
1 Error corrections

• 5.6 on p57: It is said that the C99 standard does not enforce short-circuit
evaluation. This is wrong. The logical AND “&&”, logical OR “||”, and
the conditional operator “?:” have short-circuit evaluation semantics. E.g.
if the left operand of the logical OR is true then the right operand is not
evaluated anymore. Therefore the example 1||(x/0) is safe, because the
subexpression x/0 is never evaluated. Nevertheless, it is true that except
for these three operators the order of evaluation of subexpressions and the
order in which side effects take place are both unspecified.

2 Additional notes

• C32SAT assumes two’s complement semantics. As a result of this the
expression INT MIN/ − 1 leads to an overflow which would not be the
case if C32SAT used one’s complement representation. Note that the C99
standard does not guarantee two’s complement semantics. Nevertheless,
nearly all modern compilers use two’s complement semantics so this design
decision has been useful.

• In the thesis it is said that dividing by zero leads to a terminating trap
in real programs. Although this is nearly on every system the case, it is
not enforced by the C99 standard. If the right operand of the division or
modulo operator is zero then the behaviour is simply undefined. Undefined
behaviour ranges from ignoring the situation to terminating execution. In
this sense dividing by zero is as dangerous as shifting by a negative integer
which also leads to undefined behaviour.

1

