Using High Performance SAT and QBF Solvers

Armin Biere

Theorem Proving Tools for Program Analysis

Tutorial co-located with POPL 2011
Austin, Texas, USA

CPU Time (in seconds)

1200

1000

800

600

400

200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

WK X+

4 »

GQe

T T T T T T a T -
Limmat 02 O P v

Zchaff 02 0 - . Y ® &

Berkmin 561 02 d 0 o
Forklift 03 " v

Siege 03 + ™
Zchaff 04 + u
SatELite 05 . l

Minisat 2.0 06 S
Picosat 07 -
Rsat 07 >z< - -
Minisat 2.1 08 ¥]

Precosat 09 EI|:| “': %

Glucose 09 K
Clasp 09 + <
Cryptominisat 10

Lingeling 10

X
e + X -
Minisat 2.2 10 32{ E@ A o7 > / Q&ﬁ?

3)
%% = im o f lv ‘)“.55‘\)

D

Number of problems solved

180

Formal Methods in Computer Science Introduction| 2/54

Formal
Specification

Formal
Verification

Formal
Synthesis

Formal Methods and S&tlelab”lty (SAT) Introduction| 3/54

Formal
Specification

UML

Synchrono erq Proving

odel Zhecking
Compiler _
Domain ‘
Specific v
Formal

_ Languages
Synthesis JHag

Formal
Verification

Equivalence
T Checking

SAT

SAT as Core TeChnolo_gy Introduction’ 4/54

Formal
Specification
L VDM
ASM
SDL
Synchronous Theorém Proving
Languages odel Checking -ormal
Verification
Compiler Equivalence
Formal Checking
Synthesis

/ SAT AN

Dress Code of a Tutorial Speaker as Satisfiability Problem Introduction 5/54

e propositional logic:
— variables tie shirt
— negation — (not)
— disjunction V disjunction (or)

— conjunction A conjunction (and)

e three conditions / clauses:

— clearly one should not wear a tie without a shirt —tie v shirt
— not wearing a tie nor a shirt is impolite tie v shirt
— wearing a tie and a shirt is overkill —(tieAshirt) = —tieVv —shirt

e isthe formula (—tieVshirt) A (tieV shirt) A (—tieV —shirt) satisfiable?

What is SAT? Introduction g/54

e a class of rather low-level kind of problems:
— propositional variables only, e.g. either hold (true) or not (false)
— logic operators —, Vv, A, actually restricted to conjunctive normal form (CNF)
— but no quantifiers such as “for all such things”, or “there is one such thing”

— can we find an assignment of the variables to true or false, such that

a set of clauses is satisfied simultaneously

e theory: itis the standard NP complete problem

encoding: how to get your problem into CNF

e simplifying: how can the problem or the CNF be simplified (preprocessing)

e solving: how to implement fast solvers

Short SAT Solver HiStOry Introduction| 7/54

e Davis and Putnam procedure
— DP: elimination procedure

— DPLL: splitting

e modern SAT solvers are mostly based on DPLL, actually | CDCL
CDCL = Conflict Driven Clause Learning

— learning: GRASP , RelSAT

— watched literals, VSIDS: [mz]Chaff

— improved heuristics: MiniSAT actually version from 2005

e preprocessing is still a hot topic:
— most practical solvers use SatELite style preprocessing DP

— Inprocessing in fastest available solvers PrecoSAT, Lingeling, CryptoMiniSAT, ...

What is Sa“Sflabl'Ity Modulo Theory (SMT)'? Introduction' g/54

e satisfiability solving for first order formulae
— extension of SAT but interpreted over fixed theories
— originally without quantifiers but quantifiers are important

— fully automatic decision procedures which also can provide models

e theories of interest
— equality, uninterpreted functions
— real / integer arithmetic

— bit-vectors, arrays

e particularly important are bit-vectors and arrays for HW/SW verification

— our SMT solver Boolector ranked #1 in this category (SMT 2008 + 2009)

Applications of SAT and SMT Introduction| g/54

e | bounded model checking | in electronic design automation (EDA)

— routinely used for falsification in all major design houses

— unbounded extensions also use SAT, e.g. sequential equivalence checking

e SAT as working horse in static software verification

static device driver verification at Microsoft (SLAM, SDV)

— predicate abstraction with SMT solvers

— spurious counter example checking

software configuration, e.g. Eclipse IDE ships with SAT4J MaxSAT

cryptanalysis and other combinatorial problems (bio-informatics)

What are Quantified Boolean Formulas (QBF)? Introduction| 10/54

e QBF can be seen as extension to SAT:
— existentially quantified variables as in SAT

— but some variables can be universally quantified

e QBF is the the classical PSPACE complete problem
— as SAT is the NP-complete problem

— two other important PSPACE complete problems:
x (Propositional) Linear Temporal Logic (LTL) satisfiability
+ symbolic model checking / symbolic reachability
tiexshirt tiezshirt

vtie[Ishirt[(tie v shirt) A (<tiev —shirt)]] % 3tie[vshirt[(tie v shirt) A (—tie v —shirt)]]
satisfiable unsatisfiable

QBF Semantics and State-of-the-Art Introduction 11/54

e semantics given as expansion of quantifiers

Ax(f] = f10/x] v f[1/x] vxlf] = fIO/x] A fl1/4]

e expansion as translation from SAT to QBF is exponential
— SAT problems have only existential quantifiers

— expansion of universal quantifier can double formula size

e large number of different approaches to solve QBF versus “mono-culture” in SAT
— scalability for practically interesting problem still an issue
— nevertheless first real applications appear, e.g. black-box equivalence checking

— steady progress: currently fastest solvers DepQBF and Qube

Bounded Model CheCking (BMC) Encoding 12/54

e |look only for counter example made of k states “k” = the bound

p NV op NV p NVop NV —p p —p —p —p
e simple for safety properties p is invariantly true (e.g. p = —B)
k
I(so) A T(s0,51)) A=+ AT (sg—1,50) A\ —p(si)
i=0

e harder for liveness properties p is eventually true

k

I(s0) A T(50,51)) A=+ AT (sg—1,86) A J\ =p(si) A 3T (sg,58)
i=0

Bounded Model CheCking (BMC) Encoding 13/54

e |look only for counter example made of k states “k” = the bound

p NV op NV p NVop NV —p p —p —p —p
e simple for safety properties p is invariantly true (e.g. p = —B)
k
I(so) A T(s0,51)) A=+ AT (sg—1,50) A\ —p(si)
i=0

e harder for liveness properties p is eventually true

k k

I(s0) A T(s0,51)) A= AT (sg—1,5) A\ =~p(si) A\ T(sg,s0)
i=0 1=0

Encoding 14/54

Tic-Tac-Toe

OO

X0

O[O

X0

X0

OO OO OO OO O[O

X0 (X0 (X 1O) (XIXIO] (XX

No Winning Strategy for Tic-Tac-Toe Encoding 15/54

7 Vsolempty(so) —
Ax [circle(sg, x1,51) A x;,v; plays (4 bits each)
Vys|cross(s1,y2,52) —
Axs[circle(s,x3,53) A
Vy4[cross(s3,y4,54) —
Axs[circle(s4,x5,55) A
Vyglcross(ss,ye,56) —
s; configurations Ax7|circle(sg,x7,57) A

(9 x 3 bits each) Vyg[cross(s7,ys,s8) —

xg|circle(sg, x9,59) Awincircle(59)]]]]]]1]]

original code

1f('la && !'b) h();
else 1f('a) gl();

else f£();

4

if(la) A
1f(!b) h();
else g();

} else f();

Example: Equivalence Checking If-then-else Chains

optimized code

if(a) £0);
else {
1f(!'b) h();
clse 50)

How to check that these two versions are equivalent?

Encoding 16/54

SAT Example cont.

1. represent procedures as independent boolean variables

original := optimized :=
if —a N\ —b then h if a then f
else if —a then g else if b then g
else f else /

2. compile if-then-else chains into boolean formulae

compile(if xthenyelsez) = (xAy) V (-xAz)

3. check equivalence of boolean formulae

compile(original) < compile(optimized)

Encoding 17/54

COmpiIation Encoding 18/54

original = if —a N\ —b then h else if —a then g else f
= (—aA-b)ANh NV —(—aN—-b)A if —a then g else f
= (maAN-b)ANh NV —(maAN-b)N(—aNg V alf)
optimized = if athen f else if b then g else /1

a/f VvV —aAif b then g else h

aNf VvV —aN(bAgV —bAh)

(maN=-b)ANh NV =(maN—b)AN(-aNg V aNf) < aNfN —aN(bNgV —bAh)

How to Check (In)Equivalence? Encoding 19/54

Reformulate it as a satisfiability (SAT) problem:

|s there an assignment to a,b, f,g,h,
which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula compile(original) 4> compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample

SAT Example: Circuit Equivalence Checking Encoding 20/54

/ =De
| -
a]
e | s
bV alc (avb) N (bVc)
equivalent?

bV alc & (avb) N (bVc)

Conjunctive Normal Form Encoding 21/54

Definition formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

CINCAN...NCy

each clause C is a disjunction of literals

and each literal is either a plain variable x or a negated variable Xx.

Example (aVvbVvc)A(@vb)N(ave)

Note 1: two notions for negation: in x and — as in —x for denoting negation.
Note 2: original SAT problem is actually formulated for CNF

Note 3: solvers (mostly) expect CNF as input

DIMACS Format Example 1

e common ASCII file format of SAT solvers, used by SAT competitions

e variables are represented as natural numbers, literals as integers

e header “p cnf <vars> <clauses>’, comment lines start with “c

In order to show the validity of bVahc < (aVvb) N (bVc)

negate, (bVanc) AN (aVvb) N (bVc)
simplify and show unsatisfiability of —=bA(—aV—-c) AN (aVb) N (bVc)

c the first two lines are comments
c exl.cnf: a=1, b=2, c=3

p cnf 3 4

-2 0

-1 -3 0

1 20

2 30

Encoding 22/54

PicoSAT API for Constructing CNFs Example 1 PicoSAT API| 23/54

// compile with: gcc -o exl exl.c picosat.o
#include "picosat.h"
#include <stdio.h>

int main () {
int res;
picosat_init ();

0);
-3),; picosat_add (0);

picosat_add (
(

; picosat_add (2); picosat_add (0);
3

picosat_add

(—=2); picosat_add

(
picosat_add (

(

2

—-1); picosat_add
)
)

1
picosat_add (2); picosat_add (3); picosat_add (0);
res = picosat_sat (-1);
if (res == 10) printf ("s SATISFIABLE\n");
else 1if (res == 20) printf ("s UNSATISFIABLE\n");

else printf ("s UNKNOWN\n");

picosat_reset ();
return res;

Satisfying Assignments Example 2 Encoding 24/54

assume invalid equivalence resp. implication: (avb) = (a xor D)

its negation (avb) N (a=Db)

as CNF (avb) AN (—aVb)A(—bVa)
c ex2.cnf: a=1,b=2

p cnf 2 3

1 20

-1 2 0

-2 1 0

SAT solver then allows to extract one satisfying assignment:

$ picosat ex2.cnf
s SATISFIABLE
v 1220

this is the only one since “assuming” the opposite values individually is UNSAT

$ picosat ex2.cnf —-a —-1; picosat ex2.cnf -a -2
s UNSATISFIABLE
s UNSATISFIABLE

Example of Tseitin Transformation: Circuit to CNF Encoding| 25/54

CNF
y

2/ o
hjix (x <> alNc) A
(y <> bVx) A
@0 (u <> aVvb)A
a) U (v <> bVc) A
] > (W< uAv) A

b) w (0 <> ydw)

c—— v

oN(x—a)N(x—=c)N(x<alc)A ...

oN(XVa)\(XVc)AN(xVave)A ...

Algorithmic Description of Tseitin Transformation

1. generate a new variable x; for each non input circuit signal s

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is satisfiability equivalent:

the result is satisfiable iff and only the original formula is satisfiable

not equivalent to the original formula: it has new variables

just project satisfying assignment onto the original variables

Encoding 26/54

Tseitin Transformation: Input / Output Constraints Encoding 27/54

Negation: X

<

S (x—=y)AF—=x)
& (XVY)A(yVx)

Disjunction: x> (yVz) & (—=x)A(z—=x)A(x— (yVz))
& (GVX)AEZVX)AEVYVZ)

Conjunction: x<+ (YAz) & (x—=y)AXx—=2)A((yA2) = x)
& (XIVY)ANEVZ)A((yAZ) VX
& (XVY)AEVZ)AGTVZVX)

Equivalence: x< (y<z2) & (x—=> < 2)A((y+2) —x)
& (k= (=)A= Y) Ay z2) = x)
s x=>—=22))NAx—=(z=2y)AN((y+2) = x)
& (XVIV)AEVZIVY)A((y < 2) = x)
& XVYVOAGEVZIVY)A(((yAZ)V(TIAZ)) — x)
& EVIVOAGEVIVY)A((yAZ) = x)AN((FAZ) = x)
& (XVIVZ)AGEVZIVY)IAGTVZIVX)A(yVzZVX)

Optimizations for Tseitin Transformation Encoding 28/54

e goal is smaller CNF less variables, less clauses, so easier to solve (?!)

e extract multi argument operands to remove variables for intermediate nodes

e half of AND, OR node constraints/clauses can be removed for unnegated nodes

— node occurs negated if it has an ancestor which is a negation
— half of the constraints determine parent assignment from child assignment
— those are unnecessary if node is not used negated

— those have to be carefully applied to DAG structure

e further structural circuit optimizations ...

CNF Blocked Clause Elimination simulates many encoding / circuit optimizations

CNF-level simplification

Circuit-level simplification

[BCE+VE](PG)

-~

VE(PG)

BCE(PG)

blocked clause
elimination

BCE+VE

variable
elimination

9

PL(PG)

PG(COI)

PG

PG(NSI)

Plaisted-Greenbaum encoding

\

BCE

VE

Col

TST

Tseitin encoding

Intermediate Representations Encoding 30/54

e encoding directly into CNF is hard, so we use intermediate levels:
1. application level
2. bit-precise semantics world-level operations: bit-vector theory
3. bit-level representations such as AlGs or vectors of AlGs

4. CNF

e encoding application level formulas into word-level: as generating machine code

e word-level to bit-level: bit-blasting similar to hardware synthesis

e encoding “logical” constraints is another story

BI’[-BIaS’tlng of 4-Bit Addition Encoding 31/54

addition of 4-bit numbers x,y with result s also 4-bit: s=Xx+Yy

[537S27S17SO]4 — [X3,X2,X1,X()]4—|— [y37y27y17y0]4

53, -]2 = FullAdder(x3,y3,¢2)

:Sl,Cl:z g FullAdder xl,yl,co)

(

52,c2]2 = FullAdder(xp,y2,¢1)
(
(

:S(),C():z = FullAdder xo,yo,false)
where

[s,0]o = FullAdder(x,y,i) with
§ = X XOry xor i

o = (xAY)V(xA)V(YAD) = (x+y+i)>2)

And-Inverter-Graphs (AIG) Encoding| 32/54

e widely adopted bit-level intermediate representation
— see for instance our AIGER format http://fmv.jku.at/aiger
— used in Hardware Model Checking Competition (HWMCC)
— also used in the structural track in SAT competitions

— many companies use similar techniques

basic logical operators: conjunction and negation

e DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compacitly stored as LSB in pointer

e automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

e oreven SAT sweeping, full reduction, etc ... see ABC system from Berkeley

http://fmv.jku.at/aiger

XOR as AIG Encoding 33/54

X Y

negation/sign are edge attributes
not part of node

xxory = (XAY)V(xAY) = (XAY)A(xAY)

Bit-Stuffing Techniques for AlGs in C

typedef struct AIG AIG;

struct AIG

{
enum Tag tag;
void *datal[2];
int mark, level;
AIG *next;

}i

Encoding 34/54

/* AND, VAR */

/* traversal */
/* hash collision chain */

#define sign_aig(aig) (1 & (unsigned) aiq)

#define not_aig(aig) ((AIG*) (1 *

(unsigned) aig))

#define strip aig(aig) ((AIG*) (~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)
#define true_aig ((AIG*) 1)

assumption for correctness:

sizeof (unsigned)

sizeof (voidx)

A4

=0 4
oo Ao ne
G 2K é
gan ooH
oue Ao ne
GO 2%
oe‘\aﬁnA
0GR e
o o B
646 A<
No
.05 0R0RT R
026 Owtin
No o
@ k A@O@G (44
“1 \ @VO@‘.A
@‘@ . . S A@@)ﬂm

4-bit adder
/02N
3
S
PR
o

Lo PANION LN SO0 Lo Lo Lo
eoicaset e EEEmeETETh elo e
= NSO OIC RO (O SN OGN G O,
e ot e
@t eran el h o T Wi orop. Yo S
e e T e
Hagloglhdamm@moanan,

—_—
o o’a’ﬂa@@

a(a%efo;sa\ hmamd

A A 112] 113] 174] 117]

bit-vector of length 16 shifted by bit-vector of length 4

Encoding Logical Constraints Encoding 38/54

e Tseitin’s construction suitable for most kinds of “model constraints”
— assuming simple operational semantics: encode an interpreter

— small domains: one-hot encoding large domains: binary encoding

e harder to encode properties or additional constraints
— temporal logic / fix-points

— environment constraints

e example for fix-points / recursive equations: x=(aVy), y=(bVx)
— has unique least fix-point x=y=(aVb)
— and unique largest fix-point x=y=1true but unfortunately

— only largest fix-point can be (directly) encoded in SAT otherwise need ASP

Example of Logical Constraints: Cardinality Constraints Encoding’ 39/54

e given a set of literals {i;,...1,}
— constraint the number of literals assigned to rrue

- Kh,--slaf| =k or [{l1,....In}| <k or [{li,....ln}| =k

e multiple encodings of cardinality constraints
— naive encoding exponential: at-most-two quadratic, at-most-three cubic, etc.
— quadratic O(k-n) encoding goes back to Shannon
— linear O(n) parallel counter encoding

— for an O(n-logn) encoding see Prestwich’s chapter in our Handbook of SAT

e generalization Pseudo-Boolean constraints (PB), e.g. 2-d+b+c+d+2-e >3
actually used to handle MaxSAT in SAT4J for configuration in Eclipse

BDD based Encoding of Cardinality Constraints Encoding| 40/54

2<|{l,...,l9}| <3

/Sy S Sy Sy ANy A D A S

A R N Y A A

/Y Ny S [S S N R—

b — by~ ~l—— -l g~ =~ L=~ g — ~ly— - -1

/R S S SR N ——

|
0 0 0 0 0 0

“then” edge downward, “else” edge to the right

Example 2 with PicoSAT API PicoSAT API| 41/54

// compile with: gcc -0 ex2 ex2.c picosat.o
#include "picosat.h"

#include <stdio.h>

#include <assert.h>

int main () |

int res, a, b;

picosat_init ();

picosat_add (1); picosat_add (2); picosat_add (0);

picosat_add (—-1); picosat_add (2); picosat_add (0);
picosat_add (—-2); picosat_add (1); picosat_add (0);

assert (picosat_sat (-1) == 10); // SATISFIABLE

a = picosat_deref (1); b = picosat_deref (2);

printf ("v %d %d\n", axl, b=*2);

picosat_assume (—-ax*l); assert (plicosat_sat (-1) == 20);//UNSAT
picosat_assume (-bx2); assert (picosat_sat (-1) == 20);//UNSAT

return res;

Adding a Blocking Clause to Block Current Solution PicoSAT API 42/54

static void block current solution (void) {

int max_idx = picosat_variables (), 1i;

// since ’'picosat_add’ resets solutions
// need to store it first:
signed char » sol = malloc (max_1idx + 1);

memset (sol, 0, max_idx + 1);

for (1 = 1; 1 <= max_idx; 1++)

sol[i] = (picosat_deref (1) > 0) 2 1 : —-1;
for (i = 1; i1 <= max_idx; i++)

picosat_add ((sol[i] < 0) ?2 1 : —-1);

picosat_add (0);

free (sol);

Simplified PicoSAT API PicoSAT API| 43/54

picosat_reset

¢

RESET

picosat_init
picosat_assume

picosat_deref picosat_add picosat_failed_assumption

y
SAT READY UNSAT

¢ | ¢

picosat_sat

picosat_add

picosat_assume

plcosat_set... picosat_inconsistent picosat_deref_ toplevel

Failed Assumptions PicoSAT API 44/54

e two ways to implement incremental SAT solvers

— push / pop as in SMT solvers partial support in SATIRE, zChaff, PicoSAT

x clauses associated with context and pushed / popped in a stack like manner
x pop discards clauses of current context

— most common: assumptions

+ allows to use set of literals as assumptions
x force SAT solver to first pick assumption as decisions
« more flexible, since assumptions can be reused

x assumptions are only valid for the next SAT call

o failed assumptions: sub set of assumptions inconsistent with CNF

Example: Bit-Vector Under-Approximation PicoSAT API| 45/54

e goal: reduce size of bit-vector constants in satisfying assignments

e refinement approach: for each bit-vector variable only use an “effective width

— example: 4-bit vector [x3,x7,x1,x9] and effective width 2 use [xy,x1,x1,x0]

— either encode from scratch with x3 and x, replaced by x; (1)
— or add x3 = x; and x, = x; after push (2)
— or add a2 — x3 = x; and a2 — x, = x| and assume fresh literal a2 (3)

e if satisfiable then a solution with small constants has been found
otherwise increase eff. width of bit-vectors where it was used to derive UNSAT

under-approximations not used then formula UNSAT “used” = “failed assumption”

e Iin (3) constraints are removed by forcing assumptions to the opposite value

by adding a unit clause, e.g. —a?Z in next iteration

Clausal Cores PicoSAT APl 46/54

e clausal core (or unsatisfiable sub set) of an unsatisfiable formula
— clauses used to derive the empty clause
— may include not only original but also learned clauses
— similar application as in previous under-approximation example

— but also useful for diagnosis of inconsistencies

e variable core

— sub set of variables occurring in clauses of a clausal core

e these cores are not unique and not necessary minimimal

e minimimal unsatisfiable sub set (MUS) = clausal core where no clause can be removed

PicoMUS PicoSAT APl 47/54

e PicoMUS is a MUS extractor based on PicoSAT
— uses several rounds of clausal core extraction for preprocessing

— then switches to assumption based core minimization using

picosat failed assumptions

— source code serves as a good example on how to use cores / assumptions

e new MUS track in this year's SAT 2011 competition

— with high- and low-level MUS sub tracks

Examples for Core and MUS Exiraction PicoSAT API 48/54

c ex3.cnf $ picosat ex3.cnf —-c core
p cnf 6 10 s UNSATISEFIABLE
1 2 30 $ cat core
1 2 -3 0 p cnf 6 9
1 -2 30 2 310 c ex4.cnf $ picomus ex4.cnf mus
1 -2 -3 0 2 -3 1 0 p cnf 6 11 s UNSATISFIABLE
4 5 6 0 -2 310 1 2 30 $ cat mus
4 5 -6 0 -2 -3 1 0 1 2 -3 0 p cnf 6 6
4 -5 6 0 6 5 4 0 1 -2 3 0 1 2 30
4 -5 -6 0 5 -6 4 0 1 -2 -3 0 1 2 -3 0
-1 -4 0 6 4 -5 0 4 5 6 0 1 -2 3 0
1 4 0 4 -6 -5 0 4 5 -6 0 1 -2 -3 0
-1 -4 0 4 -5 6 0 -1 4 0
4 -5 -6 0 -1 -4 0
-1 -4 0
-1 4 0

-1 -4 0

Proof-Traces and TraceCheck PicoSAT APl 49/54

e core extraction in PicoSAT is based on tracing proofs
— enabled by picosat_enable trace_generation
— maintains “dependency graph” of learned clauses

— kept in memory, so fast core generation

e traces can also written to disk in various formats
— RUP format by Allen Van Gelder (SAT competition)

— or format of TraceCheck tool

e TraceCheck can check traces for correctness
— orders clauses and antecedents to generate and check resolution proof

— (binary) resolution proofs can be dumped

QDIMACS Example

same as DIMACS except that we have additional quantifiers:

0

c UNSAT
p cnf 4
a 1l 2 0
e 340
-1 -3 4
-1 3 -4
1 340
1 -3 -4
-2 =3 4
-2 3 -4
2 340
2 =3 -4

PicoSAT API 50/54

DepQBF API PicoSAT APl 51/54

/* Create and initialize solver instance. x/
QDPLL *qgdpll_create (void);

/* Delete and release all memory of solver instance. */
voilid gdpll_delete (QDPLL *x gdpll);

/* Ensure var table size to be at least "'num’. x/
void gdpll_adjust_vars (QDPLL = gdpll, VarID num);

/+* Open a new scope, where variables can be added by ’"gdpll_add’.
Returns nesting of new scope.
Opened scope can be closed by adding 0’ via ’'gdpll_add’.
NOTE: will fail if there i1s an opened scope already.

*/

unsigned int gdpll_new_scope (QDPLL x gdpll, QODPLLQuantifierType gtype);

/+* Add variables or literals to clause or opened scope.
If scope is opened, then ’'id’ 1s interpreted as a variable 1D,
otherwise ’"i1d’ 1is interpreted as a literal.
NOTE: will fail if a scope 1s opened and 'id’ 1s negative.

*/

void qgdpll_add (QDPLL * gdpll, LitID id);

/* Decide formula. x/
QDPLLResult qgdpll_sat (QDPLL *x qgdpll);

Wish List for QBF Solvers PicoSAT APl 59/54

e extraction of “certificates”
— satisfying assignment to outer-most existential variables
— resp. in general skolem-functions for satisfiable instances

— falsifying assignment to outer-most universal variables

e incremental QBF solving

e API for preprocessing / inprocessing

e beside steady progress more scalability

Summary PicoSAT API| 53/54

SAT and QBF

conjunctive normal form (CNF) and (Q)DIMACS format

encoding of models and logical constraints

e PicoSAT, PicoMUS, TraceCheck, DepQBF

e examples and use cases

e APIs

What |S m|SS|ng? PicoSAT API 54/54

e how SAT can handle millions of variables routinely

e whether there will still be progress in SAT

e AIGER format, proof (trace) formats

e the full APl of PicoSAT (see picosat.h for more details)

e skipped API of other Solvers, in particular (Crypto)MiniSAT, SAT4J

e tricky issues with incremental pre/in-processing such as “freezing variables”

e compact QBF encodings

vl pepdes have accraceed researchers from various disciplines, Legic,
wning, scheduling, operatiens research and combinatorial cponization,
& on the theme of complexicy, and much mere, they all are connecced

AT sremms from actual salving: The increase in power of modern SAT
vears has been phenormenal It bas become the key enabling vechnology
of bath computer bardware and sofoware. Bounded Model Checking
wiare is now probably the mest widely used model checking technigue.
it it finds are just satisfying instances of a Boolean formula obtained by
depth a sequential circuit and its specification in Enear temporal logic
o software verification is 2 much more difficult problermn on the frontier
proemising approach for Brguages like C with finite word-length ntegers
5 in BMC but with a decision procedure for the theory of bit-vectors
n pracedures for bit-vectors that | am famiiar with Witmately make use
ndlz complex formulas.

more complicated theories, like linear real and nceger arichmetic, are
fication, Most of them use powerful SAT solvers in an essential way

ving i a key technology for 215t century computer science. | expect
o 3l cheorevkcal and pracokcal aspects of SAT soling will be emremaly
nd rasearchars and will lead e many furthar advances n the flekd

Edmund Clarke

yatems Liniversity Professor of Compurer Science and Professor of Elecrrical
ar Carnegie Mellan University, & one of the mitiators and main contibiinors
i for wivich e ofse received the 2007 ACH Turing Award.

Jarke was ane af the frst reseonchers to reoize that SAT salving fas the
‘the most important technologies in mode checking.

AW FT4-1-3Ead3-Fra-1

Q E-Ilﬂl IIII

185

HANDBOOK
of satisfiability

Editors
Armin Biere
Marijn Heule

Hans van Maaren
Toby Walsh

Frontiers in Artificial Intelligence ;

ANDBOt

o e of satisfia
®
®
® P

® ® @ Ediors:
® ArminBiere
@® Marijn Heule
Hans van Maaren

® @ Toby Walsh

Blocked Clauses Appendix A1/A3

blocked clause C € F all clauses in F with [
, (Ivave)
fixa CNF F
(avVbVl)
(IvVbVvd)

since all resolvents of C on [are tautological C can be removed
Proof
assignment o satisfying F\C but not C

can be extended to a satisfying assignment of F by flipping value of /

Relating Blocked Clauses and Encoding / Preprocessing Appendix| A2/A3

COl Cone-of-Influence reduction
MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATelLite

BCE Blocked-Clause-Elimination

Boolector: Lemmas-on-Demand + Underapproximation

Array formula

Formula is satisfiable

Over—approximate

Encode to CNF

Add under—approx. clauses C

Refine under—approx.

A
Call SAT solver
NO
YES NO YES
spurious? SAT? C used?
YES Call SAT solver NO
Formula is unsatisfiable
Add lemma
Refine over—approx.

Appendix A3/A3

