Chasing Target Phases

http://fmv.jku.at/chasing-target-phases

Armin Biere and Mathias Fleury Pragmatics of SAT 2020, 2020/07/03

JUNANNES KEPLER UNIVERSITÄT LINZ LIT AI Laboratory Der Wissenschaftsfonds.

CDCL decision heuristics:

select and focus on interesting variables (E)VSIDS, VMTF, LRB set phase (polarity) of decision variable false, occurrences, phase saving

This talk is about:

rephasing saved phases maximizing the trail

experiments in RISS, "flipping" in STRANGENIGHT

similar in spirit to GLUCOSE style restart blocking

which helped CADICAL to solve the largest number of instances at the SAT Race 2019

Most important heuristics for SAT instances: phase heuristics Pick any variable and set it to the "right" phase Hans van Maaren

New view for CDCL:

maximize the trail

trail = current partial assigment

Objective is to maximize the size of the trail without conflict Save *maximum consistent trail* as <u>target phases</u> Prioritize <u>target phases</u> for decisions over saved phases

Intensification: target phases Diversification: rephasing

and best phases

Phase Saving

first in RSAT by Pipatsrisawat & Darwiche

Saving phasesas soon variable is assigned save its phasePhase heuristicset decision phase to saved phaseInitializationuse arbitrary initial valueComponentssaves assignment of satisfied componentsRapid restartsworks well with (allows) rapid restarts

Rephasing Saved Phases

Original 0 :	set phases to original value (false or tr	ue)
Inverted I:		
Best B :		
Walk W:		
Random # :	set phase to random value	
Flipped F :		

Used policy: **OI** (**BWO BWI BW# BWF**)^{ω}

KISSAT

Original 0 :	set phases to original value (false or true)					
Inverted I:	set phases to opposite of the original value					
Best B :						
Walk W:						
Random # :	set phase to random value					
Flipped F :						

Used policy: **OI** (**BWO BWI BW# BWF**)

KISSAT

Original 0 :	set phases to original value (false or true)					
Inverted I:	set phases to opposite of the original value					
Best B :	restore best assignment					
Walk W:						
Random # :	set phase to random value					
Flipped F :						

Used policy: **OI** (**BWO BWI BW# BW**

KISSAT

Original 0 :	set phases to original value	(false or true)				
Inverted I:	set phases to opposite of the original valu					
Best B :	restore best assignment					
Walk W:	let local search maximize satisfied clauses					
Random # :	set phase to random value					

Used policy: **OI** (**BWO BWI BW# B**

KISSAT

set phases to original value (false or true)					
set phases to opposite of the original value					
restore best assignment					
let local search maximize satisfied clauses					
set phase to random value					

Used policy: **OI** (**BWO BWI BW#** |

KISSAT

set phases to original value (false or true)
set phases to opposite of the original value
restore best assignment
let local search maximize satisfied clauses
set phase to random value
flip current phase

Used policy: **OI** (**BWO BWI BW#**

KISSAT

Original O :	set phases to original value (false or true)					
Inverted I:	set phases to opposite of the original value					
Best B :	restore best assignment					
Walk W :	let local search maximize satisfied clauses					
Random # :	set phase to random value					
Flipped F :	flip current phase					

Used policy: OI (BWO BWI BW# BWF) $^{\omega}$

If formula falls apart into several disconnected components:

focus on one component at a time bumping heuristic solve components one by one unless one component is UNSAT phase saving also saves models of satisfied components

Rephasing forgets satisfying assignments of components!

So KISSAT makes sure not to loose them: this is not largest autarky of saved phases fixpoint algorithm to clauses satisfied by autarky eliminated pushed on the reconstruction stack If formula falls apart into several disconnected components:

focus on one component at a time bumping heuristic solve components one by one unless one component is UNSAT phase saving also saves models of satisfied components

Rephasing forgets satisfying assignments of components!

So KISSAT makes sure not to loose them: the largest autarky of saved phases fixpoint algo clauses satisfied by autarky eliminated pushed on the reconstruction stack If formula falls apart into several disconnected components:

focus on one component at a time bumping heuristic solve components one by one unless one component is UNSAT phase saving also saves models of satisfied components

Rephasing forgets satisfying assignments of components!

So KISSAT makes sure not to loose them: this is not in CADICAL largest autarky of saved phases fixpoint algorithm by Kullmann clauses satisfied by autarky eliminated pushed on the reconstruction stack Target Phases

Passive optimization in GLUCOSE: <u>Block restarts</u> if trail shows steady size increase

Using moving averages of trail size

Active optimization using target phases: Use maximum consistent trail assignment for future decisions

Save target/best trail during backtracking only

Example: KISSAT on ph06.cnf

Saved: +++++++++++
Target: +++++++++++
Current:++++++
Current: ^
Current:-++
Saved: -++
Target: ++++++++++++
· ·
Current:
Saved: -++-+++++++++
larget: -++
Current
Sound:
Current:
Saved: +-++++++++++
Target: -++-+++++++++
•
Saved: +-++++++
Target: -++-++++++++
Current:
Current: ^
Saved: +-++++++
Target: -++-+++++++++
Current:++++++
turrent:
Savada
Jarget:
Current:

mismatch saved/target at the bottom

Demo: KISSAT stable / focused mode

с														ariable	
с															
с				evel											
с															
с	i	70.03	3 23	57	53	14758	431074	22014	57	532	40%	18	182398	28012	52%
с		70.43	3 23	58	53	14840	435064	25762	57	539	40%	17	182389	28012	52%
с	i	71.4	7 25	58	53	15483	440084	30607	57	552	40%	18	182389	28011	52%
с		72.40	624	57	54	15869	445542	23296	57	554	40%	18	182372	28011	52%
с		73.40	0 20	57	54	16377	450010	27608	57	554	40%	18	182367	28011	52%
с	e	73.44	4 21	57	54	16377	450010	27608	57	554	40%	18	181317	27547	51%
с		73.44	4 21	57	54	16377	450010	27608	57	554	40%	18	181289	27547	51%
с		73.44	4 21	57	54	16377	450010	27608	57	554	40%	18	181286	27547	51%
с	e	73.4	5 21	57	54	16377	450010	27608	57	554	40%	18	181278	27538	51%
с		74.60	0 25	58	54	16763	459745	31013	57	554	40%	18	181278	27538	51%
с															
с															
с	В														
с															
с	3														
с															
с															
с															
с															
с															
с															
с					luct						tra				oles
с						estart			be			٩l			remaining
с				leve			onflict			targ					
с															
с	d														
с	i														
с															
с															
с															
с															
c		80.4	5 28	58		16786	506395	30307	57	587	40%	18	181089	27530	51%
с		81.3	1 21		58	17030	513343	21270	57	591	40%	18	181089	27530	51%

Demo: KISSAT rephase scheduling

589 14 31% 0 81 4 122 3003 6761 13 34 32% 9 294546 49206 91% 5 271 6006 6087 20 55 33% 23 293659 49035 91% 175 7 359 10009 6761 20 80 34% 8 277679 47447 88% 490 15010 61412 29 109 237913 34101 63% 39% 24 232789 34002 63% 16 11 1161 21011 4770 36 128 39% 23 1514 28012 7588 36 146 30% 9 220480 32919 61% 7 01 228 15 2089 36014 6305 36 156 43% 47 220480 32919 61% 212 16 3485 45026 11926 46 185 44% 47 218330 32526 60% 10 95 18 184 18 3490 55027 66706 46 195 43% 62 215284 32387 60% 18 180 4950 78032 10126 48 237 45% 62 208079 31234 58% 5008 91033 9816 48 264 38% 16 207270 31222 58% 16 65 20 24 5646 105035 16066 48 286 46% 50 207270 31222 58% 18 6792 120038 17481 48 316 46% 47 205968 21 148 6801 136039 16018 49 333 46% 54 205311 30808 23 26 29 8658 153040 16075 49 359 41% 18 204440 30732 57% 19 70 31 8750 171042 15722 49 366 44% 50 204211 30724 30 56 139 33 57% 35 9141 190043 14369 49 369 41% 17 203773 30515 57% 40 66 36 21 138 36 10079 210045 25010 49 387 43% 52 202044 30394 56% .02 23 135 38 10090 231046 73732 49 412 44% 50 201818 29876 55% 40 42 86 20 60 40 10693 253048 22396 49 413 41% 17 195708 29703 55% 61 44 11748 300049 73579 50 452 41% 17 193786 29417 55% 50.25 18 136 46 13040 325052 21669 57 460 44% 49 193774 54 02 22 29415 55% 58.25 27 139 47 13050 351055 82892 57 472 44% 52 191395 28781 53% 58 49 14407 378056 28423 57 505 41% 18 191087 28743 53% 62 78 21 67.07 25 135 51 14749 406062 29277 57 510 43% 51 182703 28024 52% 70 69 23 58 53 14840 435064 25762 57 539 40% 17 182389 28012 52% 75.49 23 125 55 16767 465068 24885 57 555 43% 47 181278 27538 51% 79.43 127 57 16780 496069 20671 57 557 44% 48 181089 27530 51% 57 58 17839 528074 106383 57 592 40% 18 180813 27512 51% 86 27

Implementation

Alternation between SAT/UNSAT mode: Chanseok Oh

 Stable mode
 slow changes
 Luby restarts, smooth bumping, target phases

 Focused mode
 agile
 GLUCOSE-style restarts, aggressive bumping, phase saving (only)

scheduled in geometrically increasing conflict intervals

Rephasing scheduled in <u>arithmetically</u> increasing intervals

Rephasing frequency in SAT/UNSAT interval steadly increasing

Implementation

KISSAT

KISSAT, SAT Race 2019

KISSAT in Finnish or Keep it simple (and clean) SAT solver

http://fmv.jku.at/kissat

to make it easier to find

If you liked CADICAL, you will love KISSAT

Port to Cremoved redundant computationLess memory (I)no binary clauses in the arenaLess memory (II)compact watcher data structuresLess memory (III)support for $2^{28} - 1$ variablesp cnf 268435455 0nearly no memory usageCompact codefaster compile time and no comments ©

KISSAT, SAT Race 2019, satisfiable only

KISSAT, SAT Race 2019, all

Implementation

CADICAL

More variablesINT_MAX variablesrequires a lot of memory thoughSimpler rephasingno autarky calculation when rephasingFewer mode switches $\mathcal{O}(2^n)$ vs. $\mathcal{O}(n \cdot \log^3 n)$ conflict intervals

KISSAT conflict intervals:

 $\begin{array}{l} \mathcal{O}(\log n) < \mathcal{O}(n/\log n) < \mathcal{O}(n) < \mathcal{O}(n \cdot \log n) < \mathcal{O}(n \cdot \log^3 n \) \\ \text{restart} & \text{reduce} & \text{rephase} & \text{probing} & \text{elimination} & \text{SAT/UNSAT mode} \\ \end{array}$

CADICAL, SAT Race 2019, satisfiable only

CADICAL, SAT Race 2019, all

Implementation

GLUCOSE

Stable mode	low variable decay	no chronological backtracking
Focus mode	high variable decay	VSIDS = poor man's VMTF

Bumping of reasons turned out to be important not for normal GLUCOSE

GLUCOSE, SAT Race 2019, satisfiable only

GLUCOSE, SAT Race 2019, all

Implementation

SPASS-SATT

Core of the CDCL(\mathcal{T}) solver Spass-Satt

Based on the ideas of GLUCOSE 2

Has inprocessing (subsumption-resolution until fixpoint)

But: no BCE, no BVE

SPASS-SATT, SAT Race 2019, satisfiable only

Conclusion

Rephasing alone helps KISSAT on SAT Comp. 2018, not 2019 somewhat *fragile*: bad with the wrong strategy

Target phasing with rephasing helps for satisfiable instances key idea: Maximize trail length

Autarky and random walk have an unclear effect.

Alternation is a good compromise.

http://fmv.jku.at/chasing-target-phases

Appendix

Appendix

Detailed Results

Performance of the SAT solvers KISSAT and CADICAL

	All instances				Satisfiable instances			
	KI	SSAT	CA	DICAL	KIS	SAT	CADICAL	
Configuration	Solved	PAR2	Solved	PAR2	Solved	PAR2	Solved	PAR2
default	259	1662994	242	1857009	159	263235	146	323506
alwtarget	249	1714647	231	1921490	159	234467	144	294832
no-targetno-	236	1859306	227	1979507	138	450986	129	473741
rephase								
no-target	244	1775317	226	2002909	146	366564	129	479070
no-rephase	251	1736491	225	2020048	151	341314	127	509767
no-phasesaving	225	1986220	217	2084103	134	522721	128	498526
alwtargetno-	236	1851424	210	2165365	148	359317	128	508870
rephase								

Performance of the SAT solvers GLUCOSE and SPASS-SATT

	All instances				Satisfiable instances			
	GLUCOSE		SPASS-SATT		GLUCOSE		SPASS-SATT	
Configuration	Solved	PAR2	Solved	PAR2	Solved	PAR2	Solved	PAR2
default	206	2154525	159	2671578	134	368068	113	532083
alwtarget	197	2222227	168	2582440	132	383353	122	436410
no-targetno-	203	2192177	148	2741503	124	476546	101	616097
rephase								
no-target	197	2259101	151	2736161	120	516055	101	626393
alwtargetno-	194	2282175	127	2909751	129	424991	79	801110
rephase								
original	195	2312300	137	2829600	112	359317	86	729944

Appendix

More Results

KISSAT, SAT Competition 2018, satisfiable only

KISSAT, SAT Competition 2018, all

SPASS-SATT, SAT Competition 2018

