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Motivation (1/2)

I SAT and QBF solvers used as core decision engines
I Verification, automatic test generation, scheduling, model

checking, SMT solvers, . . .

I Main requirements
I Correctness

I Satisfiability status
I Model resp. unsatisfiability proof

I Robustness
I No crashes when run on syntactically valid inputs

I Speed

I Clients heavily depend on these criteria
I Incorrect solver may lead to incorrect overall result
I Crashing solver may crash the client as well
I Solver should compute the result as fast as possible

I High user expectations although problem is NP-complete
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Motivation (2/2)

I Demand for fast solvers led to various improvements
I Improved algorithms

I Clause learning, rapid restarts, literal watching, · · ·
I Well understood from a theoretical point of view

I Low-level implementation and optimization details

I Error prone engineering
I Developer secrets

I How do we make sure that our implementations are correct?
I Traditional testing approaches

I Unit testing / regression testing
I Tedious task of generating test cases manually

I Testing solver against benchmark suite
I Limited set of highly specific benchmarks

I Complement traditional testing with fuzz testing
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Fuzz Testing
I Fuzz Testing (Miller et al.)

I automated negative testing technique

I Grammar-based black-box fuzz testing
I Treat solver as a black-box
I However, use domain knowledge to implement fuzzer

I Fuzzer: random instance generator
I Random instances must be syntactically valid
I Ideally, we want high diversity to cover many corner cases

I Repeatedly “attack” solver with random instances
I Check satisfiability result
I Check model resp. unsatisfiability proof

I High throughput as a success factor
I Random instances should not be “too” hard to solve
I However, trivial instances are unlikely to reveal critical defects
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Random 3SAT

I Random 3SAT fuzzer 3SATGen

I Pick number of variables m

I Pick clause variable ratio r
I Generate m · r random ternary clauses

I Pick each variable uniformly and negate it with probability 1/2
I Avoid generating trivial clauses
I Avoid picking the same literal multiple times within a clause

I Trivial to implement

I However, random 3SAT instances lack structure

I Generated instances are unlikely to reveal interesting defects
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Random Layered CNF

I Use domain knowledge
I Often, SAT solvers use input structure
I Layered CNF fuzzer CNFuzz

I Pick a number of layers l of maximum width w

I Each i th layer introduces f fresh variables

I Each layer has a separate ratio r from which the number of
clauses is computed

I Clauses are at least ternary
I Probability of larger clauses decreases exponentially
I Probability of picking variables from previous layers decreases

exponentially
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Random CNF by Circuit Translation

I Use domain knowledge
I Industrial SAT solvers are optimized for

CNFs generated by circuit translation , e.g. Tseitin translation
I Fuzzer that builds circuit and translates it to CNF: FuzzSAT

I Generate v boolean variables and insert them into set n

I Pick op ∈ {AND, OR, XOR, IFF}, pick o1 and o2 from n,
negate both with probability 1/2, generate new operator node
and insert it into n

I Repeat until each input variable is referenced at least t times

I Combine roots to one boolean root

I Translate root to CNF by Tseitin translation

I Finally, add random clauses of varying size to increase
diversity and difficulty
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Experiments for SAT Solvers from SAT-COMP’07

3SATGen CNFuzz FuzzSAT
solver err inc mod err inc mod err inc mod

Blogic 0 0 0 1 3 1 1 0 1
Blogic-fixed 0 0 0 0 1 1 0 0 0
March ks 24 2 0 5 0 0 2 2 0
MiraXTv3 26 7 0 91 13 0 286 2 0
PicoSAT 0 0 0 0 0 0 0 2 0
RSat 56 0 0 27 0 0 3 0 0

I err = error, e.g. segfault

I inc = incorrect satisfiability status

I mod = invalid model
I Tested solvers

I Barcelogic, Barcelogic-fixed, CMUSAT, March ks, MiniSat,
MiraXTv3, MXC, PicoSAT, RSat, Sat7, SAT4J, Spear, Tinisat.
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Experiments for SAT Solvers from SAT-COMP’09

3SATGen CNFuzz FuzzSAT
solver err mod err mod err mod

ManySat 2 0 56 0 836 0
March hi 0 0 0 0 0 24
MiniSat-9z 2 0 58 0 852 0

I err = error, e.g. segfault

I mod = invalid model

I Tested solvers

I CirCUs, Clasp, Cumr p, Glucose, LySATi, ManySAT,
Marchi hi, MiniSat, MiniSat-9z, MXC, PicoSAT, PrecoSAT,
RSat, SApperloT, SAT4J, Varsat-industrial
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Random QBF model

I Fuzzer that uses theoretical model by Chen and Interian to
generate random QBFs: BlocksQBF

I Model bears similarities to random SAT
I study threshold behavior

I All clauses are for-all reduced by construction

I All clauses have the same length

I Each clause is free of complementary and duplicate literals

I Duplicate clauses are discarded
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QBFuzz

I Observation: exact model limits diversity

I Configurable fuzzer QBFuzz
I First, a quantifier prefix is generated

I Number of variables is picked for each block

I Clauses are of varying length

I Literals are selected from any block
I Complementary and duplicate literals are discarded

I For-all reduction

I Discard duplicate clauses

I Eliminate unused variables
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Fuzz Testing Experiments

BlocksQBF QBFuzz
solver error incorrect error incorrect

Quantor 0 0 1 0
QuBE 6.0 0 684 5 7
QuBE 6.5 0 0 4 0
sKizzo 0 0 2 29
SQBF 0 0 35 0
yQuaffle 0 0 94 0

I Tested solvers
I DepQBF, MiniQBF-090608, QMRES, Quantor-3.0, QuBE6.0,

QuBE6.5, QuBE6.6, Semprop-010604, sKizzo-0.8.2,
SQBF-1.0, Squolem-1.03, yQuaffle-021006
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Delta Debugging

I Delta Debugging (Zeller et al.)

I Technique to automatically shrink failure-inducing instances

I Delta debugger (DD) runs solver on failure-inducing instance

φ to obtain golden exit code

I DD tries to simplify the failure-inducing instance greedily

I DD calls solver with a simplified instance φ′

I Exit code = golden exit code, success , continue simplifying φ′

I Exit code 6= golden exit code, failure , try other simplification

I Use wrapper script instead of calling solver directly
I Script determines if the observable behavior is equal

I For example, grep for a specific error message
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SAT Delta Debugging

I Fuzz testing and Delta Debugging has been
shown to be effective for SMT

I Delta debugging for SMT uses the explicit structure of the
instance (hierarchical delta debugging)

I However, SAT instances are flat , i.e. structure is implicit

I Delta debugger cnfdd handles instance as set of clauses
I Uses an even greedier version of DDMIN (Zeller et al.)

I Greedier version reduces the number of calls to SAT solver

I Delta debugger executes 2 alternating phases

I With increasing granularity, try to remove sets of clauses
I Try to remove individual literals

I Rather costly, but necessary for sufficient overall reduction

I Delta Debugging is run until fix-point is reached
I Or some threshold is reached, .e.g. time limit
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Multi-threaded SAT Delta Debugging

I Delta Debugging algorithm offers parallelism

I Multi-threaded SAT delta debugger mtcnfdd

I Simplification attempts can be done in parallel
I Clause removal phase

I Divide set of clauses into g sets, where g is current granularity
I Try to remove individual sets in parallel

I Independent parallel calls to SAT solver

I Merge successful simplifications after each round

I Start with smallest reduced formula

I Literal removal phase
I Clauses are split among threads
I However, successful literal removals are merged immediately
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SAT Delta Debugging Experiments

cnfdd mtcnfdd
solver files c time size red time size red

Blogic 7 4 39 432 95.8% 20 378 96.4%
Blogic-fix 2 2 41 361 99.0% 29 360 99.0%
March hi 24 1 638 1982 88.4% 277 2507 85.4%
March ks 35 3 4 147 97.8% 3 130 98.0%
MiniSat-9z 912 1 <1 10 98.8% <1 10 98.8%
PicoSAT 2 1 2 39 99.8% 2 40 99.8%
RSat 86 2 1478 17068 32.5% 762 16971 32.9%

I c = number of observable classes, e.g. segfault, incorrect, · · ·
I time = average delta debugging time in seconds

I size = average number of bytes of delta debugged instance

I red = overall reduction achieved by delta debugger
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QBF Delta Debugging

I QBF delta debugging similar to SAT delta debugging

I QBF delta debugger executes 2 alternating phases
I With increasing granularity, try to remove sets of clauses
I Try to remove individual literals

I However, as a third phase, moving variables between

quantifier sets may trigger further simplifications
I Potential subject for further research

I Configurable delta debugger qbfdd
I Different strategies for clause removal
I Moving variables between quantifier sets (optionally)
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QBF Delta Debugging Experiments

qbfdd
solver files c time size red

Quantor 1 1 35 446 83.0%
QuBE 6.0 696 2 150 33 99.0%
QuBE 6.5 4 1 84 363 83.8%
sKizzo 31 2 330 497 76.2%
SQBF 35 1 57 289 86.7%
yQuaffle 94 1 26 31 98.8%

I c = number of observable classes, e.g. segfault, incorrect, · · ·
I time = average delta debugging time in seconds

I size = average number of bytes of delta debugged instance

I red = overall reduction achieved by delta debugger
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Conclusions

I Fuzz Testing is an effective automated negative testing
technique for SAT and QBF solvers

I Our experiments found critical defects
I We propose to use fuzz tests in a qualification round of

further SAT and QBF competitions

I Delta debugging techniques are effective for automatically
reducing failure-inducing instances for SAT and QBF solvers

I All tools available as open source
I “Attack” your own solvers!
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