
Introduction
Fuzz Testing

Delta Debugging

Automated Testing and Debugging of
SAT and QBF Solvers

Robert Brummayer, Florian Lonsing and Armin Biere

JKU Linz, Austria

13th International Conference on
Theory and Applications of Satisfiability Testing

July 13, 2010
Edinburgh, Scotland, UK

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Outline

Introduction
Motivation

Fuzz Testing
Introduction
Techniques for SAT
Techniques for QBF

Delta Debugging
Introduction
Techniques for SAT
Techniques for QBF

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging
Motivation

Motivation (1/2)

I SAT and QBF solvers used as core decision engines
I Verification, automatic test generation, scheduling, model

checking, SMT solvers, . . .

I Main requirements
I Correctness

I Satisfiability status
I Model resp. unsatisfiability proof

I Robustness
I No crashes when run on syntactically valid inputs

I Speed

I Clients heavily depend on these criteria
I Incorrect solver may lead to incorrect overall result
I Crashing solver may crash the client as well
I Solver should compute the result as fast as possible

I High user expectations although problem is NP-complete

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging
Motivation

Motivation (2/2)

I Demand for fast solvers led to various improvements
I Improved algorithms

I Clause learning, rapid restarts, literal watching, · · ·
I Well understood from a theoretical point of view

I Low-level implementation and optimization details

I Error prone engineering
I Developer secrets

I How do we make sure that our implementations are correct?
I Traditional testing approaches

I Unit testing / regression testing
I Tedious task of generating test cases manually

I Testing solver against benchmark suite
I Limited set of highly specific benchmarks

I Complement traditional testing with fuzz testing

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Fuzz Testing
I Fuzz Testing (Miller et al.)

I automated negative testing technique

I Grammar-based black-box fuzz testing
I Treat solver as a black-box
I However, use domain knowledge to implement fuzzer

I Fuzzer: random instance generator
I Random instances must be syntactically valid
I Ideally, we want high diversity to cover many corner cases

I Repeatedly “attack” solver with random instances
I Check satisfiability result
I Check model resp. unsatisfiability proof

I High throughput as a success factor
I Random instances should not be “too” hard to solve
I However, trivial instances are unlikely to reveal critical defects

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Random 3SAT

I Random 3SAT fuzzer 3SATGen

I Pick number of variables m

I Pick clause variable ratio r
I Generate m · r random ternary clauses

I Pick each variable uniformly and negate it with probability 1/2
I Avoid generating trivial clauses
I Avoid picking the same literal multiple times within a clause

I Trivial to implement

I However, random 3SAT instances lack structure

I Generated instances are unlikely to reveal interesting defects

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Random Layered CNF

I Use domain knowledge
I Often, SAT solvers use input structure
I Layered CNF fuzzer CNFuzz

I Pick a number of layers l of maximum width w

I Each i th layer introduces f fresh variables

I Each layer has a separate ratio r from which the number of
clauses is computed

I Clauses are at least ternary
I Probability of larger clauses decreases exponentially
I Probability of picking variables from previous layers decreases

exponentially

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Random CNF by Circuit Translation

I Use domain knowledge
I Industrial SAT solvers are optimized for

CNFs generated by circuit translation , e.g. Tseitin translation
I Fuzzer that builds circuit and translates it to CNF: FuzzSAT

I Generate v boolean variables and insert them into set n

I Pick op ∈ {AND, OR, XOR, IFF}, pick o1 and o2 from n,
negate both with probability 1/2, generate new operator node
and insert it into n

I Repeat until each input variable is referenced at least t times

I Combine roots to one boolean root

I Translate root to CNF by Tseitin translation

I Finally, add random clauses of varying size to increase
diversity and difficulty

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Experiments for SAT Solvers from SAT-COMP’07

3SATGen CNFuzz FuzzSAT
solver err inc mod err inc mod err inc mod

Blogic 0 0 0 1 3 1 1 0 1
Blogic-fixed 0 0 0 0 1 1 0 0 0
March ks 24 2 0 5 0 0 2 2 0
MiraXTv3 26 7 0 91 13 0 286 2 0
PicoSAT 0 0 0 0 0 0 0 2 0
RSat 56 0 0 27 0 0 3 0 0

I err = error, e.g. segfault

I inc = incorrect satisfiability status

I mod = invalid model
I Tested solvers

I Barcelogic, Barcelogic-fixed, CMUSAT, March ks, MiniSat,
MiraXTv3, MXC, PicoSAT, RSat, Sat7, SAT4J, Spear, Tinisat.

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Experiments for SAT Solvers from SAT-COMP’09

3SATGen CNFuzz FuzzSAT
solver err mod err mod err mod

ManySat 2 0 56 0 836 0
March hi 0 0 0 0 0 24
MiniSat-9z 2 0 58 0 852 0

I err = error, e.g. segfault

I mod = invalid model

I Tested solvers

I CirCUs, Clasp, Cumr p, Glucose, LySATi, ManySAT,
Marchi hi, MiniSat, MiniSat-9z, MXC, PicoSAT, PrecoSAT,
RSat, SApperloT, SAT4J, Varsat-industrial

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Random QBF model

I Fuzzer that uses theoretical model by Chen and Interian to
generate random QBFs: BlocksQBF

I Model bears similarities to random SAT
I study threshold behavior

I All clauses are for-all reduced by construction

I All clauses have the same length

I Each clause is free of complementary and duplicate literals

I Duplicate clauses are discarded

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

QBFuzz

I Observation: exact model limits diversity

I Configurable fuzzer QBFuzz
I First, a quantifier prefix is generated

I Number of variables is picked for each block

I Clauses are of varying length

I Literals are selected from any block
I Complementary and duplicate literals are discarded

I For-all reduction

I Discard duplicate clauses

I Eliminate unused variables

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Fuzz Testing Experiments

BlocksQBF QBFuzz
solver error incorrect error incorrect

Quantor 0 0 1 0
QuBE 6.0 0 684 5 7
QuBE 6.5 0 0 4 0
sKizzo 0 0 2 29
SQBF 0 0 35 0
yQuaffle 0 0 94 0

I Tested solvers
I DepQBF, MiniQBF-090608, QMRES, Quantor-3.0, QuBE6.0,

QuBE6.5, QuBE6.6, Semprop-010604, sKizzo-0.8.2,
SQBF-1.0, Squolem-1.03, yQuaffle-021006

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Delta Debugging

I Delta Debugging (Zeller et al.)

I Technique to automatically shrink failure-inducing instances

I Delta debugger (DD) runs solver on failure-inducing instance

φ to obtain golden exit code

I DD tries to simplify the failure-inducing instance greedily

I DD calls solver with a simplified instance φ′

I Exit code = golden exit code, success , continue simplifying φ′

I Exit code 6= golden exit code, failure , try other simplification

I Use wrapper script instead of calling solver directly
I Script determines if the observable behavior is equal

I For example, grep for a specific error message

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

SAT Delta Debugging

I Fuzz testing and Delta Debugging has been
shown to be effective for SMT

I Delta debugging for SMT uses the explicit structure of the
instance (hierarchical delta debugging)

I However, SAT instances are flat , i.e. structure is implicit

I Delta debugger cnfdd handles instance as set of clauses
I Uses an even greedier version of DDMIN (Zeller et al.)

I Greedier version reduces the number of calls to SAT solver

I Delta debugger executes 2 alternating phases

I With increasing granularity, try to remove sets of clauses
I Try to remove individual literals

I Rather costly, but necessary for sufficient overall reduction

I Delta Debugging is run until fix-point is reached
I Or some threshold is reached, .e.g. time limit

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Multi-threaded SAT Delta Debugging

I Delta Debugging algorithm offers parallelism

I Multi-threaded SAT delta debugger mtcnfdd

I Simplification attempts can be done in parallel
I Clause removal phase

I Divide set of clauses into g sets, where g is current granularity
I Try to remove individual sets in parallel

I Independent parallel calls to SAT solver

I Merge successful simplifications after each round

I Start with smallest reduced formula

I Literal removal phase
I Clauses are split among threads
I However, successful literal removals are merged immediately

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

SAT Delta Debugging Experiments

cnfdd mtcnfdd
solver files c time size red time size red

Blogic 7 4 39 432 95.8% 20 378 96.4%
Blogic-fix 2 2 41 361 99.0% 29 360 99.0%
March hi 24 1 638 1982 88.4% 277 2507 85.4%
March ks 35 3 4 147 97.8% 3 130 98.0%
MiniSat-9z 912 1 <1 10 98.8% <1 10 98.8%
PicoSAT 2 1 2 39 99.8% 2 40 99.8%
RSat 86 2 1478 17068 32.5% 762 16971 32.9%

I c = number of observable classes, e.g. segfault, incorrect, · · ·
I time = average delta debugging time in seconds

I size = average number of bytes of delta debugged instance

I red = overall reduction achieved by delta debugger

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

QBF Delta Debugging

I QBF delta debugging similar to SAT delta debugging

I QBF delta debugger executes 2 alternating phases
I With increasing granularity, try to remove sets of clauses
I Try to remove individual literals

I However, as a third phase, moving variables between

quantifier sets may trigger further simplifications
I Potential subject for further research

I Configurable delta debugger qbfdd
I Different strategies for clause removal
I Moving variables between quantifier sets (optionally)

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

QBF Delta Debugging Experiments

qbfdd
solver files c time size red

Quantor 1 1 35 446 83.0%
QuBE 6.0 696 2 150 33 99.0%
QuBE 6.5 4 1 84 363 83.8%
sKizzo 31 2 330 497 76.2%
SQBF 35 1 57 289 86.7%
yQuaffle 94 1 26 31 98.8%

I c = number of observable classes, e.g. segfault, incorrect, · · ·
I time = average delta debugging time in seconds

I size = average number of bytes of delta debugged instance

I red = overall reduction achieved by delta debugger

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers



Introduction
Fuzz Testing

Delta Debugging

Introduction
Techniques for SAT
Techniques for QBF

Conclusions

I Fuzz Testing is an effective automated negative testing
technique for SAT and QBF solvers

I Our experiments found critical defects
I We propose to use fuzz tests in a qualification round of

further SAT and QBF competitions

I Delta debugging techniques are effective for automatically
reducing failure-inducing instances for SAT and QBF solvers

I All tools available as open source
I “Attack” your own solvers!

I Acknowledgements
I We would like to thank T. Hribernig, M. Preiner and

A. Niemetz for implementing mtcnfdd, QBFuzz and qbfdd.

Robert Brummayer, Florian Lonsing and Armin Biere Automated Testing and Debugging of SAT and QBF Solvers


	Introduction
	Motivation

	Fuzz Testing
	Introduction
	Techniques for SAT
	Techniques for QBF

	Delta Debugging
	Introduction
	Techniques for SAT
	Techniques for QBF


