Benchmark Description

Ten real-world (System)Verilog designs with safety properties were collected
from Open Source projects. Only immediate assertions and assumptions were
used in the designs under test. One benchmark (picorv32-check) used asser-
tions for safety properties intermixed with the actual design in the same modules.
All other benchmarks used a formal test-bench with assertions and assumptions
that simply instantiates a synthesizable Verilog design.

VexRiscu-regeh0-{15,20,30} These three benchmarks are taken from riscv-for-
mal [1]. They check the VexRiscv processor core for register file consistency for
the instruction retired in cycle 15, 20, or 30. The only nontrivial BMC step
for those benchmarks are step 17, 22, and 32 respectively, and therefore this
numbers are used as bounds for these three benchmarks.

picorv32-{check,pcregs} These two benchmarks are taken from PicoRV32 [2],
another RISC-V processor. The former checks the invariants encoded in safety
properties in the core itself (make check in the PicoRV32 codebase) and the
latter used the PicoRV32 RVFI port to check register file and PC consistency be-
tween instructions. These benchmarks simply get harder with increasing bounds.
In the benchmark bounds of 30 and 20 cycles were used respectively.

ponylink-slave TXlen-{sat,unsat} These benchmarks are taken from PonyLink [3],
a point-to-point communication core that uses a single wire (or differential pair)
in half-duplex mode. The benchmarks are part of a proof that shows that the
PonyLink core will never keep transmitting indefinitely, regardless of the initial
state. The first one tries to prove that the core is bound to stop transmitting
after 228 cycles (which fails in is thus SAT), and the second one tries to prove
that the core is bound to stop transmitting after 229 cycles (which succeeds and
is thus UNSAT). The bounds for this benchmarks are 230 and 231 respectively,
with only the last cycle being nontrivial.

zipepu- {busdelay, pfecache, zipmmu} These three benchmarks are taken from Zip-
CPU [4]. They are various proofs for safety properties of auxiliary components
in the ZipCPU system. The ZipCPU repository contains more proofs similar to
them. This three have been selected because they are the longest running proofs
in the repository at the time we checked. The bounds used for this benchmarks
are 100, 100, and 30 respectively.

References

Wolf, C.: riscv-formal. https://github.com/cliffordwolf/riscv-formal
Wolf, C.: picorv32. https://github.com/cliffordwolf/picorv32

Wolf, C.: PonyLink. https://github.com/cliffordwolf/PonyLink
Gisselquist, D.: zipcpu. https://github.com/ZipCPU/zipcpu

=W



