) .
reach(X,Y) :— edge(X,Y).
reach(X,Y) :— edge(X,Z2), reach(z,Y).

?— reach (b, a).



edge_a_b &

reach_a_a
reach_a b
reach_b_a
reach_b b

.S S S o~

reach b a

<=
<=
<=
<=

edge_a_a)
edge_a_Db)
edge_b_a)
edge_b_Db)

2 &2 2 @

Wrong SAT Encoding for Graph with 2 Nodes

(reach_a_a
(reach_a_a
(reach_a b
(reach_a b
(reach_b a
(reach_b a
(reach_b b
(reach_b b

<=
<=
<=
<=
<=
<=
<=
<=

edge_a_a
edge_a_b
edge_a_a
edge_a_b
edge_b_a
edge_b_b
edge_b_a
edge_b_b

2 &2 2 22 22 22 2»

reach_a_a
reach_b_a
reach_a b
reach_b_ b
reach_a_a
reach_b_a
reach_a b

)
)
)
)
)
)
)
reach_b_Db)

22 22 &2 2 22 2» 2» @



Right SAT Encoding for Graph with 2 Nodes

ledge_a_a & (reach_a a 1 <—> (edge_a_a (edge_a_a & reach_a a_0)))
edge_a_b & (reach_a a 1 <—> (edge_a_a (edge_a_b & reach b _a_0)))
ledge_b_a & (reach_a b 1 <> (edge_a_ b (edge_a_a & reach_a b_0)))
ledge_b_b & (reach_a b 1 <> (edge_a_ b (edge_a_b & reach b b _0)))
(reach_b a 1 <> (edge_b_a (edge_b_a & reach_a a_0)))
'reach_a_a_0 & (reach_b_a 1 <—> (edge_b_a (edge_b_b & reach b _a_0)))
'reach_a b 0 & (reach_b_ b 1 <-> (edge_b_ b (edge_b_a & reach_a b_0)))
'reach b _a_ 0 & (reach_b b 1 <-> (edge_b_ b (edge_b_b & reach b b _0)))
'reach b b 0 & (reach_a_a 2 <-> (edge_a_a (edge_a_a & reach a a_1)))
(reach_a a 2 <-> (edge_a_a (edge_a_b & reach b _a_1)))
(reach_a b 2 <> (edge_a_ b (edge_a_a & reach_a b_1)))
(reach_a b 2 <> (edge_a_ b (edge_a_b & reach b b _1)))
(reach_b a 2 <-> (edge_b_a (edge_b_a & reach a a_1)))
(reach_b a 2 <-> (edge_b_a (edge_b_b & reach b _a_1)))
(reach_b b 2 <> (edge_b_b (edge_b_a & reach a b_1)))
(reach_b b 2 <> (edge_b_b (edge_b_b & reach b b _1)))

(reach. b a 0 | reach b a 1 | reach b a 2)

Y 2y 22 2 22 22 2x 22 2» 22 2y 22 22y &2 2 &»



Encoding Reachability in Prolog for Graph with 3 Nodes

edge (a, b) .

edge (b, c) .

edge (c,b) .

reach (X,Y) :— edge(X,Y).

reach(X,Y) :— edge(X,Z), reach (z2,Y).

?— reach(a,c).



edge_a_b &
edge_b_a &
edge_c_b &

reach_a_c

edge_a_a
edge_a_b
edge_a_c
edge_b_a
edge_b_b
edge_b_c
edge_c_a
edge_c_b

S~ Y~ Y~ N~ N~ S~ S~ ~— ~—

edge_c_c

22 R &2 22 & &2 22 2 &

reach_a_a
reach_a_a
reach_a_a
reach_a b
reach_a b
reach_a b
reach_a_c
reach_a_c
reach_a_c
reach_b_a
reach_b_a
reach_b_a
reach_b_b
reach_b_b
reach_b_b
reach_b_c
reach_b_c

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

reach_b_c

Wrong SAT Encoding for Graph with 3 Nodes

edge_a_a
edge_a_b
edge_a_c
edge_a_a
edge_a_b
edge_a_c
edge_a_a
edge_a_b
edge_a_c
edge_b_a
edge_b_b
edge_b_c
edge_b_a
edge_b_b
edge_b_c
edge_b_a
edge_b_b
edge_b_c

reach_a_a
reach_b_a
reach_c_a
reach_a b
reach_b_b
reach_c b
reach_a_c
reach_b_c
reach_c_c
reach_a_a
reach_b_a
reach_c_a
reach_a b
reach_b_b
reach_c b
reach_a_c
reach_b_c

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

reach_c_c

2 R R 22 R R 22 2 R 22 22 R 22 22 Ry &2 22 R

edge_c_a
edge_c_b
edge_c_c
edge_c_a
edge_c_b
edge_c_c
edge_c_a
edge_c_b
edge_c_c

Q2 2 22 22 22 &2 22 2 &

reach_a_a)
reach_b_a)
reach_c_a)
reach_a_b)
reach_b_b)
reach_c_b)
reach_a_c)
reach_b_c)
reach_c_c)

22 R 22 22 2 &2 22 2 &



ledge_a_a
edge_a_b
ledge_a_c
edge_b_a
ledge_b_b
ledge_b_c
edge_c_a
ledge_c_b
ledge_c_c

22 2 2 2 22 22 22 2 @

reach_ c c 1 <>
reach_ . c c 1 <>
reach_ . c c 1 <>

'reach _a_a 0
'reach_a b 0
'reach _a c 0
'reach b_a 0
'reach b_b 0
'reach b_c 0
'reach c_a 0
'reach _c_b 0
'reach c_c 0

(reach_b_a 0 | reach b _a 1 |

R R R R R R R R

reach_b_a 2)

Right SAT Encoding for Graph with 3 Nodes

reach_a_a_0)
reach _b_a_0)
reach_c_a_0)
reach_a_b_0)
reach _b_b_0)
reach_c_b_0)
reach_a_c_0)
reach _b_c_0)
reach_c_c_0)
reach_a_a_0)
reach _b_a_0)
reach_c_a_0)
reach_a_b_0)
reach _b_b_0)
reach_c_b_0)
reach_a_c_0)
reach _b_c_0)
reach_c_c_0)
reach_a_a_0)
reach _b_a_0)
reach_c_a_0)
reach_a_b_0)
reach _b_b_0)
reach_c_b_0)
reach_a_c_0)
reach _b_c_0)
reach_c_c_0)

2 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 2

(reach_a_a_2 <—>
(reach_a_a 2 <—>
(reach_a_a 2 <—>
(reach_a_b_2 <—>
(reach_a b 2 <—>
(reach_a b 2 <—>
(reach_a_c_2 <—>
(reach_a_ c 2 <—>
(reach_a_c 2 <—>
(reach_b_a_2 <—>
(reach_b_a 2 <—>
(reach_b_a 2 <—>
(reach_b_b_2 <—>
(reach_b_ b 2 <—>
(reach_b_ b 2 <—>
(reach_b_c_2 <—>
(reach_ b_c 2 <—>
(reach_ b_c 2 <—>
(reach_c_a_2 <—>
(reach_c_a 2 <—>
(reach_c_a 2 <—>
(reach_c_b_2 <—>
(reach_c b 2 <—>
(reach_c b 2 <—>
(reach_c_c_2 <—>
(reach_c_c 2 <—>
(reach_c_c 2 <—>

reach_a_a_1)))
reach b_a_1)))
reach_c_a_1)))
reach_a b _1)))
reach b b _1)))
reach_c b _1)))
reach_a _c_1)))
reach b_c_1)))
reach_c_c_1)))
reach_a_a_1)))
reach b_a_1)))
reach_c_a_1)))
reach_a b _1)))
reach b b _1)))
reach_c b _1)))
reach_a _c_1)))
reach b_c_1)))
reach_c_c_1)))
reach_a_a_1)))
reach b_a_1)))
reach_c_a_1)))
reach_a b _1)))
reach b b _1)))
reach_c b _1)))
reach_a_c_1)))
reach b_c_1)))
reach_c_c_1)))

Y 22 22 22 22 22 22 2 22 22 22 K2 22 22 22 2 22 22 22 2 22 22 22 &2 22 2 2



Encoding Least Fix-Points

® incremental encoding for least fix-points [GebserKaufmannNeumannSchaub’07]
= use the “wrong encoding” and call SAT solver

= if unsatisfiable no least fix-point exists
= if satisfiable check solution for cyclic dependencies
= if there is no cyclic dependency then the model is a least fix-point

= otherwise add clause which removes cycle and continue

® other incremental encodings
= simple path constraints in BMC / k-induction [EénSorensson’03]

= |azy clause encoding in CP [OhrimenkoStuckeyCodish’07]

= lemmas on demand for SMT [deMouraRuel3’02] [BrummayerBiere’09]

= |azy encodings might result in adding exponential many clauses

® encoding temporal properties (LTL) for BMC [LatvalaBiereHeljankoJuntilla’04]
= temporal operators with least fix-point semantics: Fp, pUg

= needs only two “iterations” due to monotonicity of the semantics



Example of Logical Constraints:  Cardinality Constraints

® given a set of literals {/y,...1,}
= constraint the number of literals assigned to true

" W+t >2k or Lh+--+ L <k or L+---+Il=k

= combined make up exactly all fully symmetric boolean functions

= multiple encodings of cardinality constraints
= paive encoding exponential: at-most-one quadratic, at-most-two cubic, etc.

= quadratic O(k-n) encoding has its roots in [Shannon’38]

= linear O(n) parallel counter encoding [Sinz'05]

®  many variants even for at-most-one constraints

= see [BiereLeBerreLoncaManthey’14] [MantheyHeuleBiere’'13] for references

= Pseudo-Boolean constraints (PB) or 0/1 ILP constraints have many encodings too

2-d+b+c+d+2-e >3

actually used to handle MaxSAT in SAT4J for configuration in Eclipse



BDD-Based Encoding of Cardinality Constraints

2<lj+--19g <3

Yy Sy i Sy O N R ——"

R

/A Ny R S P R N ——

lim =~ =~~~ — — L~ — ~lg— — ~[,— - -1

l-—l- = -l =~ L=~ ~ly= —~ —ly— - -1

0 0 0 0 0 0

If-Then-Else gates (MUX) with “then” edge downward, dashed “else” edge to the right



Tseitin Encoding of If-Then-Else Gate and Arc Consistency

x> (c?tie) & (x=(c—=t)AN(x=>(C—e) A= (c—))ANET—(C—e))
& (XVeVeE) AN (XVeVe) AN (xVEVE) N (xVeVe)
this is a minimal size CNF but the CNF is not arc consistent
®m f r and e have the same value then x needs to have that too
(fAe—Xx) = (tVeVX) (tAhe—x) = (fVeVx)

® pbut can be learned or derived through preprocessing (ternary resolution)
keeping those clauses redundant is better in practice



DIMACS Format

$ cat example.cnf

c comments start with "¢’ and extend until the end of the line

C
c variables are encoded as integers:
C
C "tie’ becomes 1’
C "shirt’ becomes ’2'
C
¢ header "'p cnf <variables> <clauses>'’
C
p cnft 2 3
-1 20 c !tie or shirt
1 2 0 C tie or shirt
-1 -2 0 c !tie or !shirt

S picosat example.cnf
s SATISFIABLE
v -1 2 0



SAT Application Programmatic Interface (API)

® incremental usage of SAT solvers
= add facts such as clauses incrementally

= call SAT solver and get satisfying assignments

= optionally retract facts UNSAT, UNSAT, ..., UNSAT, SAT vs. SAT, SAT, ... ,UNSAT

® retracting facts
= remove clauses explicitly: complex to implement

= push / pop: stack like activation, no sharing of learned facts (as in SMTLIB)

= MiniSAT assumptions  [EénSorensson’03]

® assumptions
= unit assumptions: assumed for the next SAT call

= easy to implement: force SAT solver to decide on assumptions first

= shares learned clauses across SAT calls

® |PASIR: Reentrant Incremental SAT API
= used in the SAT competition / race since 2015 [BalyoBierelserSinz’16]



IPASIR Model
val

add
assume

add
assume



#include "ipasir.h"

#include <assert.h>

#include <stdio.h>

#define ADD (LIT) ipasir_add (solver, LIT)
#define PRINT (LIT) \

printf (ipasir_wal (solver, LIT) < 0 2 " =" #LIT : " " #LIT)
int main () {
void * solver = ipasir_init ();
enum { tie = 1, shirt = 2 };
ADD (-tie); ADD ( shirt); ADD (0); $ ./example
ADD ( tie); ADD ( shirt); ADD (0); satisfiable: shirt —-tie

ADD (—tie); ADD (-shirt); ADD (0); assuming now: tie shirt

int res = ipasir_solve (solver);

unsatisfiable, failed: tie

assert (res == 10);

printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");
printf ("assuming now: tie shirt\n");

ipasir_assume (solver, tie); ipasir_assume (solver, shirt);
res = ipasir_solve (solver);

assert (res == 20);

printf ("unsatisfiable, failed:");

if (ipasir_failed (solver, tie)) printf (" tie");

if (ipasir_failed (solver, shirt)) printf (" shirt");
printf ("\n");

ipasir_release (solver);

return res;



IPASIR Functions

const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);
void ipasir_assume (void * solver, int 1it);

int ipasir_solve (wvoid * solver);

int ipasir_wval (void * solver, int 1lit);

int ipasir_failed (void * solver, int 1lit);

void ipasir_set_terminate (void * solver, wvoid * state,
int (*terminate) (void * state));



Personal SAT Solver History
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Links Jobs

®  https://fmv.jku.at/limboole ® new LIT Al Lab

= Linz Institute of Technology (LIT)

m |h //fmv.|Ku. '
ttps://fmv.jKu.at/aiger = Artificial Intelligence (Al)

= https://github.com/Boolector/boolector = new LIT Al PhD School

®  https://github.com/biotomas/ipasir = world-class experts

= machine learning Hochreiter, Widmer

® https://github.com/arminbiere/cadical
= SAT /SMT / AR Biere, Seidl, Kauers

® https://github.com/arminbiere/lingeling = deductive & inductive reasoning

We are Hiring!
PostDocs + PhDs
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