On the Complexity of Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width

Gergely Kovásznai, Andreas Fröhlich, Armin Biere

Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria http://fmv.jku.at

SMT 2012
June 30 - July 1, 2012
Manchester, UK

Motivation

- How the encoding of the bit-widths affects the complexity of satisfiability checking for BV logics?
- In practice logarithmic (e.g. binary, decimal, hexadecimal) encoding is used (in contrast with unary encoding)

Example in SMT2

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(assert (distinct (bvadd x y) (bvadd y x)))
```

Using Boolector

- 103 MB in AIGER format; 1 GB in DIMACS format
- Bit-width of 10 million \rightarrow cannot be bit-blasted (due to integer overflow)

Motivation

- How the encoding of the bit-widths affects the complexity of satisfiability checking for BV logics?
- In practice logarithmic (e.g. binary, decimal, hexadecimal) encoding is used (in contrast with unary encoding)

Example in SMT2

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(assert (distinct (bvadd x y) (bvadd y x)))
```

Using Boolector:

- 103 MB in AIGER format; 1 GB in DIMACS format
- Bit-width of 10 million \rightarrow cannot be bit-blasted (due to integer overflow)

Preliminaries

quantifiers			
$\underline{n o}$		$\underline{y e s}$	
uninterpreted functions		uninterpreted functions	
$\underline{n o}$	$\underline{y e s}$	$\underline{n o}$	$\underline{y e s}$
QF_BV	QF_UFBV	BV	UFBV

Preliminaries

Assume common (SMT-LIB) operators \rightarrow bit-blasting is polynomial in bit-width

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
	unary	?	?	?	?
	binary	?	?	?	?

- QF_BV1 is NP-complete \leftarrow bit-blasting to SAT
- QF_UFBV1 is NP-complete \leftarrow using Ackermann constraints
- BV1 is PSPACE-complete \leftarrow bit-blasting to QBF
- UFBV1 is NExpTimE-complete \leftarrow proved in:
C. M. Wintersteiger, Termination Analysis for Bit-Vector Programs. PhD Thesis, ETH Zürich, 2011.
C. M. Wintersteiger, Y. Hamadi, L. Mendonça de Moura, Efficiently

Solving Quantified Bit-Vector Formulas. Proc. FMCAD, 2010.

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
$\begin{aligned} & \stackrel{.0}{\stackrel{\circ}{0}} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	unary	NP	?	?	?
	binary	?	?	?	?

- QF_BV1 is NP-complete \leftarrow bit-blasting to SAT
- QF_UFBV1 is NP-complete \leftarrow using Ackermann constraints
- BV1 is PSPACE-complete \leftarrow bit-blasting to QBF
- UFBV1 is NExpTimE-complete \leftarrow proved in:
C. M. Wintersteiger, Termination Analysis for Bit-Vector Programs. PhD Thesis, ETH Zürich, 2011.
C. M. Wintersteiger, Y. Hamadi, L. Mendonça de Moura, Efficiently

Solving Quantified Bit-Vector Formulas. Proc. FMCAD, 2010.

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
	unary	NP	NP	?	?
	binary	?	?	?	?

- QF_BV1 is NP-complete \leftarrow bit-blasting to SAT
- QF_UFBV1 is NP-complete \leftarrow using Ackermann constraints
- BV1 is PSPACE-complete \leftarrow bit-blasting to QBF
- UFBV1 is NExpTimE-complete \leftarrow proved in:

> C. M. Wintersteiger, Termination Analysis for Bit-Vector Programs. PhD Thesis, ETH Zürich, 2011 .
> C. M. Wintersteiger, Y. Hamadi, L. Mendonça de Moura, Efficiently
> Solving Quantified Bit-Vector Formulas. Proc. FMCAD, 2010 .

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
$\stackrel{\infty}{\square}$	unary	NP	NP	PSPACE	?
¢	binary	?	?	?	?

- QF_BV1 is NP-complete \leftarrow bit-blasting to SAT
- QF_UFBV1 is NP-complete \leftarrow using Ackermann constraints
- BV1 is PSPace-complete \leftarrow bit-blasting to QBF
- UFBV1 is NExpTimE-complete \leftarrow proved in:
> C. M. Wintersteiger, Termination Analysis for Bit-Vector Programs. PhD Thesis, ETH Zürich, 2011.
> C. M. Wintersteiger, Y. Hamadi, L. Mendonça de Moura, Efficiently Solving Quantified Bit-Vector Formulas. Proc. FMCAD, 2010

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
-	$\underline{u n a r y}$	NP	NP	PSpace	NEXPTIME
	binary	?	?	?	?

- QF_BV1 is NP-complete \leftarrow bit-blasting to SAT
- QF_UFBV1 is NP-complete \leftarrow using Ackermann constraints
- BV1 is PSPACE-complete \leftarrow bit-blasting to QBF
- UFBV1 is NExpTimE-complete \leftarrow proved in:
C. M. Wintersteiger, Termination Analysis for Bit-Vector Programs. PhD Thesis, ETH Zürich, 2011.
C. M. Wintersteiger, Y. Hamadi, L. Mendonça de Moura, Efficiently Solving Quantified Bit-Vector Formulas. Proc. FMCAD, 2010.

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
	unary	NP	NP	PSPACE	NExpTime
	binary	NEXPTIME	?	?	?

QF_BV2 is NExpTime-complete:

- QF_BV2 \in NExpTimE:
- QF_BV2 is NExpTime-hard:
$\mathrm{DQBF} \xrightarrow{\text { potynomially }} \mathrm{QF} _\mathrm{BV}^{\text {2 }}$

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
$\begin{aligned} & \stackrel{60}{\bar{O}} \\ & \stackrel{0}{0} \\ & \frac{0}{0} \end{aligned}$	unary	NP	NP	PSPACE	NExpTime
	binary	NEXPTIME	?	?	?

QF_BV2 is NExpTime-complete:

- QF_BV2 \in NExpTime:

$$
\mathrm{QF} _\mathrm{BV} 2 \xrightarrow{\text { exponentially }} \mathrm{QF} \text { _BV1 } \in \mathrm{NP}
$$

- QF_BV2 is NExpTime-hard:

$$
\text { DQBF } \xrightarrow{\text { polynomially }} \text { QF_BV2 }
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

Dependency Quantified Boolean Formulas (DQBF):

- Applying Henkin quantifiers: variable dependencies represent a partial order
- Dependencies are explicitly specified

Example DQBF

$$
\begin{aligned}
\forall u_{0}, u_{1}, u_{2} \exists x\left(u_{0}\right), y\left(u_{1}, u_{2}\right) . & \left(x \vee y \vee \neg u_{0} \vee \neg u_{1}\right) \wedge \\
& \left(x \vee \neg y \vee u_{0} \vee \neg u_{1} \vee \neg u_{2}\right) \wedge \\
& \left(x \vee \neg y \vee \neg u_{0} \vee \neg u_{1} \vee u_{2}\right) \wedge \\
& \left(\neg x \vee y \vee \neg u_{0} \vee \neg u_{2}\right) \wedge \\
& \left(\neg x \vee \neg y \vee u_{0} \vee u_{1} \vee \neg u_{2}\right)
\end{aligned}
$$

- DQBF is NExpTime-complete
G. L. Peterson, J. H. Reif, Multiple-Person Alternation. Foundations of Computer Science, 1979.

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

(1) Eliminate the quantifier prefix
(2) Replace logical connectives with bit-wise operators
(3) Replace Boolean variables with bit-vector variables of bit-width 2^{k} k : number of universal variables in the DQBF

Complexity: $\mathrm{DQBF} \xrightarrow{\text { poynomally }} \mathrm{QF} \quad \mathrm{BV} 2$

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

- Universal vars \leftarrow Assign binary magic numbers to $U_{i} s$!

$$
U_{0}:=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right], U_{1}:=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right], U_{2}:=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

9 Universal vars \leftarrow Assign binary magic numbers to U_{i} !

$$
\left.\left.U_{0}:=\begin{array}{|c}
{\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right], U_{1}:=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right], U_{2}:=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right]} \\
\hline 1 \\
0 \\
0 \\
1
\end{array}\right] . \begin{array}{l}
1 \\
\hline
\end{array}\right]
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

- Universal vars \leftarrow Assign binary magic numbers to $U_{i} s$!

$$
U_{i}:=\frac{2^{\left(2^{k}\right)}-1}{2^{\left(2^{i}\right)}+1}
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

4 Universal vars \leftarrow Assign binary magic numbers to $U_{i} s$!

$$
\begin{gathered}
U_{i}:=\frac{2^{\left(2^{k}\right)}-1}{2^{\left(2^{i}\right)}+1} \\
\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{\left[2^{k}\right]}
\end{gathered}
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{[8]}\right)
\end{aligned}
$$

9 Universal vars \leftarrow Assign binary magic numbers to U_{i} !

$$
\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{\left[2^{k}\right]}
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{[8]}\right)
\end{aligned}
$$

5 Existential vars \leftarrow Represent Skolem-functions as bit-vectors!

Complexity: $\mathrm{DQBF} \xrightarrow{\text { poynomally }} \mathrm{QF} \quad \mathrm{BV} 2$

$$
\left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right.
$$

Positive and negative cofactors of a Skolem-function w.r.t. U_{i}
$\wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll\left(1 \ll i \quad U_{i}\right)=\sim 0^{[8]}\right)\right.\right.$

5 Existential vars \leftarrow Repres ft Skolem-functions as bit-vectors!

Complexity: DQBF $\xrightarrow{\text { poynomally }}$ QF_BV2

$$
\left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right.
$$

Positive and negative cofactors of a Skolem-function w.r.t. U_{i}

$$
\wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll\left(1 \ll i \quad U_{i}\right)=\sim 0^{[8]}\right)\right.\right.
$$

5 Existential vars \leftarrow Repres ft Skolem-functions as bit-vectors! X is independent of U_{i} :

$$
\left(x \& U_{i}\right)=\left((x \gg(1 \ll i)) \& U_{i}\right)
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{[8]}\right)
\end{aligned}
$$

$$
\wedge\left(X \& U_{1}\right)=\left((X \gg(1 \ll 1)) \& U_{1}\right)
$$

6 Existential vars \leftarrow Represent Skolem-functions as bit-vectors!
X is independent of U_{i} :

$$
\left(x \& U_{i}\right)=\left((x \gg(1 \ll i)) \& U_{i}\right)
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{[8]}\right)
\end{aligned}
$$

$$
\wedge\left(X \& U_{1}\right)=\left((X \gg(1 \ll 1)) \& U_{1}\right)
$$

$$
\wedge\left(X \& U_{2}\right)=\left((X \gg(1 \ll 2)) \& U_{2}\right)
$$

$$
\wedge\left(Y \& U_{0}\right)=\left((Y \gg(1 \ll 0)) \& U_{0}\right)
$$

Complexity: DQBF $\xrightarrow{\text { polynomially }}$ QF_BV2

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{0}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X|\sim Y| U_{0}\left|\sim U_{1}\right| \sim U_{2}^{[8]}\right) \&\right. \\
& \left(X|\sim Y| \sim U_{0}\left|\sim U_{1}\right| U_{2}\right) \&\left(\sim X|Y| \sim U_{0} \mid \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Y| U_{0}\left|U_{1}\right| \sim U_{2}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{i \in\{0,1,2\}}\left(\left(\left(U_{i} \ll(1 \ll i)\right)+U_{i}\right)=\sim 0^{[8]}\right) \\
& \wedge\left(X \& U_{1}\right)=\left((X \gg(1 \ll 1)) \& U_{1}\right) \\
& \wedge\left(X \& U_{2}\right)=\left((X \gg(1 \ll 2)) \& U_{2}\right) \\
& \wedge\left(Y \& U_{0}\right)=\left((Y \gg(1 \ll 0)) \& U_{0}\right)
\end{aligned}
$$

Bit-width 2^{k} is encoded logarithmically, due to binary encoding!

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
	unary	NP	NP	PSPACE	NExpTime
	binary	NExpTime	?	?	?

- QF_UFBV2 is NExpTime-complete \leftarrow using Ackermann constraints
- BV2 \in ExpSpace and is NExpTime-hard
- UFBV2 is 2-NExpTime-complete:
$2^{\left(2^{n}\right)}$-square domino tiling problem $\xrightarrow{\text { polynomially }}$ UFBV2

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
	unary	NP	NP	PSpace	NExpTime
	binary	NExpTime	NEXPTIME	?	?

- QF_UFBV2 is NExpTime-complete \leftarrow using Ackermann constraints
- BV2 \in ExpSpace and is NExpTime-hard
- UFBV2 is 2-NExpTime-complete:

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
$\begin{aligned} & \stackrel{00}{\overline{0}} \\ & \stackrel{0}{0} \\ & \frac{0}{0} \end{aligned}$	unary	NP	NP	PSPACE	NExpTime
	binary	NExpTime	NExpTime	?	?

- QF_UFBV2 is NExpTime-complete \leftarrow using Ackermann constraints
- BV2 \in ExpSpace and is NExpTime-hard
- UFBV2 is 2-NExpTime-complete:

Complexity: completeness results

		QF_BV	QF_UFBV	BV	UFBV
	unary	NP	NP	PSPACE	NExpTime
	binary	NExpTime	NExpTime	?	2-NEXPTIME

- QF_UFBV2 is NExpTime-complete \leftarrow using Ackermann constraints
- BV2 \in ExpSpace and is NExpTime-hard
- UFBV2 is 2-NExpTime-complete:
$2^{\left(2^{n}\right)}$-square domino tiling problem $\xrightarrow{\text { polynomially }}$ UFBV2

Bit-width bounded problems

		QF_BV	QF_UFBV	BV	UFBV
$\begin{aligned} & 60 \\ & \text { 듬 } \\ & \text { O} \\ & \frac{U}{0} \end{aligned}$	unary	NP	NP	PSPACE	NEXPTIME
	binary	NExpTime	NExpTime	?	2-NExpTime

- Bit-width boundedness: a practical property for BV problems to avoid exponential blow-up
- If a BV problem S is bit-width bounded:
- $S \subset$ QF_BV $(2) \Rightarrow S \in \mathrm{NP}$
- $S \subset$ QF_UFBV $(2) \Rightarrow S \in \mathrm{NP}$
- $S \subset \operatorname{BV}(2) \Rightarrow S \in \operatorname{PSPACE}$
- $S \subset \operatorname{UFBV}(2) \Rightarrow S \in$ NExpTimE

Conclusion

		QF_BV	QF_UFBV	BV	UFBV
$\stackrel{\infty}{\square}$	unary	NP	NP	PSpace	NExpTime
¢	binary	NEXPTIME	NEXPTIME	?	2-NExpTime

The complexity of deciding the commonly used BV logics was an open question.

Future work:

- Is BV2 complete?
- Consider these results in the context of parametrized complexity
- Instead of bit-blasting+SAT, other approaches with EPR/DQBF?

Conclusion

		QF_BV	QF_UFBV	BV	UFBV
	unary	NP	NP	PSpace	NExpTime
	binary	NEXPTIME	NEXPTIME	?	2-NExpTime

The complexity of deciding the commonly used BV logics was an open question.

Future work:

- Is BV2 complete?
- Consider these results in the context of parametrized complexity
- Instead of bit-blasting+SAT, other approaches with EPR/DQBF?

