
Proceedings of the

ECAI 2006
Workshop on Configuration

affiliated with the

17th European Conference on
Artificial Intelligence

August 28-29, 2006
Riva del Garda, Italy

Carsten Sinz
Albert Haag

(Eds.)

Dedicated in memory of
Daniel Mailharro

ii

Preface

Product configuration has a long-standing tradition in AI research. Start-
ing in the 80s with work on configuration of large computer systems, it has
developed into a flourishing area for both researchers and practitioners. Pow-
erful knowledge-representation models are necessary to capture the great vari-
ety and complexity of configurable products. Efficient reasoning methods are
required to provide intelligent interactive behavior in configuration software,
such as solution search, satisfaction of user preferences, optimization, diagno-
sis, or explanation.

Today, a large number of commercial configuration solutions is available on
the market, covering conventional configuration of materials and equipment
as well as software and service configuration (like financial portfolio configu-
ration, insurance optimization, or travel advisors). Configuration is more than
ever a challenging area for applying novel AI techniques since more and more
sophisticated reasoning tasks are delegated to the configurator software; the
software thus has to integrate product-assembly knowledge along with cus-
tomer classification, adaptive sales strategies, and customer assistance. This
integration becomes particularly critical for e-business applications where cus-
tomers directly configure products through the Internet with no professional
assistance and without a deep knowledge of the products they intend to buy.

This workshop continues the series of eight successful Configuration Work-
shops started at the AAAI’96 Fall Symposium and continued on IJCAI, AAAI,
and ECAI conferences since 1999. Moreover, special issues on configuration in
the AI-EDAM ’98, IEEE Expert ’98, and AI-EDAM 2003 journals demonstrate
the continuous successful work in this field. Besides the participation of re-
searchers from a variety of different fields, past events always attracted signif-
icant industrial interest from major configurator vendors like ILOG, Oracle, or
SAP, as well as from industries with applications like ABB, DaimlerChrysler,
HP, or Siemens. The goal of these workshops is to promote high-quality re-
search in all technical areas related to configuration and to bring together re-
searchers and practitioners from industry and academia.

These working notes present contributions dealing with various topics close-
ly related to configuration problem modeling and solving. Eleven papers and
four extended abstracts demonstrate both the wide range of applicable AI tech-
niques and the diversity of the problems and issues that need to be studied and
solved to construct and implement effective configuration solutions.

Carsten Sinz
Albert Haag

August 2006

iii

Organization

Chairs

Carsten Sinz, Johannes Kepler Universität Linz, Austria
Albert Haag, SAP AG, Germany

Organizing Committee

Claire Bagley, Oracle Corporation, USA
Alexander Felfernig, Universität Klagenfurt, Austria
Esther Gelle, ABB Corporate Research AG, Switzerland
Barry O’Sullivan, University College Cork, Ireland

Program Committee

Michel Aldanondo, Ecole des Mines d’Albi, France
Claire Bagley, Oracle Corporation, USA
Boi Faltings, EPFL, Switzerland
Alexander Felfernig, Universität Klagenfurt, Austria
Felix Frayman, Wizdom Technologies LLC, USA
Gerhard Friedrich, Universität Klagenfurt, Austria
Esther Gelle, ABB Corporate Research AG, Switzerland
Laurent Henocque, Université de la Méditarranée, France
Dietmar Jannach, Universität Klagenfurt, Austria
Ulrich Junker, ILOG S.A., France
Michael Koch, TU München, Germany
Diego Magro, Universita di Torino, Italy
Tomi Männistö, Helsinki University of Technology, Finland
Sanjay Mittal, Selectica Inc., USA
Klas Orsvarn, Tecton System AB, Sweden
Barry O’Sullivan, University College Cork, Ireland
Frank Piller, MIT, USA
Marty Plotkin, Oracle Corporation, USA
Mihaela Sabin, Rivier College, USA
Markus Stumptner, Advanced Computing Research Center, Australia
Markus Zanker, Universität Klagenfurt, Austria

Additional Reviewers

Tomas Axling, Olivier Lhomme

iv

Table of Contents

Full Papers

Constraint and Variable Ordering Heuristics for Compiling
Configuration Problems . 2
Nina Narodytska and Toby Walsh

A Survey on Principal Explanation Techniques for Configurators 8
Albert Haag, Ulrich Junker and Barry O’Sullivan

Direct and Reformulation Solving of Conditional Constraint
Satisfaction Problems . 14
Esther Gelle and Mihaela Sabin

Configuring from Observed Parts . 20
Lothar Hotz

Configuration of Contract Based Services . 25
Juha Tiihonen, Mikko Heiskala, Kaija-Stiina Paloheimo and Andreas Anderson

Evolution of Configuration Models – a Focus on Correctness 31
Thorsten Krebs

Short Papers and Position Statements

Turning a Configurator into a Bargaining Table . 38
Songlin Chen and Mitchell Tseng

Comparing Different Logic-Based Representations of Automotive
Parts Lists . 41
Carsten Sinz

HP Rack Placement Optimization Case Study . 44
Daniel Naus

Integrating Knowledge-Based Product Configuration and
Product Line Engineering: An Industrial Example . 48
Rick Rabiser, Deepak Dhungana and Paul Grünbacher

How to recommend configurable products? . 51
Alexander Felfernig, Christian Scheer and Peter Loos

v

Extended Abstracts

Knowledge-based composition of recommendations . 53
Markus Zanker, Markus Aschinger and Marius Silaghi

Industry specific “Standard Template Libraries” for Configuration 54
Manikandan Sundaram, Rajasekhar Vinnakota and Praveen Vudoagiri

Configuration Support for Ubiquitous Workspaces . 55
Markus Stumptner and Bruce Thomas

Using Constraint Optimization to Enhance the Diversity
in the Set of Computed Configurations . 56
Diego Magro

vi

Full Papers

Constraint and Variable Ordering Heuristics for
Compiling Configuration Problems

Nina Narodytska1 and Toby Walsh2

Abstract. We develop two heuristics for reducing the time and
space required to obtain a binary decision diagram representation of
the solutions of a configuration problem. First, we show that dynam-
ics of the growth in the size of the decision diagram depend strongly
on the order in which constraints are added and propose a heuristic
constraint ordering algorithm that uses the distinctive clustered hi-
erarchical structure of constraints graphs of configuration problems.
Second, we propose a variable order heuristic based on the typical
clustered structure of the constraint graph to be used by a variable
sifting algorithm during the BDD construction procedure.

1 INTRODUCTION

In configuration problem, we wish to determine a customised prod-
uct configuration based on a set of pre-defined components and a
set of constraints and requirements describing possible component
compositions [8]. Product configuration is often an interactive pro-
cedure, where a customer sets desired product characteristics and re-
ceives feedback from the configurator about valid values of remain-
ing characteristics. The interaction continues until a complete and
valid configuration is found. Such a scenario requires an efficient
mechanism to ensure the current decisions can be consistently ex-
tended.

One way to achieve this is to use a two-phase approach, where
in the first, offline phase the product constraints are compiled into a
compact representation that completely describes the set of all pos-
sible product configurations. This representation can be efficiently
manipulated by the interactive configurator during the second
stage. Hadzic et.al. [6] suggested using Binary Decision Diagrams
(BDDs) [2] to represent the space of valid product configurations and
showed that this approach enabled efficient interactive configuration
process.

In this paper, we focus on optimising the first phase of the
configuration process — compilation of the product rules into a
BDD. This is computationally hard task that can require significant
CPU time and memory resources. Although it is performed of-
fline and, therefore, is not required to provide interactive real-
time responses, performance is still important, because for large
configuration problems BDD construction can demand more space
and time resources than are available.

We propose two techniques for improving speed and memory
consumption of the BDD construction procedure for configuration
problems. First, we suggest a heuristic for constraint ordering that

1 National ICT Australia, Australia, email: n.naroditskaya@gmail.com
2 National ICT Australia and School of Computer Science and

Engineering, University of New South Wales, Australia, email:
Toby.Walsh@nicta.com.au

uses the distinctive clustered hierarchical structure of configuration
problems constraint graphs. Second, we propose a variable ordering
heuristic to apply during the variable sifting procedure [10] which
groups problem variables based on the clustered nature of the con-
straint graph. The combined use of these techniques results in a one
to two orders of magnitude reduction in the time to construct BDDs
for problems from the configuration benchmarks suite [3].

2 THE STRUCTURE OF CONFIGURATION
PROBLEMS

A straightforward approach to translating the configuration prob-
lem description into BDD is to represent every rule as a separate
BDD and conjoin together these BDDs. If problem variables have
multi-valued domains, BDDs can be replaced by Multi-Valued Deci-
sion Diagrams (MDD). When we applied this approach to a number
of configuration benchmarks [3], we noticed that the size of BDDs
grew in a quite unusual pattern. For example, the graph in Figure 1
shows the relationship between the number of constraints added and
the number of nodes in the resulting BDD for the Renault Megane
configuration benchmark [3]. Interestingly, in this example the BDD
grew almost monotonically in size, except at the end, where the ad-
dition of critical constraints caused a dramatic drop in size. Other
benchmarks demonstrated similar behaviour.

0 20 40 60 80 100 120
0

1

2

3

4

5
x 10

5

Number of added constraints

N
um

be
r

of
 B

D
D

 n
od

es

Figure 1. Dynamics of BDD growth for the Renault Megane configuration
benchmark. Constraints were added in the order specified in the benchmark.

This contrasts with what we typically observe when applying BDD
to solving combinatorial AI problems. For example, Figure 2 shows
a similar graph for the Langford’s numbers problem [4]. In this case,
the size of the BDD is an order of magnitude bigger at an intermedi-
ate point than at the end. This means that BDDs obtained in interme-
diate steps may require more memory than is available even though
the final BDD representing all problem solutions may be compara-
tively small. Large BDD size has negative impact not only on the

2

memory consumption but also on the time of construction of the
final BDD containing all problem solutions, since the complexity of
adding every following constraint is equal to O(|Bi−1| · |bi|), where
|Bi| and |bi| are the number of nodes in the aggregate BDD after
adding first i − 1 constraints and the number of nodes in the BDD
representing the ith constraint, respectively.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of added constraints

N
um

be
r

of
 B

D
D

 n
od

es

Figure 2. Dynamics of BDD growth for the Langford(11,2) problem

The monotonic growth in BDD size observed for configuration
problems is therefore a highly desirable property both from the mem-
ory consumption and speed points of view. We therefore tried to de-
termine the properties of configuration problems which are responsi-
ble for this monotonic behaviour. Our goal is to use these properties
in a more directed manner in order to improve further the perfor-
mance of the BDD construction process.

In order to investigate further the properties of configuration prob-
lems, we use their weighted primal constraint graphs. A primal con-
straint graph of a problem is an undirected graph where nodes cor-
respond to problem variables and edges describe constraints. Two
variables are connected by an edge iff they participate in at least one
common constraint. The weight of the edge is equal to the number
of common constraints involving these two variables. Figure 3 shows
a typical configuration benchmark constraint graph.3 We notice that
this graph has a distinct tree-like skeleton: it is formed by a tree of
clusters, most of which have a star-like structure, with a few central
nodes connected to a large number of peripheral nodes. In contrast,
the constraint graph of the Langford’s numbers problem constitutes
a clique.

The tree-like structure of constraint graphs can help explain the
monotonic behaviour of BDD. Consider an idealised problem whose
constraint graph is a tree. All problem variables are binary. Prob-
lem constraints are also binary and selected in such a way that the
constraint graph is arc consistent (that is, we avoid those binary con-
straints that assign a fixed value to one of their variables). It is easy
to show that for such an idealised problem it is possible to construct
an order in which to add constraints to the aggregate BDD which
will guarantee monotonic growth in the size of the BDD. Any con-
straint ordering that adds exactly one new variable to the aggregate
BDD on every step (starting from step 2) has this property. Figure 4a
shows the result of applying such an ordering to a randomly gen-
erated tree-structured problem. It should be noticed that not every
possible constraint ordering leads to monotonic BDD growth. For
example, for the same problem, adding constraints in a random order

3 Most configuration benchmark definitions contain a large number of unary
constraints. In order to obtain more meaningful results, we got rid of these
constraints by enforcing arc consistency for all problems in our experi-
ments. The constraint graph on the figure shows the structure of the prob-
lem after enforcing arc consistency.

Figure 3. Constraint graph of a Mercedes configuration benchmark
(C211 FS). The circles indicate major clusters identified by Markov CLuster

Algorithm(MCL)

gave the growth shown in Figure 4b.

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

(a)

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

(b)

Figure 4. Dynamics of BDD growth for a randomly generated
tree-structured problem. (a) shows monotonic BDD growth obtained using a

special constraint ordering; (b) shows non-monotonic growth yielded by
random constraint ordering

3 CONSTRAINT ORDERING HEURISTIC

Based on these observations, we proposed a heuristic for adding con-
straints that attempts to ensure monotonic growth in the size of the
BDD, and to keep the size of the aggregate BDD as small as possible
on every step. This heuristic is based on the following guidelines:

• To respect the tree-like structure of many configuration prob-
lems. In particular, we want the heuristic to guarantee monotonic
growth in the size of the BDD in the extreme case when the con-
straint graph is a tree.

• To respect the clustered structure of many configuration prob-
lems. In addition to the tree-like structure, many configuration
problems also have a strong clustered structure.
For example, the circles on Figure 3 indicate major clusters
identified by Markov CLuster Algorithm(MCL) [12] for the C211
FS benchmark. A cluster typically corresponds to a group of vari-
ables which are logically very tightly connected. For example,

3

they might describe a single component of the product, e.g., the
engine of the car. We observed that algorithms that add most or
all of the constraints connecting variables of a cluster before mov-
ing to other clusters are faster than algorithms that do not respect
the clustered structure of the constraint graph. Adding all the con-
straints connecting a group of variables may reduce the number
of valid combinations of these variables and thus the size of the
BDD.

• To keep the number of variables small. Typically, BDD size
grows with the number of variables added. Therefore, before
adding new variables to the BDD, we should try to add all the
constraints that involve variables already contained in the BDD. If
this is not possible, we should select a constraint that adds as few
new variables as possible.

Among the many heuristic algorithms that we implemented and
evaluated, the following algorithm, further referred to as Algo-
rithm 1, produced the best results for the majority of the benchmarks.
Figure 5 shows the flowchart of the algorithm. The internal state of
the algorithm consists of a list of constraints already added to the
BDD, a list of remaining constraints, a list of variables already added
to the BDD, a list of remaining variables and a stack of variables that
have been used as central variables (the current central variable is
located at the top of the stack).

Start

1. Select the

first central

variable

2.Select and

add the first

constraint

4. Find next

constraint

5. Next constraint found

7. Select a

new central

variable

3. All

constraints

added

End

6. Add the

constraint to

the BDD

Yes

No

No
Yes

Figure 5. Flowchart of Algorithm 1

Step 1. Selection of the first central variable. Among all problem
variables, a variable whose adjacent edges have the largest total
weight is selected to be the first central variable. This variable is
stored at the top of the stack of central variables.

Step 2. Selection of the first constraint. Among all constraints that
include the central variable, a constraint with the biggest number
of variables in its scope is selected.

Step 4. Selection of the next constraint. On this step, the next con-
straint to add to the BDD is selected from the set of remaining
constraints.

4.1 All constraints that contain the current central variable are se-
lected among the remaining constraints. If no such constraints
exist, then Step 4 terminates without selecting a candidate con-
straint.

4.2 From the obtained set of constraints, all constraints that contain
the smallest number of variables not yet added to the BDD are
selected.

4.3 From the obtained set of constraints, constraints containing the
smallest number of variables are selected.

4.4 For each selected constraint, the sum of weights of adjacent
edges of all its variables is computed and constraints with the
largest sum are selected. The first such constraint becomes the
next candidate for being added to the BDD.

Step 7. Selection of the next central variable.

7.1 The set of all neighbours of the current central variable is com-
puted (the current central variable is the variable located at the
top of the stack of central variables).

7.2 From the obtained set of variables, all variables that do not par-
ticipate in scopes of any of the remaining constraints are elimi-
nated.

7.3 If the obtained set of variables is empty, the current central vari-
able is popped from the stack of central variables and the algo-
rithm returns to step 7.1.

7.4 From the obtained set of variables, a variable whose adjacent
edges have the largest total weight is selected to be the next
central variable. This variable is stored at the top of the stack of
central variables. If there are several such variables, the first in
the original variable ordering is selected.

This algorithm selects a central variable and adds all constraints
involving this variable, trying to add as few new variables as possible
on every step. Among all constraints that passed filters 4.1 to 4.3, a
constraint containing the most influential variables is selected, since
such constraint is more likely to reduce BDD size. Then the next cen-
tral variable is selected among the neighbours of the current central
variable. We select the heaviest variable hoping that it will be the
centre of the next cluster (which is usually the case in configuration
problems).

Figure 6 shows the results of applying this algorithm to two prob-
lems from the configuration benchmarks. The graphs compare the
dynamics of the BDD growth when adding constraints in a random
order, in the original order specified in the benchmark description,
and in the order produced by Algorithm 1. In both cases, the order
produced by Algorithm 1 resulted in almost monotonic growth of
the BDD and kept the BDD size smaller than the other two order-
ings on all steps. As a result, this algorithm significantly reduced the
time of BDD construction. We obtained similar results for all other
problems from the configuration benchmarks suite, which we were
able to solve without the dynamic variable reordering optimisation
introduced in the following section.

Another interesting feature of the graphs is that the original con-
straint ordering was much more efficient than the random ordering.
This can be explained by the fact that in most cases the original or-
dering reflects the natural structure of the problem. For example, it
typically groups together constraints describing a single component
of the product. Our constraint ordering heuristic was able to make
further improvements to this order.

4 VARIABLE ORDERING HEURISTIC

In the previous section, we showed that in configuration problems it
is often possible to achieve monotonic growth in the size of the BDD
using constraint ordering heuristics. However, for large configuration

4

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

(a)

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

x 10
6

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

x 10
6

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

x 10
6

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

(b)

Figure 6. Dynamics of BDD growth when adding constraints in a random
order, the original order, and in the ordering produced by Algorithm 1 for (a)
the C211 FS configuration benchmark and (b) the C638 FVK configuration

benchmark

problems even a monotonically growing BDD can still be very large.
Therefore, in order to reduce the space and time requirements of
these problems, we would like to find ways to reduce further BDD
size.

One common technique to achieve this is based on dynamic vari-
able reordering. A BDD constitutes a multi-level directed graph,
where every level corresponds to a single variable. It is well-known
that BDD size depends significantly on the assignment of variables
to levels, or, in other words, on the order of variables [2]. By reorder-
ing variables, it is often possible to reduce dramatically the size of a
BDD. Variable reordering can be applied either to the final BDD, in
order to reduce the representation of the solution space of the prob-
lem, or during BDD construction, after adding only part of the con-
straints, in order to reduce the intermediate BDD size and speed up
addition of the remaining constraints.

Determining the optimal variable ordering is a co-NP-complete
problem [1]; therefore in practice approximations to the optimal or-
dering are used. Rudell [10] has proposed a sifting algorithm for dy-
namic variable reordering and demonstrated that it allowed achieving
significant reduction of BDD size for some types of constraint satis-
faction problems. The idea of the sifting algorithm is to move each
variable up and down in the order to find a position that provides
local minimum of the BDD size. This procedure is applied to every
problem variable sequentially. We applied the sifting algorithm pro-
vided by the CUDD package [5] to configuration benchmarks. We
used adaptive threshold to trigger the variable reordering procedure.
Whenever the BDD size reached the threshold, we performed vari-
able reordering and, if the reduced BDD was bigger than 60% of the
current threshold, the threshold was increased by 50%. The initial
threshold was equal to 100000 BDD nodes.

We combined variable sifting with different constraint orderings
described in Section 3. Table 1 below summarises the results of these
experiments. As can be seen from the table, dynamic variable re-
ordering significantly reduces the time of BDD construction for all
constraint orderings.

The efficiency of dynamic variable reordering can be further im-
proved by using knowledge about the problem structure. First, we
observe that locating strongly dependent variables close to each other
typically reduces the BDD size.

For problems with strongly pronounced clustered structure, vari-
ables comprising a cluster should therefore be kept close to each
other in the variable ordering. Second, Panda and Somenzi [9] no-
ticed that dependent variables tend to attract each other during vari-
able sifting, which results in groups of dependent variables being
placed in suboptimal positions. In order to avoid this effect, depen-
dent variables should be kept in contiguous groups that are moved as
a single variable during variable sifting.

We suggest using the clustered structure of configuration prob-
lems to identify groups of dependent variables. We modified the
previous algorithm to partition problem variables into contiguous
groups corresponding to clusters identified by MCL before starting
the BDD construction process. However, it is important to put only
strongly connected variables in the same group and avoid grouping
weakly connected variables. Therefore, among the clusters found by
the MCL algorithm, we only group clusters that have projections big-
ger than 0.35. The projection of a cluster is determined as the average
over all variables in the cluster of the ratio of the total amount of edge
weights for the variable within the cluster to the overall amount of
edge weights for the variable [12]. Grouped variables are kept con-
tiguous by the reordering procedure. In addition, we allow variables
within the group to be reordered before performing the group sifting.

5

Note that performance of the variable sifting algorithm
significantly depends on the initial order of variables. In all cited
experiments, we used the initial order specified in the benchmark
description. In particular, when performing variable grouping, vari-
able ordering within a group was selected based on the benchmark
order and position of the group in the total variable order was se-
lected based on the position of its first variable in the benchmark.
Interestingly, replacing this variable order with random order often
dramatically increased the time of BDD construction.

Figure 7 shows the behavior of the new variable reordering al-
gorithm in combination with different constraint orderings. Table 1
compares the performance of different combinations of constraint
and variable reordering algorithms proposed in this paper.

5 EXPERIMENTAL RESULTS

This section compares the performance of the proposed techniques
for problems from the configuration benchmarks suite. The algo-
rithms were implemented in C++ using the CUDD 2.3.2 BDD pack-
age from the GLU 2.0 library [5] and the implementation of the MCL
algorithm obtained from [7]. In all experiments, the MCL algorithm
was used with the inflation parameter set to 5. The inflation param-
eter affects cluster granularity; we select it to be equal to 5 to get
fine-grained clusterings. Experiments were run on a 3.2GHz Pen-
tium 4 machine with 1GB of memory. Table 1 represents results of
our experiments.

In most cases, MCL produced satisfactory cluster decomposition.
However, it failed in several large problems, namely, C209 FA, C210
FVF, C211 FW, C638 FKA. In these problems, the majority of vari-
ables are grouped into clusters, but there are also several variables
connected to virtually every problem variable. MCL identifies such
constraint graph as a single large cluster. Therefore, whenever MCL
encounters a cluster that contains more than half of problem vari-
ables, we remove its central variables, that are the heaviest variables
in the cluster, and repeat clusterisation.

As can be seen from the table, constraint ordering constructed ac-
cording to Algorithm 1 (column 10) reduces time of BDD construc-
tion compared to random (column 4) and, in most cases, the original
(column 7) constraint ordering. It should be noticed that original con-
straint ordering typically produces quite good results too. This is due
to the fact that the original ordering typically follows the problem
structure very closely. For example, all constraints describing a sin-
gle component of the product are typically placed contiguously in
the original ordering. On the other hand, Algorithm 1 is able to find
a good constraint ordering even if the constraints are randomly shuf-
fled. Comparing columns 5 and 6, 8 and 9, 11 and 12, we can see that
variable ordering heuristic based on grouping clustered variables re-
duces BDD construction time compared to pure variable sifting for
the majority of benchmarks.

6 RELATED WORK

The idea of using BDDs to represent configuration problems solution
space has been proposed by Hadzic et. al. [6]. They were mainly con-
cerned with reducing the size of the final BDD in order to improve
real-time responsiveness of the configurator and did not care much
about efficiency of BDD construction. In contrast we focus on reduc-
ing time and memory requirements of BDD construction procedure.
Therefore, our first improvement is targeted towards optimising the
ordering of adding constraints to the BDD, which does not effect the

0 100 200 300 400 500 600 700 800
0

5

10

15

x 10
4

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800
0

5

10

15

x 10
4

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800
0

5

10

15

x 10
4

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

(a)

0 100 200 300 400 500 600 700 800 900
0

5

10

15

x 10
4

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800 900
0

5

10

15

x 10
4

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

0 100 200 300 400 500 600 700 800 900
0

5

10

15

x 10
4

N
um

be
r

of
 B

D
D

 n
od

es

Number of added constraints

(b)

Figure 7. Dynamics of BDD growth when applying dynamic variable
reordering and variable grouping in combination with different constraint
orderings (random ordering, the original ordering, ordering produced by

Algorithm 1) for (a) the C211 FS configuration benchmark, (b) the
C638 FVK configuration benchmark. Dashed lines indicate instances when

the BDD size reached threshhold and dynamic variable reordering took
place.

6

Table 1. Comparison of different BDD construction algorithms. Columns 4 to 12 show CPU time spent on BDD construction in seconds. The run-time of
MCL algorithm is included. “–” denotes that the given problem could not be solved by the corresponding algorithm either because the BDD size exceeded

15,000,000 nodes or because it was interrupted after 10,000 seconds.

Benchmark # of
vari-
ables4

of
con-
straints

Random constraint ordering Original constraint ordering Ordering produced by Algorithm 1

no var
re-
order-
ing

variable
sifting

variable
sifting
+
group-
ing

no var
re-
order-
ing

variable
sifting

variable
sifting
+
group-
ing

no var
re-
order-
ing

variable
sifting

variable
sifting
+
group-
ing

Renault 99 112 54 37 37 30 36 36 25 27 27
C169 FV 39 76 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
D1119 M23 47 178 0.14 0.14 0.1 0.07 0.07 0.05 0.07 0.07 0.05
C250 FW 123 321 0.3 0.3 0.12 0.15 0.15 0.09 0.08 0.08 0.07
C211 FS 238 889 1432 70 18 231 58 17 48 19 14
C638 FVK 426 948 – 69 36 407 59 47 259 52 23
C638 FKB 495 1512 – – 731 – 9442 150 – 522 135
C171 FR 441 1775 – – – – 6590 794 – – 1602
C210 FVF 489 1849 – – – – 4612 3779 – – 1261
C209 FA 492 1939 – – – – 634 – – 3858 1097
C211 FW 337 3188 – – – – – – – 1380 3813
C638 FKA 517 5272 – – 4523 – – 2796 – 3761 390

size of the final BDD, but reduces intermediate BDD size and mem-
ory consumption.

Sinz [11] proposed an alternative approach to configuration prob-
lems precompilation based on construction of optimal set of prime
implicates of the problem rules.

The variable sifting algorithm for dynamic variable reordering was
proposed in [10]. Panda and Somenzi [9] noticed that dependent vari-
ables tend to attract each other during variable sifting and suggested
that this effect could be eliminated by grouping dependent variables
and moving them as a single variable during variable reordering.
They developed the group sifting algorithm, which automatically
finds and groups dependent variables. However, this algorithm does
not take into account the structure of the problem. Therefore, in our
experiments (not cited here), it did not perform as well as the variable
grouping algorithm described in Section 4.

7 CONCLUSIONS AND FUTURE WORK

This paper has proposed two heuristics for reducing the time and
space required to obtain a BDD representation of the solutions to a
configuration problem. We first showed that the dynamics of BDD
growth depends strongly on the order in which constraints are added
to the BDD and proposed a constraint ordering heuristic based on the
tree and clustered structure of the primal constraint graph of many
configuration problems. We then showed that configuration prob-
lems can benefit from dynamic variable reordering and proposed a
way to further improve the efficiency of dynamic variable reorder-
ing by grouping variables based on the decomposition of the primal
constraint graph of the problem into clusters.

As a part of the ongoing work, we are developing static variable
ordering heuristics to further improve performance of BDD compila-
tion. In addition, we are evaluating applicability proposed heuristics
in other application domains, in particular, in verification problems.
Finally, it would be interesting to establish relation between prob-
lem structure and performance of proposed heuristics. For example,
it is important to understand why variable grouping decreases per-

formance of BDD construction for some problems and to be able to
predict such behaviour.

REFERENCES
[1] Beate Bollig and Ingo Wegener, ‘Improving the variable ordering of

OBDDs is NP-complete’, IEEE Transactions on Computers, 45(9),
993–1002, (1996).

[2] Randal E. Bryant, ‘Graph-based algorithms for Boolean function ma-
nipulation’, IEEE Transactions on Computers, 35(8), 677–691, (1986).

[3] CLib: configuration benchmarks library. http://www.itu.dk/
research/cla/externals/clib.

[4] Langford’s number problem specification in the CSPLib library.
http://csplib.org/prob/prob024/index.html.

[5] GLU BDD packages. ftp://vlsi.colorado.edu/pub/vis/.
[6] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune Møller Jensen, Hen-

rik Reif Andersen, Henrik Hulgaard, and Jesper Møller, ‘Fast
backtrack-free product configuration using a precompiled solution
space representation’, in Proceedings of the International Conference
on Economic, Technical and Organizational aspects of Product Config-
uration Systems, pp. 131–138, (2004).

[7] Implementation of the MCL algorithm. http://micans.org/
mcl/.

[8] Sanjay Mittal and Felix Frayman, ‘Towards a generic model of config-
uration tasks’, in Proceedings of the Eleventh International Joint Con-
ference on Artificial Intelligence, pp. 1395–1401, (1989).

[9] Shipra Panda and Fabio Somenzi, ‘Who are the variables in your neigh-
borhood’, in Proceedings of the 1995 IEEE/ACM international confer-
ence on Computer-aided design, pp. 74–77, (1995).

[10] Richard Rudell, ‘Dynamic variable ordering for ordered binary deci-
sion diagrams’, in Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design, pp. 42–47, (1993).

[11] Carsten Sinz, ‘Knowledge compilation for product configuration’, in
Configuration Workshop Proceedings, 15th European Conference on
Artificial Intelligence (ECAI-2002), pp. 23–26, (2002).

[12] Stijn van Dongen, ‘A cluster algorithm for graphs’, Technical Report
INS-R001, National Research Institute for Mathematics and Computer
Science, Netherlands, Amsterdam, (2000).

4 after enforcing arc consistency

7

A Survey of Explanation Techniques for Configurators
Albert Haag1 and Ulrich Junker 2 and Barry O’Sullivan 3

Abstract. Explanations are an essential feature of interactive con-
figurators. They allow a user to identify the reasons for a failure and
to understand the presence or absence of features in intermediate
configurations. In spite of numerous publications about explanation
techniques, a survey on explanation methods for configuration has,
so far, been absent from the literature. In this paper, we give an ab-
stract definition of the basic explanation capabilities of a configura-
tor and review two of the principal explanation techniques used in
industrial configurators, namely Truth Maintenance Systems (TMS)
and QuickXplain. We conclude the survey with a list of advanced
issues and topics for future research.

1 Introduction

Explanations have always played a crucial role in configuration. In
their definition of the configuration task, Mittal and Frayman [23]
state that an explanation of failure should be computed if the given
user requirements cannot be fulfilled. Furthermore, explanations al-
low a user to understand why features have been selected or elimi-
nated during the configuration process.

We illustrate the importance of explanations for a simple car con-
figuration problem involving features such as the type (e.g. berline,
convertible, station-wagon), the model (e.g. basic, standard, luxury),
the engine type (petrol or diesel), the colour, and other diverse op-
tions (e.g. ABS, air-conditioning, roof-rack, sunroof, CD, TV, auto-
matic gearbox). Some features are incompatible with each other. For
example, it is not possible to choose a roof-rack when a sunroof or
a convertible has been selected. Furthermore, some features necessi-
tate others. For example, suppose that a luxury model pre-selects the
options CD, airbag, ABS, and air-conditioning, and that a standard
model requires ABS. A configurator needs to satisfy these compati-
bility and requirement constraints, given user choices, by adding or
removing features. Suppose a “layman” user has selected a luxury
model, berline, sunroof, TV, and ABS. As the user has no detailed
knowledge of the compatibilities and requirements, he might ask why
a feature such as air-conditioning has been selected in the configu-
ration. An explanation for the presence of a feature comprises the
user choices that require the inclusion of the feature. In the example,
air-conditioning has been included since the user has chosen a lux-
ury model. Furthermore, the user may ask why a feature such as a
roof-rack has been eliminated in the first configuration step. An ex-
planation for the absence of a feature comprises the user choices that
are incompatible with the feature. For example, a roof-rack has been
eliminated because the user selected a sunroof.

Finally, it is possible that the user’s choices cannot be fulfilled by
the given catalog. For example, suppose that the user wants a CD, TV,

1 SAP AG, Germany (albert.haag@sap.com)
2 ILOG S.A., France (ujunker@ilog.fr)
3 4C, University College Cork, Ireland (b.osullivan@cs.ucc.ie)

GPS, and automatic gearbox, which consume5, 10, 10, 30 Watts,
respectively. If total power consumption must be less than40 Watts,
then these user choices cannot be fulfilled. An explanation of failure
is a minimal unsatisfiable subset of the user choices. For example,
the TV and automatic gearbox form one explanation of failure, while
GPS and automatic gearbox form another.

There have been many technical papers about explanation [1, 12,
16, 24, 30] and most industrial configurators incorporate an explana-
tion facility. Nevertheless, a comprehensive definition of the expla-
nation problem and a survey of the principal approaches has been
missing. This survey paper seeks to give the relevant definitions and
to describe the major techniques for finding explanations. Explana-
tions, as considered in this paper, are completely declarative and are
independent of a particular configuration technique and of a partic-
ular computation sequence. We use a declarative formulation of the
underlying configuration problem as is typical in approaches based
on description logics, SAT, constraint programming, and integer pro-
gramming. We assume that the configuration problem is specified
by a set of constraints from a suitable logical language [6, 17]. A
configuration is a conjunction of facts (such as value assignments to
attributes) that is consistent with respect to the constraints. It is im-
portant that this logical characterisation precisely describes the be-
haviour of the given configurator. In particular, the logical charac-
terisation may lack axioms about the completeness of configurations
since the configurator may return an incomplete configuration with-
out checking whether it can be completed.

There are two main paradigms for computing explanations in con-
figuration. The first one involves recording proofs computed by a
problem solver whilst the second approach involves performing mul-
tiple consistency checks. Both methods are independent of the form
of the constraints. They can be applied in the context of SAT, con-
straint programming, description logics, etc. We exemplify these
methods using truth-maintenance systems (TMS) [4, 5] and Quick-
Xplain [16], since these methods are not only of algorithmic interest,
but have proved their effectiveness in industrial configuration tools
and served as examples for others.

The survey is organised as follows. We first define the explanation
capabilities of configurators based on an analysis of different user
roles (Section 2). Then we present two major techniques for finding
explanations, namely TMS (Section 3) and QuickXplain (Section 4).
Finally, we discuss several advanced issues and identify topics for
future research (Section 5).

2 Basic Explanation Capabilities

Given a set of user choices, a configurator may produce a configura-
tion that can be incomplete, or report an inconsistency. In both cases,
the user may need assistance on how to proceed. This assistance can
be provided by an explanation capability that is able to answer typical

8

questions based on the underlying product model and the reasoning
process that was performed by the system. The precise form of the
explanation depends on theclass of userat hand. In configuration,
we can distinguish between modelers, expert users, and end-users,
all having different expectations regarding explanation.

Modelerscan use explanations as one convenient way to test their
configuration model. This model might be inconsistent, meaning that
the constraints associated with a component type cannot be satisfied.
These inconsistencies can be caused by modelling errors, which are
difficult to isolate if constraint sets are large and the constraints are
complex. Explanations are a good way to isolate problematic sub-
sets of constraints. In this case, the explanation should contain the
constraints of the configuration model.

An expert usermight be interested in detailed information about
the features that have been selected or eliminated by a configurator in
a B2B scenario. The explanation should consist of user requirements,
defaults, and possibly constraints of the configuration model.

An end-userwill require guidance on how to select desired fea-
tures, to avoid undesired ones, and to resolve inconsistencies. This
situation arises in B2C scenarios, as addressed by public web-based
configurators. The user enters requirements sequentially. Each new
requirement reduces the possible choices for the remaining features.
As the end-users do not have detailed product knowledge, they can
easily state inconsistent requirements. In this case, an explanation of
failure needs to highlight the problematic user choices.

The user’s role, thus, determines which constraints appear in ex-
planations and which should be hidden. The general rule is that an
explanation should only contain elements that the user can modify.

We now give a general definition of an explanation problem. We
characterise an explanation problem by abackground, a foreground,
and aquery. The foreground contains the constraints that can appear
in an explanation such as the user requirements (and defaults) in a
B2B or B2C configuration scenario or the constraints of the config-
uration model in a debugging scenario. The background contains all
constraints that are needed to find an explanation, but must not ap-
pear therein. The background, thus, depends on the scenario (B2B,
B2C, or debugging). For example, the background for a B2C sce-
nario might contain all the constraints of the configuration model.
The query depends on the question posed:

• What are the reasons for inconsistency?
• Why is a particular feature selected by the system?
• Why is a particular feature unavailable for selection by the user?

In the first case, the query is the inconsistency. In the second case,
it is the presence of a feature. In the third case, it is the absence of
the feature. The second and third problems can be mapped to the first
problem by adding the negation of the query to the background.

An explanationis a minimal subset of the foreground that logi-
cally entails the query. Minimality means that the query is no longer
entailed if some elements are removed from the explanation. This
is particularly important if the configurator should give guidance for
restoring consistency, for avoiding an undesired feature, or for re-
covering an excluded feature. In all these cases, the configurator will
determine an adequate explanation and ask the user to choose one of
the constraints from the explanation. The chosen constraint will then
be removed from the constraint problem. Minimality of explanations
ensures that no irrelevant constraints are removed. It is important to
note that there can be multiple explanations. The number of explana-
tions can even be exponential, but only a linear number of constraints
need to be removed from the constraint problem such that the query
is no longer entailed by it.

More advanced forms of explanations are needed if the user wants
to know the reason underlying a particular constraint in the product
model. When a configurator automatically completes a configuration,
a user may ask why an expected value has not been chosen by the sys-
tem. The answer may either be that this value has been inconsistent
or that a more preferred value has been chosen instead.

There are other types of questions that we do not consider part
of an explanations capability. When testing a configuration against a
new product model, a developer can trace the actions performed by
the system (firing of constraints, instantiation of components, setting
of properties, etc.) and determine performance profiles. As traces and
performance profiles deal with the behaviour of a specific configu-
rator, they do not have a declarative nature and are not considered
explanations. Furthermore, when finishing an incomplete configura-
tion, a user needs guidance based on the properties of the product
model, which is beyond the scope of an explanation.

3 TMS-Based Approaches to Explanation

One mechanism that has been used extensively as a basis for ex-
planations in configurators is the truth maintenance system (TMS).
In particular, explanations in the SAP sales configurators have been
solely based on this. Two approaches to TMS arise in configuration.

The first and simpler form is a justification-based TMS
(JTMS) [5]. It has been in use in SAP configurators since 1992. Thus
far, productive configuration solutions by SAP customers almost ex-
clusively make use of explanation based on it.

The second and more complex form is an assumption-based TMS
(ATMS) [4]. The approach to using this in configuration was evolved
concurrently with that of using a JTMS [13], however, a real need
to provide ATMS-based explanations has only recently begun to sur-
face. Limited productive use has been available in the SAP internet
configurator (IPC) since 2003.

3.1 Truth Maintenance Systems in Configurators

A TMS is defined by a set of factsD and a set of justificationsJ .
Each fact is treated by the TMS as an atomic proposition. A justi-
fication can be seen as a recorded logical implication between facts
f1 · · · fn → f wherefi, f ∈ D.

All reasons for entering a property (fact) into the configuration
must be supported by one or more justifications. In particular, each
time a constraint in the model is applied, the TMS records this in the
form of a justification. Each user input is also recorded as a justifi-
cation. Thus, the configuration process can be seen as a process of
successively communicating justifications to the configurator until a
state is reached in which the configuration is considered complete.

An inconsistency is recorded as a justification for a special fact
false. To handle an inconsistency, one or more of the justifications
under user control (e.g. due to foreground constraints) must be re-
tracted or otherwise disabled, which will lead to a previous state.
When a justification is retracted all facts that depend solely on it must
also be removed. The main reason for using a TMS is actually to sup-
port such dependency-directed backtracking, i.e. to rapidly and con-
sistently take back everything that depends on a particular retracted
justification.

3.2 The TMS in SAP Sales Configurators

Some amendments have been made to the TMS at SAP. Firstly, facts
are not all treated as atomic propositions. They may be partially or-
dered in a “specialisation relation”, with only the most specialised

9

facts in the configuration being active. This allows facts that repre-
sent disjunctions. For example, if it is known that the number of seats
of a car must be either six or seven, this can be expressed by a sin-
gle fact. If subsequently the number of seats is finalised to seven,
this information is represented by a more specialised fact. (This fea-
ture is not dealt with here, see [14].) Secondly, each justification is
additionally qualified by anowner. A justification takes the form

f1 · · · fn
Owner−−−−→ f .

Owner may be a constraint, the user, the product model itself, a
procedure, or a problem solving heuristic.Owner can have a static
text for explanation. This text may contain text variables that can ref-
erence thelhs (left-hand side) of the justification.Owner can also
distinguish a justification as being retractable by the user or not. Jus-
tifications that can be retracted directly by the user (e.g., user input
itself and static or dynamic defaults) are called soft justifications.
Soft justifications stem from the foreground constraints.

Constraints that involve sums are distinguished from other con-
straints, both in the model and in the TMS, and are called
aggregation checks. For example, the total electrical power con-
sumed must not exceed that provided. Though typically not explic-
itly modelled this way for a car, air-conditioning, lights, the engine
starter, audio systems, etc., all consume power. Power is provided
mainly by the battery (when the engine is off), or the generator (when
the engine is running). In this example the total number of all such
components is a foreseeable finite number and the relation can be
modelled as a classical constraint. In practice, the number of vari-
ables involved in a sum often cannot be (practically) bounded in the
model. Also, a violation of such a constraint can often be handled
by adding further features to the solution, rather than by retracting
chosen features. For example, a second battery could be added to the
car in case of problematic power supply.

Foraggregation checks the contributions to the check (the sum-
mands) are justified individually. The aggregation itself is computed
dynamically at run-time and not justified directly. This has the ad-
vantage, from the point of view of explanability, that meaningful
static explanation texts can be more easily supplied for the contri-
butions than for the aggregation overall. Also, it avoids unnecessary
churning in the TMS processing which would ensue from the fre-
quent replacements of justifications for the entire sum each time a
new contribution is added4.

3.3 JTMS-Based Explanation

In a simple but basic form, any fact includingfalse can be explained
by listing all of its justifications and displaying the associated texts
(binding any text variables). Note that these justifications can be due
to background constraints, which then provide a deeper insight into
the reasoning of the TMS. A link to thelhs of each justification is
also provided so that the user may request explanations for these facts
in turn. For facts representing sums, the summands are identified and
their individual explanations are all presented together.

Pursuing explanations on a chain of justifications can be a tedious
process. In particular, there is no direct guidance on how to handle
an inconsistency. Consequently, some modelers work hard to try to
avoid inconsistencies by disallowing any user input that can foresee-
ably cause problems, i.e they try to reduce the requirement for ex-
planability. Where inconsistencies cannot be avoided, appropriately
formulated static explanation texts at the level offalse can often
provide the necessary guidance for handling the inconsistency with-

4 The latter approach is easier to implement and was used first at SAP.

out requiring further chaining. Despite these drawbacks this mode
of explanation can provide detailed reasons for an inference (such
as legal or technical constraints that entail a particular property) that
are otherwise not easy to generate. Experience shows that it can be
useful to domain experts (e.g. in a B2B scenario).

3.4 ATMS-Based Explanation

In order to remove an inconsistency, or other unwanted fact, from
the configuration the user must backward chain on the JTMS expla-
nations until one or more soft justifications are reached that can be
retracted. To overcome this deficiency the TMS can be extended to
an ATMS. The ATMS supports finding these soft justifications more
directly. There are also reasons beyond explanations for utilising an
ATMS, but they are not dealt with here.

Using the terminology of the ATMS any soft justification is called
an assumption. For each factf the ATMS calculates an ATMS label
λ(f) representing a minimal disjunctive normal form of the logical
support of the fact in terms of assumptions. Each conjunction inλ(f)
is called an environment, denoted byξ. The ATMS label is repre-
sented as a list of its environments. Each environment is represented
as a list of assumptions. By definition, ifξ ∈ λ(f) thenξ ` f . If
λ(f) is empty thenf has no support and should not be considered
part of the configuration. Ifλ(f) contains the empty environment
thenf cannot be removed from the configuration by user actions.

Since the label calculation only offers meaningful results if the im-
plications recorded as justifications are logically complete, explana-
tions based on the ATMS presuppose a declarative (constraint-based)
modelling paradigm. Procedural inferences will usually not be able
to supply logically complete justifications. They can, however, be
associated with static texts, thus providing meaningful JTMS-based
explanations. Also, facts that represent sums need special considera-
tion. The violation of anaggregation check is not necessarily con-
sidered an inconsistency if it can be fixed by adding further features.

An environment in the label offalse is called a nogood. The
ATMS keeps track of the nogoods separately. They and their super-
sets can then be removed from, or ignored in, the fact labels, because
anything that allows derivingfalse is obviously not of interest. All
remaining non-nogood environments inλ(f) form the explanation
for the presence off in the configuration.

The direct utility of the ATMS label is that it gives concise infor-
mation about what needs to be done in order to remove a fact from
the configuration. This is particularly useful forfalse, i.e., handling
inconsistencies. It can also be used for removing other unwanted fea-
tures, but this will probably occur less frequently in practice (I don’t
like air-conditioning in cars, even if I get it for free). A more frequent
practical use would be to remove exclusions from the configuration.
An exclusion is the direct representation (as a fact) that a property
cannot be consistently added to the configuration. Such exclusions
are represented in the TMS at SAP either directly (a diesel engine
will not fit in the chosen car) or in the form of domain restrictions
(the number of seats is less than or equal to five: this excludes six,
seven, etc.).

The requirement for this kind of explanation arises more and more
in internet scenarios, where less knowledgeable users want to add
or remove features without any interest in a deeper explanation of
the underlying inferences made by the configurator. Ultimately, some
users may require a combination of both explanation functionalities,
as provided in the current SAP IPC configurator for some scenarios.

Using an ATMS poses some technical challenges. One such chal-
lenge is the potential complexity of the label calculation. Another

10

challenge is how to present the label in a way that the user can act
upon it efficiently. As an example, suppose that an inconsistency
needs to be handled and there are several nogoods. To completely
handle the inconsistency exactly one soft justification must be with-
drawn from each nogood (since a nogood is minimal). Some soft
justifications may appear in more than one nogood. Retracting them
will thus handle several nogoods at the same time.

The current solution to the complexity problem at SAP is to
stop calculation when it becomes seemingly intractable. Explana-
tions through ATMS labels cannot be offered in this case. Experience
shows that after optimising the implementation, the label calculation
is tractable for most problems encountered in practice so far. After
solving problems with an initial implementation, a total label calcu-
lation for a complex configuration can, typically, take a few seconds.

The presentation problem is handled in the IPC as follows. A soft
justification is presented primarily through the fact that it justifies. A
simple heuristic is used to present the list of all facts corresponding
to the union of all nogoods. This list is sorted in descending order
by the frequency with which a fact occurs in different nogoods. The
user is asked to choose one fact he is willing to forego. Each fact
represents one or more soft justifications that will be retracted if the
corresponding fact is chosen. Facts towards the top of the list are
linked to soft justifications that are involved in more nogoods. After
the user has made a choice and the corresponding soft justifications
are retracted, the resulting smaller list is again displayed for a further
choice if needed. Both the label calculation itself and its presentation
for explanation are current topics of further improvement.

4 The QuickXplain Approach

As explained in Section 2, explanations of failure help the user to
identify problematic constraints that need to be removed or modified
in order to restore consistency. It is therefore important that explana-
tions contain only relevant elements and are minimal with respect to
set inclusion. QuickXplain [16] is a method for computing minimal
explanations for arbitrary constraint solvers. We discuss some of the
motivations for QuickXplain.

4.1 Motivations for QuickXplain

A TMS tracks the precise inferences of a constraint solver and
records them as justifications. The explanations can then be com-
puted from the justifications as shown in the previous section. Cou-
pling an existing constraint solver with a TMS is intrusive and re-
quires some modifications to the solver code. Furthermore, many ad-
vanced constraint solvers exploit efficient algorithms for constraint
propagation (such as the famousalldifferent constraint [27]).
It is difficult to track the deductions made by those algorithms with-
out slowing them down. Furthermore, the resulting justifications may
be very large even if the final explanations are small. Moreover,
the explanations obtained from those justification networks can be
far from being minimal. We show this for a simple example com-
prising a sum-constraint, four requirements and the binary variables
x1, x2, x3:

c : y = 500 · x1 + 400 · x2 + 2600 · x3,
r1 : x1 = 1, r2 : x2 = 1, r3 : x3 = 1, r4 : y ≤ 3000.

Each propagation step of this problem is recorded by a justification.
A set of justifications that allows us to derive a failure represents an
inconsistency proof. The following is an inconsistency proof for the

example, showing that the requirementsr1, r2, r3, r4 are in conflict:

r1, c → y ≥ 500
r2, y ≥ 500, c → y ≥ 900
r3, y ≥ 900, c → y ≥ 3500
r4, y ≥ 3500 → ⊥

However, there is another inconsistency proof for this problem which
leads to a smaller explanation of the failure, which is minimal:

r1, c → y ≥ 500
r3, y ≥ 500, c → y ≥ 3100
r4, y ≥ 3100 → ⊥

The computation of minimal explanations of failure thus requires the
exploration of multiple inconsistency proofs that are obtained by dif-
ferent subsets of the constraints. The ATMS achieves this by explor-
ing the logical consequences of all (relevant) subsets and computing
all minimal explanations.

The number of subsets to be investigated can be reduced signifi-
cantly if a single explanation is required. Furthermore, it is not neces-
sary to determine those subsets by propagating sub-explanations over
a justification network. It is simply possible to choose those subsets
outside the problem solver. The result is a non-intrusive explanation
method that can be used with any problem solver without modifi-
cation. It can thus be used with advanced constraint solvers based
on global constraints. It can also be used to reduce non-minimal
explanations produced by TMS-based solvers such as modern SAT
solvers. Finally, it also works for solvers that do not exploit logical
inference, but optimisation for proving inconsistency, e.g. LP solvers.

QuickXplain was first developed for ILOG’s configuration tools
and provides a critical feature for configuration applications. It is
also included in ILOG’s constraint programming tools. Furthermore,
it has been applied to very diverse problems such as Benders decom-
position for resource allocation, explanations for semantic web, and
validation of business rules where it is used to find rule conditions
that ensure an ill-formulated rule is never applicable.

4.2 Principles of QuickXplain

QuickXplain isolates a conflict by successively removing constraints
and by checking the consistency of the remaining constraints. If
the remaining constraints are inconsistent, the problem has been re-
duced in size. If not, then some of the removed constraints do nec-
essarily belong to the conflict. Consider a similar example as in
the last section where the backgroundB contains a sum-constraintPn

i=1 ki · xi ≤ u and the foreground contains the requirements
ri : xi = 1. We first consider a simple problem wheren = 8,
ki = 2i−1, andu = 9. This problem is inconsistent and we use
QuickXplain to determine a minimal explanation of failure.

QuickXplain is supplied with a tuple(B, C) consisting of the
original backgroundB and the original foregroundC, which we re-
name intoC1,8. QuickXplain will map this explanation problem to
a sequence of subproblems by moving constraints from its current
foreground to its current background. Firstly, the algorithm checks
whether the background itself is consistent, which is the case since
the sum-constraint can be satisfied by, for example, setting allxi to
0. It then recursively divides the explanation problem into subprob-
lems of the same size. The foregroundC1,8 will be split into two
subsetsC1,4 := {r1, . . . , r4} andC5,8 := {r5, . . . , r8}. The algo-
rithms first seeks for conflict elements inC5,8 while keepingC1,4 in
the background (i.e., all constraints inC1,4 are active, but they will

11

not be removed while solving the second problem). Hence, it seeks
an explanation forP5,8 := (B ∪ C1,4, C5,8). It again checks for the
consistency of the new backgroundB ∪ C1,4. However, this prob-
lem has no solution as

P4
i=1 2i−1 is equal to15 and exceeds9. Due

to this failure, the empty setX5,8 := ∅ is a conflict of the second
subproblemP5,8, meaning that the set of conflicting constraints has
been reduced toC1,4.

The algorithm now solves the first subproblem, namelyP1,4 :=
(B, C1,4). It already knows that the backgroundB is consistent
and therefore splitsC1,4 into C1,2 := {r1, . . . , r2} and C3,4 :=
{r3, . . . , r4}. Again, it seeks culprits amongC3,4 while moving
C1,2 into the background. We thus obtain the problemP4 := (B ∪
C1,2, C3,4). The backgroundB ∪ C1,2 is consistent, and at least
one constraint ofC3,4 is needed for the failure. QuickXplain splits
this set intoC3 := {r3} and C4 := {r4}. The background of
P4 := (B ∪ C1,2 ∪ C3, C4) containsr1, r2, r3 and is consistent.
Hence,C4 must contain an element of the conflict. Since it is a sin-
gleton,X4 := {r4} is a minimal conflict of the subproblemP4.

This conflict is added to the background of the subproblemP3

which thus has the form(B ∪ C1,2 ∪ X4, C3). The background of
P3 containsr1, r2, r4 and is not consistent. Thus, the empty set is a
minimal conflict ofP3. The minimal conflict ofP3,4 is obtained by
merging the minimal conflicts of its subproblemsP3 andP4, which
results inX3,4 := {r4}.

This conflict is added to the background ofP1,2 := (B ∪
X3,4, C1,2). The background ofP1,2 containsr4 and is consistent.
We thus need an element ofC1,2, which is split intoC1 := {r1}
andC2 := {r2}. The background of the second subproblem(B ∪
X3,4 ∪ C1, C2) containsr4, r1 and is consistent. SinceC2 is a sin-
gleton,X2 := {r2} is the minimal conflict of this problem. Finally,
the algorithm seeks an explanation ofP1 := (B ∪X3,4 ∪X2, C1).
The background now containsr4, r2, which is consistent, meaning
that the explanation isX1 := {r1}. The explanationX1,2 of P1,2

is then the union ofX1 andX2, and the explanationX1,4 is equal
to X1,2 ∪ X3,4 = {r1, r2, r4}. SinceX5,8 was empty,X1,4 is the
minimal conflict of the initial problem.

4.3 Usability Issues of QuickXplain

The efficiency of QuickXplain depends of the number of consistency
checks and the costs of consistency checks. If a consistency check
fails, the current explanation problem is reduced in size and a whole
block of constraints is removed from the problem. If the culprits are
grouped together, then the blocks become very large and QuickX-
plain is very effective. However, even ifk culprits are equally dis-
tributed, we still get blocks of sizeO(n/k) and QuickXplain can still
bring significant savings over naive methods. QuickXplain needs be-
tweenlog2

n
k

+2k andk · log2
n
k

+2k consistency checks. It is thus
logarithmic inn iff k is small compared ton.

Although configuration problems can be large in size, the num-
bern of foreground elements will usually be quite small for interac-
tive configurators. Furthermore, interactive configurators usually use
constraint propagation to derive required features and to eliminate the
possible features. In this case, QuickXplain will use the same propa-
gation procedure for the consistency checks. As constraint propaga-
tion is incremental with respect to the addition of constraints, Quick-
Xplain can perform very efficiently for interactive configurators.

For model debugging, the numbern of foreground elements can
be large. QuickXplain will still be beneficial if the conflicts are small
in size, which is often the case for modelling errors. If conflicts are
large in size, it might be sufficient to stop QuickXplain after it has

determined them last elements of a conflict. Model debugging may
require the usage of a search procedure to check the consistency of
the constraints associated with a component type. This is feasible if
search can be limited to critical variables.

QuickXplain determines a single explanation at a time and needs
to be reapplied if the removal of a constraint does not restore con-
sistency. This sequential approach will determine at mostn expla-
nations, even if the initial number of explanations is exponential.
However, the user may want to control which explanation is found
and impose a preference order on the foreground constraint. This or-
der uniquely defines a preferred explanation and QuickXplain deter-
mines exactly this preferred explanation.

5 Advanced Issues

In this section we discuss a number of topics that can be regarded
as extensions to, or advanced aspects of, explanation generation. We
limit our attention to consistency- and constraint-based approaches.

Explanations are closely related to the Partial Constraint Satisfac-
tion (PCSP) framework [11]. The PCSP framework is useful for rea-
soning about problems that do not admit solutions. Of course, in re-
ality such a situation is unsatisfactory. Therefore, based on the PCSP
framework we can define a number of ways of relaxing a CSP so
that a solution can be found, e.g. by allowing some constraints to
be violated. Many techniques have been proposed that reason about
over-constrained systems of constraints [3, 26]. Many of these tech-
niques can be seen as examples of explanation generators, although
they have not been designed for that purpose. The notion of PCSP
has also be used as the underlying framework for computing a spe-
cific kind of explanation know as a tradeoff [9]. Tradeoffs can be
regarded as an explanation of how to overcome an inconsistent set of
constraints, while directing a user towards a preferred solution.

Many other generalisations of the basic constraint satisfaction
paradigm have been proposed specifically with configuration in
mind. For example, Dynamic CSP [22] is an extension of the frame-
work in which the existence of particular variables and constraints in
a configuration are conditional on particular assignments to the vari-
ables. For example, air-conditioning systems may only be available
in luxury models of cars. In this case, if the type of car is represented
by a variable, assigning this variable to the valueluxury would in-
troduce another variable calledair-conditioner, for which the user
could select from a set of alternative systems. Explanation generation
techniques that can support the dynamic aspects of configuration are
very important. A number of such approaches have been proposed,
essentially based on forms of truth maintenance [2].

A generalisation of the Dynamic CSP framework is the notion of
Composite CSP [29]. This extension was motivated by the observa-
tion that configuration problems cannot be adequately modelled us-
ing “flat” models. Instead their structure should be modelled directly.
Such structure often takes a hierarchical form in which the overall
product is composed of subsystems, each of which is composed of
sub-subsystems and so on. From the perspective of explanation gen-
eration, not only must one be able to explain at a system/subsystem
level, but must also be able to generate explanations based on the
internal structure of these systems. A number of techniques for gen-
erating explanations of structured systems have been developed in
the model-based reasoning community [20, 21].

An important issue that must be considered when generating ex-
planations is the notion of “quality”, i.e. how good are the explana-
tions from the perspective of the user. This is a very difficult concept
to define. Indeed, it has been the topic of a large body of work in

12

the cognitive science and artificial intelligence communities [19, 31].
Recent work in configuration has considered the notion ofspurious
andwell-foundedexplanations, how they arise, and how they can be
avoided [12]. A spurious explanation is essentially one that directs a
user towards one or more undesired solutions. A spurious explana-
tion can arise when a user asks a configurator to justify a proposed
solution in terms of his set of requirements. Since minimal explana-
tions focus on a subset of the user’s requirements, explanations can
be given that unsoundly explain the proposed solution.

The techniques used to compute well-founded explanations also
complement more abstract feature-based explanations. For example,
rather than generating explanations in terms of product features, a set
of features can be grouped together to form a more higher level con-
cept in terms of product function that a user might find more natural5.
For example, it is often easier for users to talk about whether they can
use a digital camera to take pictures at night, than define the set of
technical specifications that enable this function. Abstraction tech-
niques have been used successfully within the constraint satisfaction
paradigm [10]. Combining abstraction techniques, for example based
on interchangeable values [7], with explanation is very promising.

There is a considerable amount of work on explanation in con-
straint satisfaction. Many researchers have addressed the generation
of explanations in interactive constraint-based systems [1, 2, 8, 24].
There has also been work on explanations that focus on explaining
why a particular solution to a problem exists [18, 25, 30].

As highlighted earlier in this paper, one possible type of user in
configuration are those who construct the knowledge bases upon
which configurators are built. The typical form of explanation re-
quired by these users is based on concepts from model debugging [6].
The complexity of industrial configuration knowledge-bases present
a significant challenge for debugging. Consistency-based diagnosis
has been proposed to generate explanations that identify the sources
of bugs so that they can be successfully eliminated. Traditional ap-
proaches to diagnosis, such as Reiter’s hitting set algorithm [28] can
be used to compute the required explanation describing how the bug
can be removed.

While traditional approaches to explanation focus on finding sin-
gle explanations, configurators can be extended to help users find an
explanation that they find satisfactory. Given an initial explanation, a
user might find it unhelpful and may request that an explanation be
presented which is quite different from the initial one. For example,
the former explanation might be in terms of technical features while
the second explanation might be in terms of cost. Alternatively, the
user might seek to refine an explanation by finding an alternative, but
similar, one. This interaction can be readily supported using a known
framework for reasoning about similarity and diversity problems in
constraint satisfaction [15].

6 Conclusion

We have discussed the scope of explanations; the requirements of
different classes of user from the perspective of explanation; and dis-
cussed two of the standard approaches to explanation in industrial
configuration: TMS and QuickXplain. Finally, we summarised some
advanced issues related to explanations in configuration.

REFERENCES
[1] Jérôme Amilhastre, H́elène Fargier, and Pierre Marquis, ‘Consistency

restoration and explanations in dynamic CSPs application to configura-

5 Seehttp://www.activebuyersguide.com .

tion.’, Artificial Intelligence, 135(1-2), 199–234, (2002).
[2] James Bowen, ‘Using dependency records to generate design coordina-

tion advice in a constraint-based approach to concurrent engineering’,
Computers in Industry, 22(1), 191–199, (1997).

[3] Simon de Givry, Javier Larrosa, Pedro Meseguer, and Thomas Schiex,
‘Solving Max-SAT as weighted CSP.’, inCP, pp. 363–376, (2003).

[4] Johan de Kleer, ‘An assumption–based truth maintenance system’,Ar-
tificial Intelligence, 28, 127–162, (1986).

[5] Jon Doyle, ‘A truth maintenance system’,Artificial Intelligence, 12,
231–272, (1979).

[6] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus
Stumptner, ‘Consistency-based diagnosis of configuration knowledge
bases.’,Artif. Intell., 152(2), 213–234, (2004).

[7] Eugene C. Freuder, ‘Eliminating interchangeable values in constraint
satisfaction problems.’, inAAAI, pp. 227–233, (1991).

[8] Eugene C. Freuder, Chavalit Likitvivatanavong, Manuela Moretti,
Francesca Rossi, and Richard J. Wallace, ‘Computing explanations and
implications in preference-based configurators’, inRecent Advances in
Constraints, LNAI 2627, pp. 76–92, (2003).

[9] Eugene C. Freuder and Barry O’Sullivan, ‘Generating tradeoffs for in-
teractive constraint-based configuration.’, inCP, pp. 590–594, (2001).

[10] Eugene C. Freuder and Daniel Sabin, ‘Interchangeability supports ab-
straction and reformulation for multi-dimensional constraint satisfac-
tion.’, in AAAI/IAAI, pp. 191–196, (1997).

[11] Eugene C. Freuder and Richard J. Wallace, ‘Partial constraint satisfac-
tion.’, Artif. Intell., 58(1-3), 21–70, (1992).

[12] Gerhard Friedrich, ‘Elimination of spurious explanations’, inSixteenth
European Conference on Artificial Intelligence, pp. 813–817, (2004).

[13] Albert Haag, ‘Konzepte zur praktischen handhabbarkeit einer atms
basierten problemloesung.’, inDas Plakon Buch, eds., R. Cunis,
A. Günter, and H. Strecker, pp. 212–237. Springer Verlag, (1991).

[14] Albert Haag, ‘Sales configuration in business processes’,IEEE Intelli-
gent Systems, 13(4), 78–85, (1998).

[15] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh,
‘Finding diverse and similar solutions in constraint programming.’, in
AAAI, pp. 372–377, (2005).

[16] Ulrich Junker, ‘QuickXplain: preferred explanations and relaxations
for over-constrained problems’, inProceedings of AAAI, pp. 167–172,
(2004).

[17] Ulrich Junker, ‘Configuration’, inHandbook of Constraint Program-
ming, chapter 24, Elsevier, (2006).

[18] Narendra Jussien and Vincent Barichard, ‘The PaLM system:
explanation-based constraint programming’, inProceedings of CP-
2000 TRICS Workshop, pp. 118–133, (2000).

[19] David Leake,Evaluating explanations: A content theory, Lawrence Erl-
baum Associates, 1992.

[20] Jakob Mauss and Mugur M. Tatar, ‘Computing minimal conflicts for
rich constraint languages.’, inECAI, pp. 151–155, (2002).

[21] Wolfgang Mayer and Markus Stumptner, ‘Model-based debugging us-
ing multiple abstract models’,CoRR, cs.SE/0309030, (2003).

[22] Sanjay Mittal and Brian Falkenhainer, ‘Dynamic constraint satisfaction
problems’, inProceedings of AAAI, pp. 25–32, (July–August 1990).

[23] Sanjay Mittal and Felix Frayman, ‘Towards a generic model of config-
uration tasks’, inProceedings of IJCAI, pp. 1395–1401, (1989).

[24] Barry O’Callaghan, Barry O’Sullivan, and Eugene C. Freuder, ‘Gener-
ating corrective explanations for interactive constraint satisfaction’, in
Proceedings of CP, pp. 445–459, (2005).

[25] Samir Ouis, Narendra Jussien, and Patrice Boizumault, ‘COINS: a
constraint-based interactive solving system’, inICLP-2002 Workshop
on Logic Programming Environments, pp. 31 – 46, (2002).

[26] Thierry Petit, Jean-Charles Régin, and Christian Bessière, ‘Specific fil-
tering algorithms for over-constrained problems.’, inCP, pp. 451–463,
(2001).

[27] J-C. Regin, ‘A filtering algorithm for constraints of difference in CSPs’,
in Proc. of AAAI, pp. 362–367, (1994).

[28] Raymond Reiter, ‘A theory of diagnosis from first principles’,Artificial
Intelligence, 32(1), 57–95, (1987).

[29] Daniel Sabin and Eugene C. Freuder, ‘Configuration as composite con-
straint satisfaction’, inFall Symp. on Configuration, pp. 28–36, (1996).

[30] Mohammed H. Sqalli and Eugene C. Freuder, ‘Inference-based con-
straint satisfaction supports explanation’, inProceedings of AAAI, pp.
318–325, (1996).

[31] Richard J. Wallace and Eugene C. Freuder, ‘Explanations for whom?’,
in Proc. of UICS01, pp. 119 – 129, (2001).

13

Solver Framework for Conditional Constraint
Satisfaction Problems

Esther Gelle1 and Mihaela Sabin2

Abstract. Real world tasks with dynamic behavior, such as con-
figuration, design, planning, or hardware test generation, have been
modeled with an extension of standard constraint satisfaction, Condi-
tional Constraint Satisfaction (CondCSPs). CondCSPs capture prob-
lem change at solving time by conditionally identifying those vari-
ables and constraints that are relevant to final solutions. In this paper
we present a CondCSP solver that includes two algorithms for direct
and reformulation solving of CondCSPs. Our experimental analysis
using randomly generated CondCSPs shows that reformulation solv-
ing in conjunction with forward checking performs better on prob-
lems with larger solution spaces than the direct solving methods.

1 Introduction

A conditional constraint satisfaction problem (CondCSP) extends the
standard CSP with a condition-based component that models prob-
lem change by allowing for “on-the-fly” selection of subsets of vari-
ables that participate in problem solutions. The formalism, condi-
tional CSP, has been introduced by [7] and further developed by [9].
The original application domain is product configuration, in which
a changing rather than fixed number of components are part of fi-
nal solutions. More recently, constraint satisfaction has been adapted
to the planning domain [6], [1]. In [1] the following advantages of
CSP over SAT are stated: a) CSP encodings tend to be less memory-
savvy b) CSP encodings exhibit more structure c) this structure is
exploited by enforcing partial consistency using standard CSP search
techniques. Hardware test generation is another example of applying
a slightly modified variant of CondCSP, called Activity CSP, where
clustering and disjunction of problem activity are represented explic-
itly [5]. The Activity CSP reformulates condition-based constraints
into standard constraints by means of additional variables that control
variable activity. This reformulation is more efficiently solved by en-
forcing an early constraint propagation method in which constraints
are invoked based on assumptions that some variables are active.

Each application domain has produced either specialized algo-
rithms for solving CondCSPs or reformulated CondCSPs into stan-
dard CSPs. The CondCSP class lacks systematic findings with regard
to how algorithm efficiency correlates with problem topology, such
as density, satisfiability, and conditionality and also by comparing the
algorithms’ relative performance. This challenge is compounded by
an almost inexistent library of CondCSP benchmark problems.

To address these challenges, we have developed a CondCSP solver
that includes two algorithms, each of which has initially been in-
troduced and evaluated separately. One algorithm has direct solving

1 ABB Switzerland Ltd, Corporate Research, CH-5405 Baden, Switzerland
2 Department of Mathematics and Computer Science, Rivier College, 420

Main Street, Nashua, NH 03060

methods that adapt standard consistency checking, such as forward
checking and maintaining arc consistency, to the special constraints
that enforce conditionality in a CondCSP [8], [10]. The other algo-
rithm reformulates the original problem into intermediate CondC-
SPs with incrementally lesser conditionality as they are ultimately
transformed into standard CSPs. Standard consistency checking is in-
terleaved with problem reformulation to eliminate inconsistent sub-
problems and solve the resulting standard CSPs [4], [2]. To overcome
the lack of publicly known benchmark problems, we have used ran-
dom CondCSPs and designed test suites for both direct and reformu-
lation solving algorithms. Initial work has been described in [3]. The
extended evaluation analysis in this paper shows that there is not one
winner. Reformulation solving in conjunction with forward checking
has the advantage of pruning whole subproblems, and thus it copes
better with larger-size problems (large solution spaces in the tens of
thousands) than the direct solving methods. Secondly, direct solving
in conjunction with maintaining arc consistency is always preferred
over direct solving using forward checking, and is more efficient on
large, overconstrained problems.

2 A Conditional CSP Example

A CondCSP, P = 〈V,D,VI , CC , CA〉, has a set of variables,
V = {v1, . . . , vn}, which, if active, can take on discrete values
from their corresponding finite domains D = {Dv1 , . . . , Dvn}; a
non-empty set of initially active variables, called initial variables,
VI , VI ⊆ V; a set of compatibility constraints, CC ; and a set
of activity constraints, CA. All sets are finite. We use as guiding
example a simplified configuration problem for industrial mixers
[2] with requirements shown in Figure 1. The task of configura-
tion is to assign values to all selected components in such a way
that all requirements are met. We model the mixer configuration
task as a CondCSP as follows (Figure 2). Configuration compo-
nents and their values correspond to the problem’s variables V =
{Type,V olume, Process, Cooler, Condenser} and domains of
values D. The required components are called initial variables VI =
{Type,V olume, Process}. They are initially active or included in
the problem search space and present at any time during search. Op-
tional components have their activity status initially undefined; in the
example Cooler and Condenser have their activity status initially
undefined. Requirements for selecting these optional components are
modeled through activity constraints CA = {a1, a2, a3, a4}. These
constraints extend the initial variable set according to certain acti-
vation conditions and thus change the activation status of the vari-
ables representing the optional components to indicate either inclu-
sion from solutions as in a1, a2, and a4 or exclusion as in a3. Re-
quirements of component compatibility correspond to compatibility

14

constraints CC = {c1, c2}, which restrict the combinations of al-
lowed values assigned to selected components.

Required components and their values
• mixer’s vessel type is mixer or reactor• vessel’s volume is small or large• mixing process is dispersion or blending

Optional components and their values
• cooler’s type is cool1 or cool2• condenser’s type is cond1 or cond2

Configuration requirements of component compatibility
1. small volume is incompatible with condenser’s cond1
2. mixer and reactor type is compatible with small volume

Configuration requirements for selecting optional components
1. reactor type includes the cooler option
2. dispersion process includes the condenser option
3. cool1 cooler excludes the condenser option
4. large volume includes the condenser option

Figure 1. Example of a simplified industrial mixer configuration task

Initial variables

cond1

cond2

c2
Volume

excl

a1

a3

cool1

cool2

mixer

Cooler

Type Process

a4
c1 a2Condenser

dispersion

blendingreactor

large

small

Activity and Compatibility Constraints

a1 : Type = reactor
incl−→ Cooler

a2 : Process = dispersion
incl−→ Condenser

a3 : Cooler = cool1
excl−→ Condenser

a4 : V olume = large
incl−→ Condenser

cdis
1 : {(small, cool1)}

c:2 {(mixer, small)(reactor, small)}
Solution Set

Type Process Volume Cooler Condenser
reactor dispersion small cool2 cond2
reactor blending small cool1 EXCL
reactor blending small cool2 UNDEF
mixer dispersion small UNDEF cond2
mixer blending small UNDEF UNDEF

Figure 2. CondCSP of the mixer configuration example

A compatibility constraint c is consistent with an instantiation
I of the constraint variables iff either not all constraint variables
are active, or constraint variables are active and I satisfies c. For
example, the instantiation Type = mixer, V olume = large,
and Process = blending trivially satisfies c1 since the variable
Condenser has the activity status undefined.

An inclusion activity constraint, a : acond
incl−→ vt, has an acti-

vation condition, acond, which is a regular constraint defined on a
set of condition variables, and a target variable, vt. The activity con-
straint a is consistent with an instantiation I of the condition vari-
ables of acond iff either (1) not all condition variables are active or
acond is inconsistent with I, or (2) all condition variables are active,
I satisfies acond, and vt is active. In our example, the instantiation
Type = reactor makes Cooler active according to a1. The condi-
tion variable Type is initially active and the instantiation satisfies the
activation condition, thus the a1 is consistent with Type = reactor.

Given an exclusion activity constraint, a : acond
excl−→ vt, a is

consistent with an instantiation I of the condition variables acond

iff (1) either not all condition variables are active or acond is in-
consistent with I, or (2) all condition variables are active, I satis-
fies acond, and vt is not active. The instantiation Type = reactor,
Process = blending, V olume = small, and Cooler = cool1
excludes Condenser, since condition variable Cooler is active (a1

is satisfied) and the instantiation satisfies the activation condition.
A solution to a CondCSP P is an instantiation of a set of active

variables such that all compatibility and activity constraints are sat-
isfied. We are interested in generating all solutions to the example
problem (listed in Figure 2).

3 Solving Conditional CSPs

The large collection of thoroughly tested algorithms for solving
standard CSPs is in stark contrast with the few existing algorithms
for solving CondCSPs. The first complete description of CondCSP
backtrack search [4] solves a partially reformulated CondCSP, in
which activity constraints of exclusion are rewritten as compat-
ibility constraints. [8] proposed CondCSP analogs to CSP back-
track (CondBt), forward checking (CondFc), and maintaining arc
consistency (CondMac) search algorithms. CondMac interleaves
backtrack search with maintaining arc consistency, which is adapted
to propagate consistency checking on both compatibility and activ-
ity constraints in the original CondCSP. Experimental evaluation on
random CondCSPs [11] shows up to two orders of magnitude of ef-
ficiency improvement over plain backtrack search.

A different solving approach is to successively process activation
conditions of inclusion into an equivalent reformulation [4], [2]. The
reformulation algorithm, Gt, generates a tree whose internal nodes
are CondCSPs and the leaves are standard CSPs. Gt reformulates
inclusion activity constraints into compatibility constraints by creat-
ing intermediate CondCSPs with lesser conditionality until the leaves
level is reached. Standard consistency checking is interleaved with
tree generation to eliminate inconsistent subproblems and to solve in
the end the resulting standard CSPs. Experimental evaluation results
of Gt using forward checking were reported for solving a bridge de-
sign problem.

For the purpose of examining these algorithms’ relative perfor-
mance we have integrated both implementations within the same
solver framework (written in C++).

3.1 Direct Solving: CondMac Algorithm

Arc consistency over compatibility constraints is handled by a reg-
ular, AC4-based Mac method, which we call MacCompatibility
to distinguish it from consistency checking over activity constraints.
Activity constraints are checked with the MacActivity method (Al-
gorithm 1). If activity constraints relevant to the variable assignment,
var = value, are satisfied, variables newly included and excluded
by the checked activity constraints are made arc consistent over ac-
tivity and compatibility constraints.

The purpose of MacActivity is to collect newly included and
excluded target variables and to use MacNewvar method (Algo-
rithm 2) to make these variables arc consistent. MacNewvar has
two cases, depending on the activity status of the newvar as either
included or excluded. The excluded activity status might make values
at future condition variables inconsistent. This is the case when those
condition variables are part of inclusion activity constraints that have
not been processed yet, but target newvar. The second case is when

15

Algorithm 1 Maintaining arc consistency over activity constraints.

boolean MacActivity(var, value, Agenda, UndoV als, UndoAct) {
A← activity constraints whose conditions involve var
for each (a ∈ A) {

if (value is not consistent with a’s condition)
return true //no effect on var’s activity status

else {
target← target variable of a
action← activity performed by a
if (action includes target) {

if (target has already been excluded)
return false //conflicting activity constraints

if (target is newly included) {
Agenda← Agenda ∪ target
NewV ariables← NewV ariables ∪ target}}

else { // action excludes target
if (target has already been included)

return false //conflicting activity constraints
if (target is newly excluded)

NewV ariables← NewV ariables ∪ target }
UndoAct← UndoAct ∪ a }

}//end of A list
for each (newvar ∈ NewV ariables) {

LocalUndoV alues← ∅
macNewResult←MacNewvar(newvar, LocalUndoV alues)
UndoV als← UndoV als ∪ LocalUndoV alues
if (macNewResult is false)

return false
}//end of NewV ariables list
return true
}//end MacActivity()

newvar is included. Local consistency considers both compatibility
and activity constraints. newvar has to be arc consistent with all the
other active variables with which it shares compatibility constraints.

Algorithm 2 Maintain arc consistency with a newly included or ex-
cluded variable.

boolean MacNewvar(newvar, Agenda, UndoV als) {
if (newvar is newly excluded)

InclTarget← activity constraints that include newvar as target

for each (it ∈ InclTarget, where it : CondV ar = val
incl−→ newvar

and CondV ar is on the Agenda)
if (removeV alue(val, CondV ar, UndoV als) is false)

return false
else // newvar is newly included

C ← compatibility constraints on (newvar, othervar)
with othervar active

for each (c ∈ C)
makeOneAC(c, newvar, othervar, UndoV als)

ExclTarget← activity constraints which exclude target newvar
for each (et ∈ ExclTarget

where et : CondV ar = val
excl−→ newvar

and CondV ar is on the Agenda)
if (removeV alue(val, CondV ar, UndoV als) is false)

return false
SourceAct← activity constraints whose source is newvar
for each (sa ∈ SourceAct, such that

either sa includes an already excluded target
or sa excludes an already included target in the Agenda)

if (removeV alue(condition, newvar, UndoV als) is false)
return false

return MacCompatibility(UndoV alues, Agenda)
}//end MacNewvar()

The included variable status makes possible two roles the variable
might play in activity constraints that have not been processed yet:
as a condition variable or a target variable. As a condition variable,
newvar can participate in either (1) an inclusion activity constraint
that targets an excluded variable, or in (2) an exclusion activity con-
straint that targets an included variable. In either situation, newvar’s
condition value is inconsistent with these activity constraints. As a
target variable, since newvar status is included, it can render incon-

sistent condition values of exclusion activity constraints. Finally, all
value removals saved in the UndoV alues structure are propagated
with MacCompatibility. If the propagation is successful, newvar
is made consistent with the problem variables on both types of con-
straints.

Algorithm 3 CondCSP direct solving.

boolean CondMac(Agenda) {
if (Agenda is empty)

return true
var ← select variable and remove from Agenda
value← select value from domain of var and instantiate var
UndoActivity ← ∅
remove all values from domain of var except value
UndoV als← pairs (var, rv), where rv is var’s removed value
if (MacCompatibility(UndoV als, Agenda) and

MacActivity(var, value, Agenda, UndoV als, UndoActivity))
CondMac(Agenda)

restore all removed values saved in UndoV als
reset variable activity status as saved in UndoActivity
uninstantiate var and put it back into the Agenda
remove value from domain of var
UndoV alues← {(var, value)}
if (domain of var is empty) backtrackSearch← false
else if (not (MacCompatibility(UndoV alues, Agenda)))

backtrackSearch← false
else

backtrackSearch← CondMac(Agenda)
reset variable activity status as saved in UndoActivity
restore all removed values saved in UndoV als
return backtrackSearch
}//end CondMac()

CondMac (Algorithm3) selects a variable var, instantiates it
with a value, removes all the other values from the domain of var,
and saves them in the UndoV alues list. Compatibility constraints
are propagated with MacCompatibility to reestablish arc consis-
tency among var and future variables. Upon successful return of this
methods, MacActivity is called to check activity constraints and
make new variables added to the search space arc consistent with re-
gard to both types of constraints. If no activity constraint fails and
the new variables do not cause wiping off future variable domains,
CondMac is called recursively to find value assignments to the rest
of the problem variables. In case of failure in trying value for var
or searching for the next solution, variable status information and
changes recorded in UndoV alues and UndoActivity have to be
undone. The current instantiation value is marked as tried and re-
moved from the domain of var. If other values are left in var’s do-
main, value removal is propagated first with MacCompatibility
to check whether future variables remain arc consistent with the rest
of values at var. If that is the case, a recursive call to CondMac
continues the search to find all solutions.

3.2 Reformulation Solving: GtMac Algorithm

GtMac processes the next activity constraint with a condition de-
fined on an active variable. The selected activity constraint is used
to split the search space into two branches. The first branch is gen-
erated with the WithCondition method, and contains solutions
that satisfy the activation condition var = val. The corresponding
generated CSP has all currently active variables, the target variable
newvar, and compatibility constraints defined on them. The sec-
ond branch is generated with WithNegCondition and contains so-
lutions that satisfy the negated activation condition ¬(var = val).
The corresponding generated CSP has all currently active variables
and compatibility constraints defined on them. Both search spaces

16

Algorithm 4 GtMac reformulation solving.

GtMac(InclV, InclC, CC, AC) {
ac← activity constraint in AC whose condition on InclV
if ac not found

P0 ← {InclV, InclC}
solve P0

else
remove ac from AC
P1 ←WithCondition(ac, InclV, InclC, CC)
if (P1 �= ∅) GtMac(InclVP1, InclCP1, CC, AC)
P2 ←WithNegCondition(ac, InclV, InclC)
if (P2 �= ∅) GtMac(InclVP2, InclCP2, CC, AC)

}//end GtMac()

WithCondition(ac, InclV, InclC, CC) {
newcon← ac’s condition
newvar ← ac’s target variable
InclV ← InclV ∪ newvar
newconstraints← compatibility constraints on InclV ⊆ CC
InclC ← InclC ∪ newcon ∪ newconstraints
if CheckLocalConsistency(InclV,InclC)

generatedCSP ← {InclV, InclC}
else generatedCSP ← ∅
return generatedCSP
}//WithCondition()

WithNegCondition(ac, InclV, InclC) {
newnegcon← ac’s negated condition
InclC ← InclC ∪ newnegcon
if CheckLocalConsistency(InclV,InclC)

generatedCSP ← {InclV, InclC}
else generatedCSP ← ∅
return generatedCSP
}//WithNegCondition()

are made locally arc consistent with MacCompatibility. If all ac-
tivity constraints are exhausted and the current search space is locally
arc consistent, MacCompatibility is applied to find all solutions.

4 Evaluation

We have analyzed experimentally the relative performance of the two
types of algorithms presented in this paper by using randomly gener-
ated CondCSPs. The random CondCSP generator [11] uses da, den-
sity of activity, the probability of generating a non-initial variable as
a target variable, and sa, satisfiability of activity, the probability of
generating a value in a domain as a condition variable, in addition to
the standard parameters of density and satisfiability of the problem
compatibility constraints.

The test suites we designed generated different problem topolo-
gies with a problem size of number of values per domain dsize = 10
and the number of variables both fixed at n = 10 and varied up
to n = 100. Density and satisfiability of compatibility and activity
were varied. We designed those experiments in order to get prob-
lems of a large enough solution space nevertheless of manageable
size. The main goal of the experimental evaluation is to analyze the
comparative performance of both types of algorithms encoded in the
same C++ framework and run on the same machine (1.7GHz Pen-
tium processor).

The rest of activity parameters were preset for all problem in-
stances as follows. The probability that an activity constraint be of
inclusion activity constraint was set to 0.5. The maximum condi-
tion values per domain maxCondDom, total condition values per
problem, totalCond, and maximum of target variables per condition
value, maxTargetCond, were computed according to the following
formulas: maxCondDom = sa∗dsize, totalCond = sa∗dsize∗n,
and maxTargetCond = n/2.

We designed three test suites for our experiments. We compared
the execution time, in number of seconds, for CondFc, CondMac,

dc30-sc20-da50 dc30-sc30-da50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

sa50 sa60 sa70 sa80

ex
ec

ut
io

n
ti

m
e

(s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sa50 sa60 sa70 sa80

ex
ec

ut
io

n
ti

m
e

(s
)

Gt−MacCond−Fc Cond−Mac Gt−Fc
�
�
�
�

Figure 3. Execution times (seconds) for variable satisfiability,
sc ∈ {0.2, 0.3, 0.4} and sa in [0.5 . . . 0.8], and fixed density, dc = 0.3 and

da = 0.5.

GtFc and GtMac. In the first test suite (Figure 3, Figure 5), den-
sity parameters were kept constant, dc = 0.3 and da = 0.5,
while satisfiability parameters were varied: sc ∈ [0.2 . . . 0.4], and
sa ∈ [0.5 . . . 0.8] (in increments of 0.1). In the second test suite
(Figure 4), compatibility density was increased to dc = 0.5, and the
variation of the compatibility satisfiability was shifted up into the in-
terval sc ∈ [0.4 . . . 0.7]. The activity parameters were maintained the
same as in the first test suite. In the last test suite, we use one para-
meter setting combination in the first test suite, dc = 0.3, sc = 0.4,
da = 0.5, sa = 0.6, and vary the number of variables, in the interval
n ∈ {10, 20, 30, 40}.

From the first test, we considered the experiments with the highest
satisfiability of compatibility in order to exhibit additional measure-
ments: number of solutions, number of backtracks, as well as number
of condition checks. In the Cond algorithm, number of backtracks
measures the standard number of backtracks during enumeration of
solutions. In the Gt algorithm, the total number of backtracks is com-
posed of the number of backtracks performed while generating the
tree of standard CSPs plus the number of backtracks used while solv-
ing those standard CSPs. The number of condition checks for Cond
is incremented each time an activity constraint is checked for its con-
dition. In Gt, the number of condition checks is incremented when
the condition is reformulated into a compatibility constraint.

We observe the following.

1. All test suites show that time performance of all methods improves
with increasing satisfiability of activity.

2. In all cases CondMac outperforms CondFc, which confirms
what has been reported already [8].

3. GtFc and GtMac relative time performance depends on the size
of the solution space. In general, underconstrained problems are
solved faster with GtFc. The first two suites (Figure 3, Figure 4)
show that GtFc becomes faster than CondMac when the satisfi-
ability of compatibility is increased, and, within the same parame-
ter setting problem class (second graph in Figure 4), GtFc runs
faster with higher satisfiability of activity.

4. In terms of algorithm effort measured by the number of back-
tracks, GtFc and GtMac exhibit the same effort. The number
of condition checks in the Gt algorithm is considerably smaller
than the one for the Cond algorithm.

5. For overconstrained problems (n = 30, n = 40, as shown in
Figure 6), performance improves with increasing number of vari-
ables. Both CondMac and GtMac perform better than their Fc
counterparts.

The following factors contribute to support these observations.

1. The number of solutions decreases with increasing satisfiability of

17

dc50-sc40-da50 dc50-sc50-da50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sa50 sa60 sa70 sa80

ex
ec

ut
io

n
ti

m
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 sa50 sa60 sa70 sa80
ex

ec
ut

io
n

ti
m

e
(s

)

dc50-sc60-da50 dc50-sc70-da50

0

0.5

1

1.5

2

2.5

3

3.5

sa50 sa60 sa70 sa80

ex
ec

ut
io

n
ti

m
e

(s
)

0

1

2

3

4

5

6

7

8

9

sa50 sa60 sa70 sa80

ex
ec

ut
io

n
ti

m
e

(s
)

Gt−MacCond−Fc Cond−Mac Gt−Fc
�
�
�
�

Figure 4. Execution times (seconds) for higher dc = 0.5 and range of
sc ∈ {0.4, 0.5, 0.6, 0.7} (activity parameters unchanged).

dc30-sc40-da50

0

0.5

1

1.5

2

2.5

3

3.5

sa50 sa60 sa70 sa80

ex
ec

ut
io

n
ti

m
e

(s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

sa50 sa60 sa70 sa80

nu
m

be
r

of
 b

ac
kt

ra
ck

s

32938

10737

2214 1971

0

5000

10000

15000

20000

25000

30000

35000

sa50 sa60 sa70 sa80

nu
m

be
r

of
 s

ol
ut

io
ns

11
31 16
40

21
84

25
59

1

10

100

1000

10000

100000

1000000

sa50 sa60 sa70 sa80

co
nd

it
io

n
ch

ec
ks

 (
lo

g
sc

al
e)

Gt−MacCond−Fc Cond−Mac Gt−Fc
�
�
�
�

Figure 5. Execution times (seconds), number of solutions, and effort
counts (number of backtracks and condition checks) for

dc = 0.3, sc = 0.4, da = 0.5 and sa in [0.5 . . . 0.8] range.

activity, which makes problems easier to solve when algorithms
searched for all solutions.

2. CondMac takes advantage of activity constraints and the tension
between inclusion and exclusion activations to prune variable do-
mains. Since the experimental studies use binary CondCSPs, the
activity constraints with unary conditions yield a good pruning ef-
fect.

3. Gt transforms all exclusion constraints into compatibility con-
straints prior to the tree generation. Thus, the advantage of
MacActivity pruning in detecting activation conflicts does not
manifest in Gt. Secondly, it is known that Mac’s performance de-
teriorates with increasing problem density. In the case of Gt, the

compatibility density of the resulting standard CSPs is larger than
the original CondCSP’s compatibility density, since all activity
constraints have been reformulated into compatibility constraints.
Overall, the pruning power of MacCompatibility is overcome
by the implementation overhead which, in the end, does not al-
ways pay off. Consequently, GtFc does more efficient pruning at
a lower effort cost.

4. Execution times and effort shown in the number of backtracks and
condition checks decrease with increasing satisfiability of activity.

5. The better pruning of maintaining arc consistency for both Cond
and Gt pays off while solving overconstrained problems.

dc30-sc40-da50-sa60

15626.05

4395.45

0 0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

v10 v20 v30 v40

nu
m

be
r

of
 s

ol
ut

io
ns

0

0.5

1

1.5

2

2.5

v10 v20 v30 v40

ex
ec

ut
io

n
ti

m
e

(s
)

Figure 6. Execution times (seconds) for variable number of variables,
vars ∈ {10, 20, 30, 40} for problem populations with dc = 0.3, sc = 0.4,

da = 0.5, sa = 0.6.

5 Conclusion

In this paper, we have introduced a CondCSP solver that includes two
algorithms for solving CondCSP. We have used random CondCSPs
and designed test suites for varying problem topologies. Our evalu-
ation analysis shows that there is not one winner, but that reformu-
lation solving, Gt, in conjunction with forward checking performs
better on large problems with larger solution spaces in the tens of
thousands than the direct solving methods. Direct solving with main-
taining arc consistency is more efficient on larger, overconstrained
problems. Therefore, we suggest that a combination of both algo-
rithms could improve efficiency further. In addition, a more system-
atic study with an extensive coverage of problem topologies should
be conducted in the future.

REFERENCES
[1] Minh Binh Do and Subbarao Kambhampati, ‘Solving planning-graph

by compiling it into CSP’, in Artificial Intelligence Planning Systems,
pp. 82–91, (2000).

[2] E. Gelle and B. Faltings, ‘Solving mixed and conditional constraint sat-
isfaction problems’, in Constraints, 8(2):107–141, 2003., (2003).

[3] E. Gelle and M. Sabin, ‘Solving methods for conditional constraint sat-
isfaction’, in In Papers from the 2003 IJCAI Workshop on Configura-
tion, (2003).

[4] Esther Gelle, On the generation of locally consistent solution spaces,
Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland,
1998.

[5] Felix Geller and Michael Veksler, ‘Assumption-based pruning in con-
ditional csp’, in Principles and Practice of Constraint Programming,
(2005).

[6] I. Miguel, P. Jarvis, and Q. Shen, ‘Flexible graphplan’, in Proceedings
of the Fourteenth European Conference on Artificial Intelligence, pp.
506–510, (2000).

[7] S. Mittal and B. Falkenhainer, ‘Dynamic constraint satisfaction prob-
lems’, in Proceedings of the 8th National Conference on Artificial In-
telligence, pp. 25–32. The MIT Press, (1990).

[8] M. Sabin, Towards Improving Solving of Conditional Constraint Sat-
isfaction Problems, Ph.D. dissertation, University of New Hampshire,
Durham, NH, U.S.A., 2003.

18

[9] M. Sabin and E.C. Freuder, ‘Detecting and resolving inconsistency and
redundancy in conditional constraint satisfaction problems’, in CP’98
Workshop on Constraint Problem Reformulation, Pisa, Italy, (October
1998).

[10] Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace, ‘Greater ef-
ficiency for conditional constraint satisfaction’, in Principles and Prac-
tice of Constraint Programming, pp. 649–663, (2003).

[11] R.J. Wallace, Random CSP Generator, Constraint Computation Center,
University of New Hampshire, Durham, NH, U.S.A., 1996.

19

Configuring from Observed Parts
Lothar Hotz 1

Abstract. This paper presents a conceptual framework that allows
the configuration of aggregates using existing parts observed in re-
ality. Typical problems that can be solved with such an approach
are recognition problems that construct aggregates from given ob-
servations. One instance of the conceptual framework is given by the
system SCENIC, which allows the interpretation of video scenarios
showing table-laying scenes.

1 Introduction

Configuration is the construction of aggregates using partsof a cer-
tain domain. In a typical configuration schema, starting from a given
goal object that represents the aggregate to be configured, this ag-
gregate is decomposed in its parts step by step. Thus, a goal-driven,
top-down approach is typically used for constructing a configura-
tion. Furthermore, the parts that should be in the aggregateare previ-
ously described in a configuration model. This configurationmodel
describes implicitly all configurations that can be constructed. Typ-
ically a knowledge acquisition process creates that configuration
model. A knowledge engineer acquires existing components to be
configured and formalizes them in the configuration model. Ina sec-
ond step, the configuration process uses the configuration model for
configuring new products. During this configuration processthe con-
figuration model is seen as fixed. If parts exist, that should be inte-
grated into the aggregate, they are defined in a task specification on
the basis of the configuration model before the configurationprocess
starts. No further existing parts are considered, beside those. Thus,
during the configuration process the real existing parts areonly con-
sidered indirectly through the configuration model. The configura-
tion process relays on the fact that the real world is in the state as
it was during knowledge acquisition. If new parts are created in the
real world during the configuration process, those components are
not taken into account. Only if the configuration model is updated
(e.g. by a third step - an evolution step), those new parts could be
taken into account. Summarizing, we speak of a three-step approach
— knowledge acquisition, configuration process, evolutionprocess.
The relationship between the configuration model and the real world
is only established during knowledge acquisition, the taskspecifica-
tion and probably an evolution process, but not during the configura-
tion process. An example of such an approach is given in [6].

In the standard configuration schema, as often in knowledge-based
systems, a gap exists between the real world and the configuration
model. However, this schema is suitable for non dynamic, technical
domains, e.g. hardware configuration [8, 2, 7, 11, 9]. For situations
with a number of changes (e.g. software configuration) or even dy-
namic situations (e.g. interpretation of video scenes) this three-step

1 HITeC e.V., University of Hamburg, Germany, email: hotz@informatik.uni-
hamburg.de

approach can be improved by taking into account the parts that can
be observed during the configuration process.

In this paper, we discuss theconfigure-from-observed-partsprob-
lem, orCofOP-Problemfor short. This problem focuses on configu-
rations that can be derived from real existing and observed parts at a
first place. Only in a second step requirements are included to com-
pute the desired configurations. In this case, it can be ensured that the
resulting configuration has really counterparts in the realworld.

In Section 2, we have a closer look at the CofEP-Problem. Section
3 focuses on structural configuration as a starting point. Asthe core
of the paper, we present a conceptual framework (see Section4), a
general system (see Section 5) as well as a concrete instanceof such a
system, a system for interpreting video scenes (Section 6).The paper
concludes with a discussion (Section 7) and an outlook in Section 8.

2 Problem Description

Theconfigure-from-observed-parts(CofOP-Problem) can simply be
rephrased with following questions:

1. Given a number of parts, what aggregates can be built with these
parts? What can we do with the things that exist?

2. Now, we have a partial aggregate made from existing parts,what
is missing to make this aggregate to fulfill given requirements?

3. What role do aggregates play in finding a final configuration?
What customer requirements can be fulfilled with the aggregates
that are constructed?

In the CofOP-Problem we do not start the configuration from re-
quirements and than try to infer needed parts, but we start from the
things that exist and infer the use of the constructed aggregates.

Typical application examples are those where it is not clearin the
beginning what should be configured, or what the aggregate will look
like. In these cases, goal objects can not be given, but only the parts,
which should form the aggregate to be constructed. Thus, a more ex-
plorative task has to be performed for handling the CofOP-Problem.
Examples are:

• Systems that interpret images; existing parts in this case are shapes
or objects an image processing system can identify in the images.

• Systems that interpret videos; existing parts in this case might be
tracked objects that can be identified by a tracker (e.g. SCENIC
see Section 6).

• Systems that build software; existing parts in this case aresoftware
components provided by an asset store or software configuration
management system.

An extension of the CofOP-Problem is given with the question:

4. What happens if a new part is observed during the configuration
process?

20

In this case, not only previously given parts are consideredin the
configuration but parts that are dynamically created. Examples are
parts that are created in a development process or dynamic situations
of a video film, which should be interpreted.

3 A Structural Configuration System

A typical structural configuration system designed to support the
configuration of aggregates based on component descriptions in a
knowledge-base is organized in four separate modules:

Concept Hierarchy Conceptsare described using a highly expres-
sive concept description language, and embedded in a taxonom-
ical hierarchy (based on theis-a relation) and a compositional
hierarchy (based on the structural relationhas-parts). Parame-
ters specify concept properties with value ranges or sets ofvalues.
Instancesselected for a concrete configuration are instantiations
of these concepts.

Constraints Constraintspertaining to properties of more than one
object are administered by a constraint net. Conceptual constraints
are formulated as part of the conceptual knowledge base and
instantiated as the corresponding objects are instantiated. Con-
straints are multi-directional, i.e. propagated regardless of the or-
der in which constraint variables are instantiated. At any given
time, the remaining possible values of a constraint variable are
given as ranges or value sets.

Task Description A configuration task is specified in terms of an
aggregate which must be configured (the goal) and possibly addi-
tional restrictions such as choices of parts, prescribed properties,
etc. Typically, the goal is the root node of the compositional hier-
archy.

Procedural Knowledge Configuration strategies can be specified
in a declarative manner. For example, it is possible to prescribe
phases of bottom-up or top-down processing conditioned on cer-
tain features of the evolving configuration.

A stepwise configuration could be executed by the configuration sys-
tem according to the following basic algorithm:

Task specification
Repeat

Determine current strategy
Determine possible configuration steps
Select from agenda and execute one of

{ aggregate instantiation,
aggregate expansion,
instance specialization,
parameterization,
instance merging }

Propagate constraints
Check for conflict

An aggregate is completely configured if all properties of the ag-
gregate have been parameterized, all its required parts have been
completely configured, and all constraints are satisfied. A conflict
is encountered when the constraint net cannot be satisfied with the
current partial configuration. In this case, automatic backtracking
occurs. Backtracking can be controlled by procedural knowledge to
achieve ”intelligent backtracking”. An example of such a system is
KONWERK [1, 3]. For a more general ontology for configuration
see [10]; for an overview of standard approaches see [4, 13].

4 Conceptual Framework

The CofOP-Problem requires a distinction of the following aspects2:

The reality (Realität) are things in the outside, materialized world.
In our case, the real existing parts that can be used for configuring
span the reality.

Substantiality (Wirklichkeit) covers everything the system knows
about the reality. From the view point of the system the substan-
tiality constitutes the real world. The substantiality is divided into
the outer and inner substantiality.

Evidence space (the outer substantiality, perceived reality)
(Äussere Wirklichkeit) is the representation of the reality in the
system. The real world isreflected. The evidence space represents
the observed parts that can be used in the configuration. Objects
in this space are calledevidence. Evidence is seen as given and
not alterable.

Hallucination space (the inner substantiality) (Innere Wirk-
lichkeit) is the representation of the things that might exist,
i.e. that can be imagined. Objects in this space are calledreal
objectsbecause seen from the system point of view, those objects
constitute the real world, even if they do not exist. Each real
object might have or might not have evidence; it might or might
not be justified in the evidence space, i.e. in the reality. Thus,
real objects can be justified by evidence or can be imagined
(hypothesizedor hallucinated). Real objects that are imagined
(i.e. have no evidence) are calledimagined objectsor hypotheses.
Those real objects that are in fact in the reality (i.e. have evidence)
are calledperceived objects. Imagined and perceived objects
can be distinguished from each other. However, real objects, if
justified or not, can be part of aggregates, thus, can form the
resulting configuration. In the hallucination space new inferences
about the substantiality can be made.

The domain-dependent configuration model(die Bedeutung)
contains the knowledge about a certain domain, typically repre-
sented in a knowledge base, i.e. configuration model. This model
is used to interpret the substantiality and to infer new realobjects.

5 Technical Aspects

In this section, technical issues concerning the realization of a system
that solves the CofOP-Problem are presented.

5.1 Architecture

The general architecture consists of two systems, a low-level sensoric
system and a high-level inference system. The low-level system es-
tablishes the connection to the reality. Examples are:

• an image processing systems which computes shapes or objects of
an image;

• a warehousing system providing a constantly updated, complete
description of all existing parts of a technical system;

• a software asset store or configuration management system pro-
viding existing software components.

The output of the low-level system is mapped to the evidence space
and represented as evidence in the high-level system (see Figure 1).

The high-level inference system is a configuration system, that em-
ploys a certain upper model. This upper model represents theconcep-
tual framework described in Section 4. The upper model consists of:

2 This distinction is inspired by Spitzing’s distinctions made in the photogra-
phy research, see [12].

21

Low-level
sensoric system

Evidence objectReal object

has-evidence, 0..n

evidence-of, 1..1

has-parts, 0..n

Reality

provides

observes

Compositional relation with number restriction

Concept Specialization relation

Domain specific extensions Domain specific extensions

instances of

has-parts, 0..n

Hallucination Space Evidence Space
High-level inference system

Figure 1. General architecture including the upper model representing the
conceptual framework.

• the conceptevidence-object. Its instances represent the
parts that exist in the reality, i.e. its instances form the outer sub-
stantiality. Evidence-objects can have parts, if the low-level sys-
tem is able to observe those, or have no parts, if the low-level sys-
tem can only observe non-structured objects, which is typically
the case.

• the conceptreal-object. Its instances and parts represent all
what is known and what is hallucinated by the system, i.e. itsin-
stances form the inner substantiality.

The conceptsevidence-object andreal-object are re-
lated to each other by the relationevidence-of and its inverse
has-evidence. A real object may have evidence or may have not,
an evidence object should always be related to a real object;both re-
lational aspect are represented with number restrictions.Real objects
with ahas-evidence relation of cardinality0 represent imagined
objects, real objects with ahas-evidence relation of cardinality
greater1 represent perceived objects. Thus, there are no concepts for
imagined or perceived objects, because every real object can be in
both roles for distinct situations.

The relationhas-evidence has following semantics: If an in-
stance of the conceptevidence-object exists, than an appro-
priate instance of the conceptreal-object is created. However,
if an instance of the conceptreal-object existsno instance of
the conceptevidence-object is created, because evidence ob-
jects represent the reality, i.e. only the low-level sensoric system can
trigger the creation of such instances. Thus, they represent imagined
objects as long as no evidence objects are observed by the low-level
system.

Domain dependent configuration models are added to the up-
per model by specializing the conceptsreal-object and
evidence-object. The specializations ofevidence-object
strongly depend on the low-level sensoric system’s facilities and the
data it can deliver, e.g. structured objects or no structured objects,
types of objects or descriptions via properties.

The relationevidence-of establishes a mapping from the ev-
idence space into the hallucination space. This mapping is domain
dependent. The mapping has to be made with the information pro-
vided by the evidence object.

5.2 Operational Aspects

The configuration steps introduced in standard configuration systems
can be used for configuring an aggregate with observed parts (see
Section 3 and [5]). However, following aspects are of major impor-
tants for handling the CofOP-Problem:

Configuration from bottom to top, from parts to aggregates:
Processing integration steps from parts to aggregates is the first

step performed when using observed parts. For example the
configuration of theevidence-of relation for an evidence
object is an integration step.
The bottom-up steps can continue into the hallucination space as
long as unique decisions can be made. Thus, all inferences that
are justified by the reality are drawn. One may think of this phase
as the determination of those things that can be inferred from the
evidences; or the answer to the question “What can be done with
the parts that exist?” (i.e. Question 1. of Section 2).

Top down for generating hypotheses:In this second step a goal-
object can be selected, which represents certain requirements.
Starting from this goal-object the normal configuration process is
performed. For example, a specialization is done by selecting an
appropriate sub concept, which represents a hypothesis made from
top-down. Through decomposition further hypotheses are gener-
ated and integrated in the configuration. One may think of this
phase as an exploration of high-level concepts, which mightbe
responsible for the objects and occurrences observed so far. Fur-
thermore, this phase identifies such parts that are missing for con-
structing a complete configuration. Missing parts are thosereal
objects that do not have evidence, i.e. the imagined objects(Ques-
tion 2. of Section 2).

Use of bottom-up generated objects:If through top-down analy-
sis a required part is identified, it has to be checked, if an appropri-
ate real object already exists in the configuration, becauseit could
have been generated in the bottom-up phase. This operation cre-
ates a configuration that contains both, imagined real-objects and
evidence-based, perceived real-objects (Question 3. of Section 2).

Fuse real objects: If a part is generated from top-down and one
from bottom-up, it could be the case, that those two parts are
in fact the same. In this case only one part should be in the re-
sulting configuration. If these generated parts fulfill a certain fuse
condition, which ensures that they should really be one object,
these parts can be fused. This means, that one real object is cre-
ated, which contains all relations and parameters of the former
two parts. The parameter and relation values of the fused object
are computed by building intersections. This means that real ob-
jects that are related to the former two parts are also considered to
be fused (deep fuse).

Spontaneous instantiation: To handle dynamic aspects a config-
uration step is needed that instantiates an arbitrary concept of
the evidence space. For example, if a new objects enters a video
scene, a new evidence instance should be created. Thus, the low-
level system and the high-level system should be synchronized by
synchronization points or steady polling. When new evidence in-
stances are created at timet, those have to be integrated in the
configuration even if the defined configuration procedure would
focus on another configuration step at timet. Furthermore, back-
tracking has to be initiated, because the inferred conclusions could
be wrong, because the evidence base is changed (Question 4. of
Section 2).

Backtracking to the hypotheses generation:During configura-
tion conflicts might occur as seen above. Because in the described
schema the bottom-up steps are seen as unique inferences from
the evidences, only the top-down hypotheses generation canbe
backtracked. The first hypothesis which was made can be seen
as a backtracking point. While the evidence instances including
their inferences stay in the configuration, all made hypotheses are
withdrawn and the configuration process proceeds with another
hypothesis.

6 SCENIC - an Example Applications
In this section, we shortly present the experimental systemSCENIC
(SCENe Interpretation as Configuration) which utilizes configuration
technology for concrete scene interpretation experiments[5].

22

The SCENIC System was built employing the conceptual frame-
work presented in this paper. The example scenes are taken from
a table-laying scenario: A video camera is installed above atable
and observes a tabletop. Human agents, sometimes acting in paral-
lel, place dishes and other objects onto the table, for example, cover
a dinner-for-two. It is the task of the scene interpretationsystem
to generate high-level interpretations such as ”place-cover” or ”lay-
dinner-table-for-two”. Occurrences of this kind are complex enough
to involve several interesting aspects of high-level sceneinterpreta-
tion such as temporally and spatially constrained multiple-object mo-
tion, a knowledge base with compositional structure, and the need for
mixed bottom-up and top-down interpretation steps.

According to the conceptual framework we introduced above,
SCENIC consists of a low-level system, in this case an image pro-
cessing system. Via a video camera and a tracking system the low-
level system observes the table. A so calledgeometric scene descrip-
tion (GSD) is generated by the low-level system, which represents
the objects and their properties seen in the video film. The high-level
system consists of KONWERK and a configuration model contain-
ing the presented upper model and a domain specific model for table-
laying scenarios (see Figure 2). KONWERK performs the symbolic
interpretation subtask in SCENIC.

Domain-Object

Real object Evidence object

Physical-Object

has-evidence, 0..n

View

Static-View

Motion-View

Specialization

Stationary-Object

Moving-Object

has-evidence, 0..n

has-evidence, 0..n

has-evidence, 0..n

Decomposition

has-move, 0..1

has-stationary, 0..1 has-statics, 0..1

has-motions, 0..1

Figure 2. An extract of the domain specific specialization of the upper
model presented in Figure 1.

From the GSD evidence objects are created during configuration.
The GSD contains the observed objects as well as their motionin
time and space. The bottom-up strategy integrates the evidence ob-
jects into real objects and those into aggregates of the hallucination
space. For example, in SCENIC transports (like a hand-platetrans-
port) are identified during this phase. When the bottom-up strategy
is exhausted, top-down expansion begins. In SCENIC a hypothe-
sis about a possible table-scene is generated as an aggregate, e.g.
dinner-for-two. This aggregate is decomposed and further hy-
potheses are generated. This way hypotheses about a furtherdevelop-
ment of a scene are generated by the typical configuration steps (e.g.
aggregate decomposition see Section 3). During this expansion of
possible occurrences the real objects created by the bottom-up strat-
egy are used if possible. Thus, a configuration orscene interpretation
is constructed, which consists of real objects with evidence and those
without evidence, i.e. imagined and perceived real objects. In Figure
3 perceived objects are in realistic shape, imagined objects with pos-
sible positions are shown with icons.

A fuse operation in SCENIC occurs, when the low-level system
cannot provide distinct information about an object. For example, a
certain object can only be identified as adish, not as acup (e.g. the
cup on the right in Figure 3 cannot clearly separated from thesaucer
underneath). From top-down it is inferred that this object has to be a
cup, because the hypotheses generation determines that at this certain
position of a cover only a cup can exist. At this point a real-object

Figure 3. Result of a scene interpretation: realistic shape for evidence
objects, hypothesized objects including their possible spatial regions are

represented with icons and rectangles.

is created from top-down, representing a hypothesized cup,and a
real-object is created from bottom-up, representing a dish. Those two
real objects can be fused, if a fuse condition (like positionand time
overlap) is satisfied. This fusion represents the insight ofthe system,
that the previously not identifiable dish is in fact a cup, given certain
hypotheses. This possibility to disambiguate low-level sensoric input
through high-level inferences is unique to this approach.

SCENIC was used to interpret video scenes consisting of about
300 frames. During this sequence 28 evidence objects (including
those evidence objects representing motions) are processed, 81 imag-
ined real-objects are created for the hypothesisdinner for two(again
including those representing motions). For keeping track of spatial
and time relations 130 constraints are created during configuration.
51 interpretation steps were needed to obtain the first intermediate
scene interpretation (see Figure 3), using 90 sec of CPU time(1.8
GHz PC). Backtracking and additional 8 interpretation steps were
needed to arrive at an alternative intermediate interpretation for the
hypothesissingle dinnerusing additional 45 sec of CPU time.

The configuration model consists of 50 types of real objects and
34 conceptual space and time constraints. The operational aspects
presented in Section 5.2 are covered by 8 strategies.

7 Discussion
Data-driven approaches may take existing parts into account, if
they refer to them during the configuration process. Data-driven ap-
proaches perform bottom-up construction of aggregates from their
parts. If those parts are identified during the configurationprocess, a
similar scenario as described in this paper has to be handled. How-
ever, the conceptual framework presented in this paper clearly sepa-
rates hypotheses and evidences. Thus, following four situations can
be distinguished:

1. Hypothesis, which is supported by an evidence, i.e. the relation
has-evidence is established (perceived object).

2. Hypothesis, for which no evidence is yet found. This is due, when
the real object has no relation to an evidence object (imagined
object).

3. Evidence, which is already interpreted, i.e. the relation
evidence-of is established (accepted evidence).

4. Evidence, for which it is not yet decided how the evidence should
be interpreted. This is due, when the evidence has no relation to
an imagined object (not accepted evidence).

For data-driven approaches employing a schema, where evidences
are instances of concepts, case 2 cannot be represented and be used

23

for reasoning, because no distinguishable instances for evidence ob-
jects and hypotheses exist.

A further opportunity to use the presented conceptual framework
is its ability to support the evolution process, e.g. in software config-
uration. To handle the question: What happens if a new observed part
comes into play during the configuration process that has no mapping
into the hallucination space? This would indicate evidencefor some-
thing which is still unknown for the system (not accepted evidence).
However, because the evidence-object is generic each new developed
part (e.g. a software component) can be represented by an instance of
evidence-object and thus can be consideredduring the config-
uration process. If such a part cannot be mapped to a real object the
configuration system would raise a conflict. Thus, this conflict could
be handled by evolving the configuration model according to the new
developed part [6].

8 Summary and Outlook

The configuration from observed parts is a problem in the areaof
recognition or interpretation of images and videos. But also in techni-
cal configuration like elevators or software-intensive systems a repre-
sentation of observed parts, which should be used for configuration,
is of importance. In this paper, we present a conceptual framework
that explicitly represents observed parts and distinguishes them from
other parts, without an existing representative in the reality.

An example for an instance of the conceptual framework is given
by the system SCENIC, which interprets video films about table-
laying scenes. In an upcoming system, which will be used for inter-
preting images of buildings, photographed from the front orfrom a
satellite, we will also apply the described framework. The goal here is
to identify regions in buildings like windows, doors, roofs, chimneys
as well as aggregates like row of houses or roofs. Similar to SCENIC
from a low-level system geometric scene descriptions are provided,
which are interpreted with the high-level configuration system. The
imagined real objects will be used to give feedback to the low-level
system; for example, to focus on a certain part of the image for iden-
tifying a certain detail of a building.

ACKNOWLEDGEMENTS

This research has been supported by the European Community under
the grant IST 027113, eTRIMS - eTraining for Interpreting Images
of Man-Made Scenes.

REFERENCES

[1] A. Günter,Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
[2] A. Günter and R. Cunis, ‘Flexible Control in Expert Systems for Con-

struction Tasks’,Journal Applied Intelligence, 2(4), 369–385, (1992).
[3] A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Config-

uration Tool’,Configuration Papers from the AAAI Workshop, 10–19,
(July 19 1999).

[4] A. Günter and C. Kühn, ‘Knowledge-based Configuration- Survey and
Future Directions’, inXPS-99: Knowledge Based Systems, Proceed-
ings 5th Biannual German Conference on Knowledge Based Systems,
ed., F. Puppe, Springer Lecture Notes in Artificial Intelligence 1570,
Würzburg, (March 3-5 1999).

[5] L. Hotz and B. Neumann, ‘SCENIC Interpretation as a Configuration
Task’, Technical Report B-262-05, Fachbereich Informatik, University
of Hamburg, (March 2005).

[6] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis,
and J. MacGregor,Configuration of Industrial Product Families - The
ConIPF Methodology, Aka Verlag, Berlin, 2005.

[7] S. Marcus, J. Stout, and J. McDermott, ‘VT: An Expert Elevator De-
signer that uses Knowledge-based Backtracking’,AI Magazine, 95–
112, (1988).

[8] J. McDermott, ‘R1: A Rule-based Configurer of Computer Systems’,
Artificial Intelligence Journal, 19, 39–88, (1982).

[9] K.C. Ranze, T. Scholz, T. Wagner, A. Günter, O. Herzog, O. Holl-
mann, C. Schlieder, and V. Arlt, ‘A Structure-based Configuration Tool:
Drive Solution Designer DSD’,14. Conf. Innovative Applications of AI,
(2002).

[10] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a Gen-
eral Ontology of Configuration’,Artificial Intelligence for Engineering
Design, Analysis and Manufacturing (1998), 12, 357–372, (1998).

[11] E. Soloway and al., ‘Assessing the Maintainabiliy of XCON-in-RIME:
Coping with the Problem of very large Rule-bases’, inProc. of AAAI-
87, pp. 824–829, Seattle, Washington, USA, (July 13-17 1987).

[12] G. Spitzing,Foto Psychologie, Beltz, Weinheim, Basel, 1985.
[13] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI

Communications, 10(2), 111–126, (1997).

24

Configuration of Contract Based Services
Juha Tiihonen1, Mikko Heiskala2, Kaija-Stiina Paloheimo2, and Andreas Anderson1

1 Helsinki University of Technology, Software Business and Engineering

Institute, P.O.B. 9210, FI-02015 HUT
2 Helsinki University of Technology, Laboratory of Work Psychology and

Leadership, P.O.B. 5500, FI-02015 HUT
1&2 firstname.lastname@tkk.fi

Abstract. Satisfying needs of individual customers by mass-
customizing services has been proposed. Although configuration,
i.e. specifying a product individual as a combination of pre-defined
components, is an important way of achieving mass-customization
to industrial goods producers, there is relatively little literature on
the applicability of the configuration paradigm to services. In this
paper we take a step towards understanding if services could be
managed as configurable products. The ideas presented in this paper
originate both from existing literature and from our co-operation
with four companies that participate in our 3-year research project
on configurable services and IT support for service configuration.
We show that at least in some contract-based service industries
configurable services exist and are used for doing business, and we
characterize the services, related processes and special requirements
on configurators.

1 INTRODUCTION

Configurable products are one way to achieve the benefits of mass-
customization. The design of a configurable product specifies a set
of pre-designed elements and rules on how these can be combined
in a routine manner without creative design into valid product indi-
viduals that meet the requirements of particular customers [1,2].

Services are products with a significant service dimension e.g.
[3,4]. Research on configurable services, and development of con-
figurators [5] particularly suitable for these, is relatively limited [6,
7,8,9,10,11,12,13,14,15,16]. It is not known if the special character-
istics often attributed to services i.e. intangibility, perishability,
simultaneity of production and consumption, and heterogeneity [17]
hinder the development and deployment of configurable services.

1.1 Practical Motivation

Services are often adapted according to properties of the customer,
other stakeholders or related equipment. “One size does not fit all”.
On the other hand, it is not realistic to fully customize for all cus-
tomers. For example, fully customized insurance terms for each
customer would call for uneconomical resources of insurance
mathematicians, lawyers, etc. Similarly, high-volume telecommuni-
cations services such as business-to-consumer (B2C) mobile and
broadband subscriptions cannot be individually modified for each
customer as they must be deliverable through automatic platforms.
Therefore a mass-customization approach is often desirable.

Companies today outsource ever more diverse functions but
don’t want to spend time and effort in the process. Often full cus-
tomization is optimal from the customer needs satisfaction point of
view. But even customers may perceive fully customized solutions
expensive and sub optimally accessible, potentially inconsistent and

poorly documented. Further, the time and effort sacrifice in specifi-
cation may be too much. For these reasons, mass customization may
be a lucrative option for customers.

A theoretically promising means to achieve the benefits of mass-
customization, service configuration, also has practical relevance
and potentially wide applications in a number of industrial contexts.
Contract based services are an interesting area to study this phe-
nomenon, as opportunity to elicit customer requirements [18] and
observe customer behavior may be better in a contractual customer
relationship than in a one-off transaction.

1.2 Goals, Research Questions and Method

Many configurator vendors claim support for configuring services
[19], yet few examples of configurable services have been docu-
mented in scientific literature. Our long-term goal is to allow cost-
effective, semi-automatic or even automatic mass-customization
and individualization of services through the web by modeling and
managing them as configurable service product families. In this
study our research questions are:
(1) Can services be modeled and managed as configurable

products?
(2) What can be varied in configurable services?
(3) What processes are related to configurable services?
(4) Do configurable services pose any special requirements on

configurators?
In this work we concentrate on services that are performed on the

basis of a contract. We considered such services to potentially bene-
fit most of the application of the configuration paradigm and con-
figurator support.

We used qualitative case studies as our method, the four case
companies are service providers participating in our 3-year research
project on configurable services and their IT support. We have
conducted empirical studies through participant observation and
open semi-structured interviews in the companies. Further, we
experimented modeling some of their service offerings using a
configurator designed for physical goods.

Two cases are services offered by manufacturers of configurable
equipment: industrial process equipment maintenance services, and
information services of configurable heavy industrial equipment,
both in business-to-business (B2B) setting. The third case involves
insurance and other financial services, and the fourth case telecom-
munications services, both representing B2C offerings. The cases
have some special service characteristics: The equipment related
cases involve a significant goods dimension. The financial service
company has a near maximal service dimension in their products.
The telecommunications case has automated service delivery.

25

2 CONFIGURABLE SERVICES
In this section we first discuss the general structure of our case
services, relate that to research question (1), and proceed to consider
what is varied to answer the research question (2).

2.1 General Structure of Configurable Service
Products

In the following we describe how the services of our cases can be
conceptualized - there is a strong analogy to configuration of physi-
cal products, and we studied if the same ideas apply.

With physical products the execution of a configuration process
produces a specification of a product individual that specifies a
number of components (individuals), their compositional structure,
parameter (attribute) value assignments and possibly connections
between the individuals, see e.g. [20].

In contract based services we were able to identify service ele-
ments that corresponded to components. Some service elements
were parametric (configurable) and compositional structure could
be identified. However, the compositional structure was simple and
shallow in our case products. In the compositional structure (at
configuration model level), optional service elements that can be
included or left out were common and alternative service elements
that are mutually exclusive were encountered. For example, the
broadband connections have optionally available SMS-sending via
Internet, and increased space for e-mail. An example of alternative
service elements in broadband subscriptions is security, the cus-
tomer can select no security or one of 3 alternatives: virus scanner,
virus scanner + firewall, or virus scanner, firewall and spam + con-
tent filter. An example of a configurable parameter in the mainte-
nance case is a guaranteed response time in case of a breakdown. It
can be selected from 2, 4 or 8 hours. In maintenance services, as-
sisting work-force for official inspections arranged by service pro-
vider is an optional service element.

The case services formed “service product families” where the
individual members were similar but different in some respects. The
general compositional structure was almost identical and same
parameters applied to (most) members of the family. A specific
service element can be always included, available optionally or as
an alternative, or not available at all in some products or service
elements. Each service product family contains major fixed service
elements, typically the core service and some bundled additional
service elements. For example, in our case ISP service products for
consumers, speed and connection technology determines a product
in the offering, e.g. 512kbit/s ADSL is considered one product and
1 Mbit/s / 256 kbit/s Cable broadband is another product. E-mail, a
dictionary, an encyclopedia, internet- news, and IRC services are
included in all the products. Often more expensive service products
include additional bundled service elements available for additional
price or not available at all in lower-end service products. For ex-
ample, a fast broadband connection includes free access to an elec-
tronic phonebook that is not available in the slowest (and cheapest)
connections. Similarly, applicable parameters and parameter do-
mains can change by product or service element. E.g., the availabil-
ity of response times depends on the selected service product – the
fastest response times are available only with the more comprehen-
sive maintenance contracts, and the minimum availability of main-
tained equipment is not specified in a basic maintenance contract.

The case products have few requires- or incompatible-
relationships between service elements or characteristics. Relation-
ships of products, service elements or characteristics to customer
and/or equipment characteristics are common. For example, avail-

ability or pricing of some characteristic value may depend on the
related customer. We did not encounter any need for resource-
constraint-type of modeling. Need for connections or topological
modeling was identified only in the sense that allocation of some
responsibilities to different stakeholders could be modeled as con-
nections to objects representing appropriate stakeholders. As these
stakeholders can be present in several roles, one way to model them
only once but in multiple roles could be through connections.

The above characteristics lead as to conclude that the described
case service offerings can be considered configurable.

2.2 Variation in Configurable Service Products

Based on our cases, service products can be varied on a broad spec-
trum of issues within a predefined envelope of variety. Following
the characterizations of Dumas et al. [21], we look at variation
through the classical W’s, including what, when, who, where, how,
by whom, and why. A service element or parameter in a service can
relate to several of these views. For example, a broadband connec-
tion must always be installed. Therefore selecting if a turnkey in-
stallation is performed affects both the what-view (the scope of
service), and the who-view (who performs the installation).

2.2.1 What-variation

Often what-variation relates to the scope of the service: are some
optional elements included or which of alternative scopes is se-
lected. Some examples were given above. Further, insurance poli-
cies may vary on what is covered, against what risks, and on
maximum coverage.

The what-view may also relate to pricing: what is included in the
periodical fee, and what is charged on by-use basis. For example,
maintenance contracts have a number of alternative amounts of
repair work covered by a periodical fee.

2.2.2 When-variation

When-variation relates to the temporal aspects of a service or some
of its elements. Such aspects include availability, pricing or re-
sponse performance. For example, in the maintenance cases evening
or weekend repairs can be selected or left out. The temporal aspects
may affect the whole service or some of its elements. For example,
in our maintenance case emergency services are available all the
time, but regular repairs may have more limited temporal coverage.

When-variation can also relate to response-times. For example,
in maintenance services it is possible to specify whether repair
begins within 2, 4 or 8 hours after breakdown.

2.2.3 With what? Who? How?

The human and physical resources used for a service and assign-
ment of responsibilities to different stakeholders offer sources for
variation. Further the way some service elements are delivered may
be varied.

In our broadband case there are two main technologies for core
service delivery – ADSL via telephone network and cable modems
via cable network. These can be seen as configurable method for
service delivery.

In the insurance case there is a budget-oriented car insurance
product where repairs are performed with third-party parts and the
insurance company selects the repair shop. In normal cases original
parts are used and the insurance holder may decide where the repair
is performed.

In our cases, by who-variation was related to the scope of service

26

– the what-view. In other words, some element of the service may
be assigned to the service provider or to the customer.

In our cases, reporting and payment are sources of with-what and
how -variation. In maintenance services it is possible to specify
with what and how stakeholders are informed about major mainte-
nance events. For example, e-mail and/or SMS can be sent to speci-
fied stakeholder(s) when a breakdown has been repaired. Billing
can be configured to be electronic or regular paper-based, and pay-
ment can be regular or direct-debit.

2.2.4 To Whom –variation

The service recipient –be it a human or equipment- is specified
always in our cases. A service product may have relations to a
number of stakeholders that may or may not be explicitly defined.
Actual variation of the service based on the to-whom view is less
obvious in our cases. In some cases the delivery process is affected
- e.g. security regulations may require two service technicians in-
stead of one to perform some tasks if specific properties are present
in the equipment to be maintained. Further, some service elements
or possible values of characteristics are targeted to specific seg-
ments or types of customers. In addition, the availability of some
service elements may depend on properties of the customer and/or
equipment. For example, all-inclusive maintenance contracts are not
available for old equipment, and medical insurance may not be
available to persons above a specific age.

2.2.5 Where –variation

Service delivery location may be a source of variation and have
significant effect on total customer sacrifice. Some training services
of one of our cases can be configured to take place at customer
premises or at service provider’s premises. Large equipment is
maintained on-site, but for smaller equipment a choice may be
offered.

2.2.6 Why –variation

We did not encounter any explicitly why-view related sources of
variation in the configurable service offerings.

2.3 Specific common sources of variation

In this subsection we discuss some sources of variation that may be
present in many different types of configurable service products.
These include pricing models, information and reporting, paying
and billing, ownership and intellectual property rights, service qual-
ity attributes, and loyal customer benefits.

Pricing models for services and products are a complex phe-
nomenon, a related body of literature has been analyzed e.g. by
Miranda [22]. We encountered three basic types of price elements:
one-time, recurring (periodic), and pay-by-use. Initiation price
elements are paid once, typically when the service contract is initi-
ated. For example, telecommunications services often have an ini-
tiation fee. Periodic price elements such as monthly or yearly fees
are common in our cases. Pay-per-use price elements are also
common. For example, mobile phone calls may be charged by use.

Allocation of total service cost to different kinds of price ele-
ments varies significantly. In our case services initiation fees are
relatively insignificant. Allocation to recurring and pay-per-use
elements varies significantly. In minimal mobile subscriptions
without bundled phone calls or other extras the periodic (monthly)
price element is small and basically just covers that mobile services
are available and billable. At the other extreme, periodic payments

in insurance services cover the whole service fees.
In our cases each service product has an associated pricing

scheme that can be fixed or configurable. A pricing scheme may
contain initiation, periodic and pay-per-use elements. Often differ-
ent combinations of periodic and pay-per-use are offered –increased
periodic payments include increased amount of use or offer reduced
pay-per-use rates.

Sometimes a number of configurable service products differ sig-
nificantly only in pricing. For example, a mobile subscription may
have a specific price when calling to the same service operator’s
network, and a different price when calling to other networks.
Another mobile subscription may have a flat rate to all networks.
These different service products can be configured to behave ex-
actly the same way except for pricing.

Information and reporting can offer significant value, or when
performed poorly, increase significantly total customer sacrifice.
Here too, one size does not necessarily fit all. Information and re-
porting on services are thus a potential source of variation. In our
maintenance case, configurable notifications from service events
help the customer-side to be informed on the status, e.g. in case of
equipment breakdown. The scope of information and reports avail-
able to customers via extranet can be configured. Even alarms on
repair costs exceeding a pre-determined value or number of faults
can be provided.

Paying and billing are also sources of variation. To some cus-
tomers of our case companies a configurable number of payments
and due date may offer extra value. Bills may be standard paper-
based or electronic, and payment options may include e.g. direct-
debit in addition to regular payments. Information on what forms
the payments (e.g. more detailed itemization of per-use charges)
may also offer configurable options. Further, some customers value
bills where a number of separate billing targets are billed simulta-
neously and information is grouped as desired.

Ownership and intellectual property rights (IPR) of information
or intangible deliverables can be sources of variation. For example,
who owns databases gathered in remote monitoring of equipment or
detailed maintenance history? Currently these are not configurable
options in our cases, but at least in one company they have required
case-specific negotiations.

Service quality attributes such as performance, dependability, se-
curity and safety can be sources of variation. For example, basic
maintenance contracts do not guarantee availability while higher-
end contracts include increasingly higher guarantees on availability.
In a similar way, some temporal when-aspects such as how fast
repair starts after a breakdown can also be considered quality attrib-
utes. Broadband connection speed directly affects the performance
of the service.

Various loyal customer benefits can be offered. One of our case
companies offers a number of mutually excusive benefit programs.

3 PROCESSES
In this section we discuss the processes related to our case services
to answer our research question (3). Again, we see a strong analogy
to previous findings in configuration of physical goods [1].

3.1 Sales / specification process

Contract based services in our cases have a similar sales phase
(specification phase) as configurable goods where the service along
with it’s price is specified. The configuration task produces a con-
tract and possibly some non-contractual additional information

27

elements.
Based on our mystery shopper experiences and interviews at our

consumer market companies, and to some degree in maintenance
contract sales, current sales processes have several challenges.

Sometimes the sales process tends to be product-centric. The
persons at customer interface may start introducing and selling
individual service products instead of analyzing the actual needs or
requirements of the customer. For example, in a number of cases a
potential customer who had made an appointment for comprehen-
sive analysis of insurance-related needs was met with a clerk who
started selling some specific insurance policy for a specific (assum-
edly) needed coverage.

Service product options considered less important by the person
at customer interface may not be offered at all. For example, mobile
subscriptions include a significant amount of optional value-added
services of which only a small subset were offered.

Consultative mode of selling is felt desirable in at least two of
our case companies. The idea is to find out relevant properties of
the customer and other stakeholders, related equipment and envi-
ronment as well-as needs to be able to recommend a suitable service
solution. It was felt that this could alleviate some problems of prod-
uct centric sales events.

Services for consumers were available through several sales
channels while B2B maintenance and information services were
sold only directly by the service provider. Service pricing to cus-
tomers had little room for bargaining while the maintenance serv-
ices were typically priced case by case. In telecommunications
services and insurance services a contract proceeded automatically
via IT support to delivery process (telecommunications service
provisioning, insurance contract activation).

3.2 Reconfiguration

Managing reconfiguration seems to be more important in contract-
based services than with most industrial goods. Long-term relation-
ships between the supplier and customer are a norm. Often the
service must be adjusted when customer needs, equipment, envi-
ronment or other relevant aspects change.

On the other hand, management of reconfiguration may be easier
in services than in goods, because the primary target of configura-
tion is not a physical product individual. Therefore errors or inaccu-
racies in as-maintained configuration description, and condition of
components are not as relevant. Optimization for maximally using
old components is not necessary. Systematic “genuine” reconfigura-
tion instead of project-based modernization requiring design may be
possible more often. After a company changes its offering, it may
be possible just to mass-update (map) old configurations to corre-
sponding new ones in a way that makes reconfiguration within the
new offering possible. Of course, this is not always the case, e.g. if
the old configuration is not available in the new offering.

For example, in insurance and telecommunications services sys-
tematic reconfiguration is common. Telecommunications customers
subscribe to new additional services or change their subscription
type. Insurance related needs change and insurance policies need to
be updated to reflect these changes.

3.3 Service delivery process

The service elements covered by a service contract may take place
once, in discrete service events or continuously. In our cases service
delivery process based on a single contract usually has repetitive
discrete service events “moments of truth”. These discrete service

events can occur periodically with fixed periods (e.g. official in-
spections), periods determined by the customer and/or service pro-
vider (preventive maintenance based on a device-specific plan), or
on demand (mobile phone calls). Some service elements such as
turnkey installation of a broadband connection are performed only
once. Insurance coverage or an always “open” broadband connec-
tion can be considered as continuous service delivery. Some of our
case services include several types of delivery. For example, a
broadband subscription user may also use value added services in
discrete service events.

As discussed previously, configuration decisions may affect sig-
nificantly the delivery process: e.g. what is done, when something is
done, who manages or decides something, etc. Therefore informa-
tion flows are important – service delivery process must act based
on what was agreed in the specification phase. On the other hand, in
one case we identified some parts of service delivery process that
are not affected by the service configuration and can be performed
without such information.

Service delivery processes of core services in our cases have a
very different nature. In telecommunications, configured services
are made available (provisioned). After provisioning, service deliv-
ery is automatic – the customer can use the service at will using
his/her equipment. Even provisioning is (almost) automatic. Rou-
tine maintenance is performed for the customer without any active
customer participation: the service person often even uses his/her
keys and performs the necessary actions without presence or activi-
ties of the customer. In insurance services, there is no actual service
delivery ”if things go well”. Instead, there is just a promise to man-
age financial consequences of specified harmful events.

As exemplified above in the maintenance and insurance cases,
contrary to traditional service definitions, customer participation
does not always take place. On the other hand, educational services
of the other heavy industrial goods manufacturer and turnkey-
installation of broadband subscriptions include regular customer
participation and simultaneous consumption and production.

 Customer participation and role can be directly or indirectly
configured – a broadband user may perform the installation or par-
ticipate in the turnkey installation process.

3.4 Development process

The development process of services is normally separate from
individual deliveries in our case companies. When introducing new
services, there may be overlap in development and delivery proc-
esses. In at least one company the difficulty of piloting new contract
based services or features was pointed out due to long-term nature
of commitments made.

We have no case experience in these cases on new service devel-
opment. Therefore there is little we can say on how the companies
define the appropriate offering – what variation to offer, and how
they develop capabilities to sell, price and deliver them.

4 APPLICABILITY OF CONFIGURATORS TO
SERVICES

In this section we consider the applicability of configurators to
services to answer our research question (4).

Most of the 30 vendors studied in [19] claim their configurators
support services. Only two vendors describe their modeling con-
cepts and neither introduces any service specific concepts. No mod-
eling examples were found.

We experimented modeling of broadband subscriptions [19],

28

maintenance contracts, mobile subscriptions as well as some insur-
ance policies with WeCoTin Configurator [23] that was designed
for configuring goods. Modeling in WeCoTin is based on typed
objects (components that can have attributes), compositional struc-
ture in a form of generic product structures, and constraints [23].

Modeling of contract-based service offerings as configurable
products was possible without significant challenges. Based on our
experiments and vendor claims we conclude that at least some con-
figurable service offerings can be modeled and configured with
traditional configurators. However, we felt a conceptual mismatch
in modeling because thinking in components did not seem natural
for services. We did not model prices of the offerings. Instead of
one price typical for goods configuration, our telecommunications
case would require at least two – the initiation and periodical fees
need to be kept separate.

According to our previous modeling experiences of physical
products, modeling aspects external to the product itself is not usu-
ally needed. However, in our service cases, the customer or other
stakeholders and/or related equipment, environment, or their prop-
erties must be modeled to verify that some services, service ele-
ments or some values for their characteristics are available or that
they are priced appropriately. Therefore configuring a suitable serv-
ice specification can be challenging. Recommendations, warnings,
and possibly optimization could be useful. We applied the soft
constraint mechanism of WeCoTin to warn when some recommen-
dations are not satisfied. However, we felt that such warnings are
displayed too late – we would have liked to have guidance towards
the good solutions.

Supporting reconfiguration seems to be a business requirement
for configuring some contract-based services. For example, B2C
telecommunications services require such support as volumes are so
high that automated reconfiguration support is a must. We did not
address reconfiguration in our modeling experiments.

In some cases it seems that modeling service delivery processes
and resources in the sales phase would be beneficial and would thus
require appropriate modeling support.

5 PREVIOUS WORK AND DISCUSSION
In this section we first compare our results to previous work and
then briefly discuss some of our findings.

Service configuration based on pre-determined specification op-
tions and/or delivery modules, possibly supported with configura-
tors, has been at least a partial goal in several papers. Of these,
configuration of maintenance services of industrial goods are dis-
cussed in [13,14], configuration of financial services in [10], and
insurance in [12,24], and customization of IT services in [15].
Moreover, the ILOG JConfigurator has been used in financial serv-
ices and insurance configuration [25] and telecommunications serv-
ices have been configured with the CAWICOMS Workbench and
WeCoTin [26,19]. These papers support that services can be man-
aged as configurable products in our case company service do-
mains: financial, insurance, maintenance, and telecommunications
services. Further, travel is a domain of interest in [27,28]. Combin-
ing services from pre-determined modules is suggested for IT con-
sulting services in [11]. Service configuration in general has been
discussed in [9,29] and a configurators intended for both physical
and service products were described in [30,19]. The work of [9] has
been applied in a case bundling energy services with broadband
access [31].

Dimensions of service variation have been discussed by several
authors. Different types and sources of variation in services and
how to manage or limit their consequences in service delivery have

been discussed by Harvey et al. [7] and McLaughlin [32] in service
management literature. Their focus is on the management and struc-
turing of the service delivery system and process whereas our focus
in this work is on defining the dimensions along which configurable
services specifications can vary. The non-functional properties of
services have been discussed in [21,33]. Some identified properties
such as rights to terminate the contract prematurely were not present
in our cases - at least not as configurable characteristics.

The requirements for conceptual modeling of configurable serv-
ices in configurators are discussed in [29, 9]. Both have a high-level
process perspective that is new to configuration conceptualizations.
Further, capturing the relevant customer characteristics is stressed
in [29], a perspective also absent from previous work. In [34] the
mainly goods-based product configuration literature has been re-
viewed for the benefits and challenges related to product configura-
tion and configurators. The paper provides a conceptual analysis of
whether the found issues are relevant in service settings.

Our cases did not offer who-variation on personnel attributes that
deliver the service (e.g. qualifications or skills), or with-what char-
acteristics of physical elements or equipment used in service deliv-
ery (e.g. quality or sophistication of equipment used). This was
considered somewhat surprising as such examples are easy to find
from other industries.

Why-variation was not present in the service specifications. Se-
lecting a suitable specification could benefit from the why view,
e.g. selecting a broadband subscription based on intended use and
existing services can benefit from this. However, obtaining and
understanding real customer needs can be difficult [35].

6 CONCLUSIONS AND FUTURE WORK
In this paper we discussed the phenomenon of configurable services
from the point of view on service and process variability. Configur-
able services are one way to offer mass-customization of services.
Similarly as in physical products, configurable services fill a gap
between fully customized services (e.g. consulting projects and
other professional services) and mass-services (e.g. electricity and
other utilities for consumers or mass-transit).

We looked at some contract-based services where service deliv-
ery takes place on an ongoing basis based on a contract specified as
a combination of pre-designed elements. The offerings of some of
our case companies can be clearly considered as configurable.

Similar processes as in physical products can be identified in
contract-based services. The development process is separate from
sales (specification) and delivery based on such a specification.
There is a separate specification phase where sales configuration
takes place. Service delivery takes place repetitively based on a
specification. Reconfiguration seems more significant but often
easier than with most physical products.

Configuration modeling based on compositional structure, tax-
onomy, attributes and constraints can be used for modeling the
service offering of our cases. Our case services are easy to config-
ure in the sense that there are few strict constraints on the service
itself. However, there are many constrains on what services, service
elements, or service characteristics are available or are suitable for
customers and/or owned equipment (or their characteristics). Ge-
neric product structures can be used in modeling of services. How-
ever, the conceptual match to service elements is not direct.

IT supported consultative selling could potentially offer signifi-
cant benefits to some of our case companies. Adequate IT support
for that must be able to deal with strict constraints, recommenda-
tions, and possibly optimization.

There are many fundamental subjects requiring further work in

29

service settings. When service is configuration a viable business
option? How to decide what variation to offer? Some of the metrics
presented in [35] could provide answers. However, the metrics are
geared towards goods and manufacturing. It should be studied if
customer participation in production, lack of inventories, intangibil-
ity and other service characteristics influence the metrics. How to
develop configurable services? How to modularize them? How
common and severe are service configuration errors in practice?
How configurable services affect the way companies should orga-
nize themselves? How do intangibility, perishability, simultaneity
of production and consumption, and heterogeneity of services [17]
hinder ability develop (and deliver) configurable services? For
example, can the experience or personal interaction be configured
due to potential variation caused by heterogeneity caused by per-
sonal properties of service delivery personnel?

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support from Technology
Development Centre of Finland (Tekes). We thank our case compa-
nies for co-operation, access to information, and financial support.

REFERENCES
[1] J. Tiihonen and T. Soininen, ‘Product Configurators – Information

System Support for Configurable Products’, Tech. Report TKO-B137,
Helsinki U of Technology, Laboratory of Information Processing Sci-
ence, 1997. Also in Richardson, Tom, ed. 1997, “Using Information
Technology During the Sales Visit, Cambridge, UK: Hewson Group

[2] F. Salvador and C. Forza, ‘Configuring products to address the cus-
tomization-responsiveness squeeze: A survey of management issues
and opportunities’, International Journal of Production Economics, 91,
273-291, (2004).

[3] P. Kotler, ‘Marketing Management, 11th edition’, Prentice-Hall, New
Jersey, (2003).

[4] K-S. Paloheimo, I. Miettinen, and S. Brax, Customer Oriented Indus-
trial Services, Report Series – Helsinki University of Technology, BIT
Research Centre, Espoo Finland, (2004).

[5] D. Sabin and R. Weigel, ‘Product Configuration Frameworks – A
Survey’, IEEE Intelligent Systems & Their Applications, 13, 4, 42-49,
(1998)

[6] G. da Silveira, D. Borenstein, and F.S. Fogliatto, ‘Mass customization:
Literature review and research directions’, International Journal of
Production Economics, 72, 1-13, (2001).

[7] J. Harvey, L.A. Lefebvre, and E. Lefebvre, ‘Flexibility and technology
in services: a conceptual model’, International Journal of Operations
& Production Management, 17, 1, 29-45, (1997).

[8] E.A. Papathanassiou, ‘Mass customization: management approaches
and internet opportunities in the financial sector in the UK’, Interna-
tional Journal of Information Management, 24, 387-399, (2004).

[9] H. Akkermans, Z. Baida, J. Gordijn, N. Peña, A. Altuna, and I. Lares-
goiti, ‘Value Webs: Using Ontologies to Bundle Real-World Services’,
IEEE Intelligent Systems, 19, 57-66, (2004).

[10] A. Wimmer, J.I. Mehlau, and T. Klein, ‘Object Oriented Product Meta-
Model for the Financial Services Industry’, Proc. of the 2nd Interdisci-
plinary World Congress on Mass Customization and Personalization
(MCPC’03), Münich, Germany, (2003).

[11] L. Peters, and H. Saidin, ‘IT and the mass customization of services:
the challenge of implementation’, International Journal of Information
Management, 20, 103-119, (2000).

[12] R. Winter, ‘Mass Customization and Beyond – Evolution of Customer
Centricity in Financial Services’. Workshop on Information Systems for
Mass Customization (ISMC2001), Dubai, (2001).

[13] H. Meier, J.J. Schramm, and A. Werding, ‘Development of a stage
model based configurator to generate more customer-specific services
and to support cooperative service networks’, 3rd CIRP Int. Seminar

on Intelligent Computation in Manufacturing Engineering
(ICME2002), Ischia (Naples), Italy, 3-5 July, (2002).

[14] M. Dausch, and C. Hsu ‘Mass-Customize Service Agreements for
Heavy Industrial Equipment’, IEEE Int. Conf. on Systems, Man and
Cybernetics, 5, 4809-4814, (2003).

[15] T. Böhmann, M. Junginger, and H. Krcmar, ‘Modular service architec-
tures: a concept and method for engineering IT services’, Proc. of the
Int. Conf. on System Sciences (HICSS’03), 74-83, (2003).

[16] J. Chen, ‘Improving reliability and speed in service mass customiza-
tion: a case study in Chinese restaurant’, Proc. of Int. Conf. on Services
Systems and Services Management (ICSSSM '05), 2, 828-834, (2005).

[17] V.A Zeithaml, A. Parasuraman, L. Berry. ‘Problems and strategies in
services marketing’, Journal of Marketing, 49. 33-46, (1985).

[18] S. Kujala, User Studies: A Practical Approach to User Involvement for
Gathering User Needs and Requirements, Acta Polytechnica Scandi-
navica, Mathematics and Computing Series No. 116, 2002

[19] A. Anderson, Towards Tool-Supported Configuration of Services.
Master's Thesis, Helsinki University of Technology, Department of
Computer Science and Engineering, 2005.

[20] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, Towards a
General Ontology of Configuration, AI EDAM, 12, 357–372, (1998).

[21] M. Dumas, J. O’Sullivan, M. Heravizadeh, D. Edmond and A.
Hofstede, ‘Towards a semantic framework for service description’,
Proc. of the 9th Int. Conf. on Database Semantics, Hong-Kong, (2001).

[22] B. de Miranda. ‘An Ontological Approach for the Use of Pricing Mod-
els to Sell Services.’ M.Sc. thesis, Department of Information Systems
and Logistics, Free University, Amsterdam, The Netherlands

[23] J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen, ‘A Practical Tool
for Mass-Customising Configurable Products’, Proc. of Int. Conf. on
Engineering Design (ICED’03), Sweden, August 19-21, (2003).

[24] M. Stolze, S. Field, and P. Kleijer, ‘Combining Configuration and
Evaluation Mechanisms to Support the Selection of Modular Insurance
Products’, Proc. of the 8th European Conf. on Information Systems,
(ECIS 2000), Vienna, Austria. July 3-5, (2000).

[25] U. Junker, and D. Mailharro, ‘Preference Programming: Advanced
Problem Solving for Configuration’, AI EDAM, 17, 13-29, (2003).

[26] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, G.
Petrone, R. Schäfer, and M. Zanker, ’A Framework for the Develop-
ment of Personalized, Distributed Web-Based Configuration Systems’,
AI Magazine, 24, 93-108, (2003).

[27] M. Torrens, B. Faltings, and P. Pu, ‘Smart Clients: Constraint Satisfac-
tion as a Paradigm for Scaleable Intelligent Information Systems’, In-
ternational Journal of Constraints, 7, 49-69, (2002).

[28] A. Goy, and D. Magro, ‘STAR: a Smart Tourist Agenda Recom-
mender’, ECAI 2004 Workshop on Configuration, Valencia, Spain,
August 23rd, (2004).

 [29] M. Heiskala, J. Tiihonen, and T. Soininen, ‘A Conceptual Model for
Configurable Services’, IJCAI 2005 Workshop on Configuration, Scot-
land, July 30, (2005).

[30] F. Bergenti, ‘Product and Service Configuration for the Masses’, ECAI
2004 Workshop on Configuration, Spain, August 23rd, (2004).

[31] Z. Baida, J. Gordijn, H. Sæle, A.Z. Morch, and H. Akkermans, ‘Energy
Services: A Case Study in Real-World Service Configuration’, In: A.
Persson & J. Stirna (Eds.). Proc. of 16th Int. Conf. on Advanced In-
formation Systems Engineering (CAiSE 2004), Riga, Latvia, June 7-11,
2004. LNCS, 3084, 36-50. Springer-Verlag, (2004).

[32] C.P. McLaughlin, ‘Why variation reduction is not everything: a new
paradigm for service operations’, International Journal of Service In-
dustry Management, 7, 17-30, (1996).

[33] J. O’Sullivan, D. Edmond and A. Hofstede, ‘What’s in a Service?
Towards Accurate Description of Non-Functional Service Properties’,
Journal of Distributed and Parallel Databases, 12, 117-133, (2002).

[34] M. Heiskala, K-S. Paloheimo, and J. Tiihonen, ‘Mass Customization of
Services: Benefits and Challenges of Configurable Services’, Frontiers
of e-Business Research (FeBR) 2005. Proc. of eBRF, 26.-28.9. 2005,
Tampere, Finland, (2006).

[35] T. Blecker, G. Friedrich, B. Kaluza, N. Abdelkafi, and G. Kreutler,
Information and Management Systems for Product Customization.
New York, USA: Springer, 2005.

30

Evolution of Configuration Models –
a Focus on Correctness

Thorsten Krebs1

Abstract. Structure-based configuration models describe common-
ality and variability as well as restrictions within and between com-
ponents of a product domain. Innovation in the development of prod-
ucts drives the development of new components and adaptation of
existing components. As a consequence of evolution, the configura-
tion model has to evolve in parallel with its referants in the world. A
side effect of using configuration models for describing different and
evolving products in one model is an increasing possibility for errors.
Keeping an overview of the hundreds or thousands of configurable
components and the increasing number of interrelations and restric-
tions for combinations of those is hard, if not impossible, without tool
support. This paper focuses on how to keep a configuration model
correct despite its changes. Change operations implement changes to
the configuration model. After applying changes, syntactical correct-
ness of the configuration model is checked with pre-defined invari-
ants. A three-step process is introduced that consists of compiling
change operations, propagating changes and validating the model af-
ter change propagation.

1 Introduction

Configuration tools are widely used to assemble new products out of
a predefined set of existing components. The product line approach
helps to configure similar but different products that together form
a product family. These product family members are achieved by
different compositions of the product components, with respect to
technical possibilities and given customer requirements. In structure-
based configuration, configuration models are used, which contain a
textual description of the components, their capabilities, properties
and relations to other components. Thus, configuration models de-
scribe commonality and variability as well as restrictions within and
between components of a product domain. With this, all potentially
configurable product family members are implicitly represented.

Reusability is widely identified as a key to improving (software)
development productivity and quality. The reuse of (software) com-
ponents results in fewer developments for a new system and in less
time spent on development [2]. With reuse alone, however, innova-
tion is not considered. New components are developed and existing
components are evolved in order to derive new products. A conse-
quence of evolution is that the configuration model has to be evolved
in parallel with its referants in the world. Only then configuration
tools can use the new knowledge. In such a dynamic environment
the domain knowledge evolves continually [6].

Configuration models are input for configuration tools that offer
automated support for correct and consistent products. In order to

1 LKI, University of Hamburg, Germany, email: krebs@informatik.uni-
hamburg.de

achieve this, configuration models have to be correct and consistent
representations of the product domain. A side effect of continual evo-
lution is an increasing possibility for errors because of the hundreds
or thousands of configurable components in that model and the in-
creasing number of interrelations and restrictions for combinations
of those [19]. It is apparent that tool support can improve the evolu-
tion of configuration models. Modelling environments for creating,
evolving and diagnosing configuration models have been addressed
in recent years, but no one-fits-all solution is available.

This paper sketches the core ideas of a PhD thesis, which fo-
cuses on ensuring correctness of configuration models while apply-
ing changes. This paper describes work in progress and discusses
goals reached so far as well as also future goals.

The remainder of this paper is organized as follows. Section 2
compares similar topics to see if existing ideas for modeling and
reasoning about evolution of configuration models can be valuable.
Section 3 introduces basic notions of evolution such as correctness
of configuration models and change operations that implement the
applicable changes. Section 4 details the application of change oper-
ations and validation of correctness. Section 5 discusses related work
and Section 6 presents relevant topics for future work. Finally, Sec-
tion 7 concludes this paper.

2 Lessons Learned

Looking beyond one’s own nose, there are a number of related topics.
This section takes a look at them to see what can be learned and used
for evolution of structure-based configuration models.

2.1 Ontologies

Ontologies have gained popularity within the knowledge engineer-
ing community. Research in the area of ontology evolution quickens
the pace as the semantic web gains interest. Generally, ontologies
provide a ”shared and common” understanding of a domain and fa-
cilitate ”knowledge sharing and reuse” [5]. An ontology is an explicit
specification of a conceptualization of the objects and other entities
that are assumed to exist in some area of interest and the relationships
that hold among them [7].

The shared and common understanding of an ontology is repre-
sented in a domain-independent vocabulary. Typically, frame-based
languages are used to model ontologies. The central modeling prim-
itives are concepts (known as frames) with properties (known as
slots). Frames provide a context for modeling concepts in a taxon-
omy with slot-value pairs used to specify attributes of the concepts.
Slots are often treated as objects that can be arranged in a hierarchy
themselves.

31

Configuration models use considerably more formalisms to repre-
sent product structures:

• compositional relations build a partonomy in which parts are re-
lated to aggregates,

• a cardinality specifies the amount of potential instances for com-
positional relations,

• there are optional and alternative concept definitions, and
• constraints represent restrictions between concepts and concepts

properties.

Nonetheless, similar representation formalisms are used to rep-
resent objects in a taxonomic hierarchy. Some basic changes, like
adding and deleting concepts or adding, deleting and modifying
properties of concepts exist in both approaches. Hence, research on
ontology evolution is considered to be of interest also for evolution
of configuration models.

2.2 Knowledge Representation
A lot of effort has been put into formalizing configuration models
over the last decades. Alternative formalisms for modeling product
structures exist. This is apparent since a model is a representation: it
imitates, resembles or stands for things that exist in the world [4, 15].
Most representation formalisms have a common basis. A configu-
ration model uniquely identifies the components of a system, their
properties, structure and possible variability. Modeling facilities of
structure-based configuration models are:

Concepts represent products, components and other entities of the
domain. Each concept c ∈ C carries a name which makes it
uniquely identifyable within a domain. A concept may specify an
arbitrary number of attributes. An attribute is a binary tuple that
consists of a uniquely identifyable name within the specialization
relation, and a value. The value of an attribute is restricted to a set
of predefined value domains like integers, floats, strings, intervals
of integers or floats and sets of all three. The set of attributes of a
concept c is denoted with Ac.

Specialization relations relate a concept c1 to its subconcepts c2
and with this form a taxonomic hierarchy (c1, c2) ∈ H. Every
concept has exactly one ancestor and can have an arbitrary number
of descendants. Multiple inheritance is explicitly ruled out with
the definition of a tree structure. The specialization relation is tran-
sitive. Therefore, the superconcept of a superconcept of a concept
c is an indirect superconcept of c. The set of relations in which
concept c is the aggregate is denoted withRc.

Compositional relations relate a part p to its aggregate a and with
this form a partonomy (a, p) ∈ P . Objects are either primitive or
composite, i.e. they reside at the leaves of a component hierarchy
or are the root of a subgraph, respectively. One aggregate can have
multiple parts in compositional relations.

Constraints express interdependencies and restrictions between
concept definitions and their properties such as incompatibilities,
attribute values that depend on other attributes (of other concepts),
and so on. There are local and global constraints L∪G = Γ . Lo-
cal constraints are applied to single attributes, a single concept or
to a relation between two concepts. Global constraints involve a
larger number of concepts and attributes or relations.

Usually, this is a static structure that does not take versioning into
account. It can be represented by a graph whose nodes and edges cor-
respond to concepts and relationships, respectively [3]. For modeling

product families (i.e. modeling a set of products within one model),
this static, non-variable representation is enriched with notions to de-
scribe variability; like optional and alternative definitions.

Evolution of knowledge strutcures that are represented by con-
cepts and relations is a well-understood domain. Usually, evolution is
divided into historical and logical versioning – i.e. a two-dimensional
representation in time and space, respectively. Typically, versions are
characterized as ”descendants of some existing version, if not the first
one, and can serve as an ancestor for multiple versions” [8].

There are numerous problems within the domain of evolution and
versioning. However, this paper focuses on correctness of configu-
ration models and considers versions of models more appropriate.
A change transforms a configuration modelM into a new configu-
ration model M′. A valid change c, in addition, is a function that
transforms a correct configuration model into another correct con-
figuration model c : M 7→ M′. Changed configuration models
are different from each other but still represent the same underly-
ing product domain. They are different versions of the same model.
A version captures a specific point in time. This means that different
versions describe different sets of configurable products – according
to the existing configurable components at that time.

2.3 Configuration Management
Configuration management (CM) systems are concerned with man-
aging the evolution of large and complex systems represented in an
explicit, unambiguous configuration model [23, 24]. CM serves man-
agement support (i.e. controlling changes to products) as well as de-
velopment support (i.e. providing functions which assist developers
in performing coordinated changes to products) [3].

Basic requirements for configuration management are version
control (keeping track of changes to components, supporting parallel
development and enabling branching and merging), build manage-
ment (the process of building components and producing a ”bill-of-
materials”), and process control (a set of policies, including monitor-
ing changes, notification on changes, access control and reporting)
[14].

Typically, CM systems distinguish between the product space and
the version space. The product space consists of the configurable ob-
jects and their relationships, while the version space organizes the
versions of these objects. Versions are organized into a derivation
history [8]. Key features of versioning are the organization of the
version space, the interrelations between product space and version
space, and operations for retrieving existing versions and construct-
ing new ones.

Traditional configuration models capture the versioning in space.
This means they represent all admissible configurations. Evolution,
i.e. versioning in space and time, is typically not supported [11].
Methods from CM can help at this point.

3 Evolution
One of the key benefits of configuration mechanisms is to guaran-
tee consistency and correctness of configured products. To reach this
goal, the configuration model has to be consistent and correct. In
a dynamic environment with continual changes to the configuration
model it is apparent that a major goal of the evolution process is
keeping the model consistent and correct despite its changes.

Consistency means that none of the facts deducible from a config-
uration model contradict one another. Thus, consistency can be con-
sidered as an agreement among the knowledge entities with respect to

32

the semantic of the underlying modeling language [20]. Correctness
of a configuration model is asserted when it is correct with respect to
the underlying modeling language.

Therefore, two levels of analyzing configuration models can be
distinguished: a syntactic and a semantic level. This section deals
with the syntactic analysis of configuration models. As a first step
towards an evolution process that keeps configuration models consis-
tent and correct, the following subsections discuss well-formed (i.e.
syntactically correct) configuration models and introduce invariants
to check the model against.

3.1 Correctness
A configuration model M is well-formed with respect to a set of
syntax invariants I if for all i ∈ I,M satisfies the invariant i(M).

Invariants are conditions that must hold for every configuration
model [1]. Every change applied to a configuration model must main-
tain the correctness defined by the invariants. Three syntax invariants
that are needed to understand the upcoming example are introduced
in the following.

I1 - Specialization Relation Invariant A concept has exactly one
superconcept; if not the root concept.

∀c1 ∈ C \ {root} ∃c2 ∈ C such that (c2, c1) ∈ H
and ∀c3 ∈ C with (c3, c1) ∈ H ⇒ c2 = c3

I2 - Inheritance Invariant The value of every attribute a of a con-
cept c1 that is inherited from c2 has to be a subset of the corre-
sponding value of a′ of c2.

∀c1, c2 ∈ C with (c2, c1) ∈ H,∀a′ ∈ Ac2 ∃a ∈ Ac1
such that name(a) = name(a′) ∧ value(a) ⊆ value(a′)

I3 - Composition Reference Invariant All parts that are refer-
enced in a compositional relation have to be defined as concepts.

∀(a, p) ∈ P ∃c ∈ C such that name(p) = name(c)

Of course, these are just simple examples of invariants. A lot more
invariants need to be defined for guaranteeing well-formed configu-
ration models.

3.2 Example
A PC consists, among others, of a VGA card. Two types of VGA
cards are shown in Figure 1, AGP cards and the new type, PCIe.
Because PCIe is the new type, AGP cards are no longer produced and
should be removed from the configuration model. This is indicated
by the large “X” in place of where the AGP card is in the hierarchy.

Figure 1. Extract of the PC domain. The taxonomic hierarchy of VGA
cards is shown for two types: AGP and PCIe.

The following discussions focus on two issues of this removal. The
first issue is concerned with the 4x AGP and the 8x AGP cards that
are specializations of the AGP card. The second issue is concerned
with the AGP card being a part of a PC.

3.3 Change Operations
Change operations have to be clearly defined. They must compare
and present structural and semantic changes rather than syntactical
changes in text representation. The latter is e.g. common when com-
paring versions of software code. But the same content can be mod-
eled with different syntactical means or simply in different order.
Two configuration models can be the same conceptually, but have
very different text representations [18].

Base operations represent elementary changes that cannot be de-
composed into simpler changes. Base operations are for example
adding or deleting a concept definition, adding and deleting a con-
cept attribute or a compositional relation, etc. This fine granular-
ity of separated changes is not always appropriate. Changes should
also be defined on a higher level that allows semantic interpretation.
Compound operations group base operations into a meaningful unity
[10]. Compound operations are for example modifications to com-
positional relations or constraints, that affect multiple concepts, or
tree-level changes such moving a subtree of concepts or modifying
an attribute value, which affects all descendants as well, due to in-
heritance within the taxonomy.

Grouping base operations to more meaningful compound oper-
ations is reasonable due to the fact that one (compound) opera-
tion is more concise than multiple (base) operations that might be
needed because a change implies action in different places of the
configuration model. This makes the use of compound operations
more suitable for a user interface. And last but not least, they are
needed because elementary changes may lead to incorrect configu-
ration models [22]. In this case, additional change operations should
re-transform the configuration model into a correct state [13].

Figure 2. Definition of the compound operation delete-subtree(apg). The
arrows indicate its composition.

An example for a compound change operation is deleting a
subtree of concept definitions. Figure 2 depicts how this oper-
ation delete-subtree(apg) is composed of deleting concept agp
(delete-concept(agp)) and recursively deleting its descendants
4xagp, 8xagp ∈ C with (agp, 4xagp), (agp, 8xagp) ∈ H
(delete-concept(4xagp) and delete-concept(8xagp)).

Compound operations can be composed of base operations and
possibly other compound operations. The compositions forms a tree
structure in which compound operations have further descendants
and base operations are the leaf nodes, respectively.

Change operations have preconditions. This means that they can
only be applied if certain assertions are satisfied by the configuration
model. Typical preconditions are that some knowledge entity exists
– i.e. it is defined in the configuration model. Deleting a concept c
for example can only be applied if c is modeled: c ∈ C.

33

The application of a change operation also has postconditions on
the model: it changes assertions, introduces or deletes assertions. The
set of assertions that is satisfied by the configuration model can in-
crease or decrease, but definitely changes when an operation is ap-
plied. Adding elements to the configuration model usually increases
the set of assertions while removing elements usually decreases it.
Deleting concept c for example removes the assertion that c is mod-
eled: c /∈ C.

Preconditions and postconditions both are represented by propo-
sitions that describe the content of assertions in a way that they are
either true or false. A proposition p ∈ P can define the existence
(e.g. c ∈ C) or absence (e.g. c /∈ C) of any knowledge entity as
well as specific values for attributes, relations and constraints (e.g.
value(a) = 1).

By organizing base operations in a taxonomy, the inheritance
mechanism can be exploited to specify common properties of the op-
erations in an efficient way. Common and varying properties of base
operations are the preconditions defining their applicability and the
postconditions they have on the configuration model. A taxonomy of
change operations for ontology evolution is for example given in [9].

A change operation is sound if the operation itself is applicable
and all operations it contains are applicable in some order. All sound
changes to manipulate a configuration model can be specified by base
or compound operations. Changes can be applied to a correct version
of the model M, and after all operations are performed, the model
must transform into another correct versionM′ [22].

However, simply concatenating base operations to a compound
operation in a pre-defined manner has some drawbacks:

• There may be a mismatch between the intent of the change and
the way the pre-defined operation is composed.

• Unnecessary changes may be performed if they are applied inde-
pendent from each other.

• The applicability of change operations depends on what is cur-
rently modeled. Therefore, the order in which base operations in-
side a compound operation are applicable can vary.

The first two items have also been identified by [21]. The third
item introduces the fact that the knowledge inside the configuration
model dictates when certain operations are applicable and when they
can not. The following section details the dynamic composition of
base operations into a compound operation.

4 Evolution Process
In the ideal case, a change operation can simply be applied to a con-
figuration model. But two issues make this process a bit more com-
plex. These issues are

1. that change operations are not always applicable – depending on
the model, and

2. the interrelations of concept definitions according to taxonomic
and compositional relations and constraints.

The latter means that a change operation can have unforeseen con-
sequences leading to an incorrect configuration model, which has to
be resolved by additional changes.

One change to the configuration model is implemented with one
change operation. The issues mentioned above show the necessity of
arranging the evolution process in three steps:

Compilation of Complex Change Operations: Complex change
operations are compiled, based on the preconditions and post-
conditions of the corresponding base operations, before this

operation is applied. A particular change may be implemented
with different operations, depending on the configuration model.

Change Propagation: The identified change operations are applied
to the configuration model with respect to their applicability. Spe-
cific combinations of changes and the affected knowledge entities
require an analysis of the model for additional change operations.

Change Validation: After a change to the configuration model has
been propagated, all defined syntax invariants are checked against
the model. When an incorrectness is detected, additional change
operations have to be identified to implement changes resolving
this incorrectness. This means that the previous steps are per-
formed again – leading to an iterative process.

The following three sections detail the compilation of complex
change operations, the change propagation and the change validation,
respectively.

4.1 Compilation of Complex Change Operations
Applying changes to a configuration model modifies its contents and
/ or structure. This is wanted since evolution intends to change the
model. However, some changes can have unforeseen consequences.
These can arise because of constraints and other, change-dependent,
interrelations. Changing concept attributes for example also affects
all descendants – see the inheritance invariant (I2).

Consequences of change operations can be evaluated by analyzing
the configuration model. Additional changes that become necessary
for repairing an incorrect model can be identified based on infor-
mation about the nature of the change and the affected knowledge
entities.

Figure 3. The concept VGA card is deleted. In the left its subconcepts are
kept while in the right they are also deleted.

Deleting the AGP card, for example, is a simple operation
when this concept is a leaf node.2 Because there are descendants
4xagp, 8xagp ∈ C with (agp, 4xagp), (agp, 8xagp) ∈ H, however,
agp cannot be simply deleted. This would violate the specialization
relation invariant (I1). There are two possible resolutions for this in-
correctness: the 4x agp and 8x agp are also deleted (see Figure 3 on
the right), or they are moved to some new parent. Considering the se-
mantics of inheritance, vga, the parent of agp, is the next indirect su-
perconcept and should be used as a new superconcept. This is shown
in Figure 3 on the left. Another violation is that of the composition
reference invariant (I3) because agp is referenced in a compositional
relation (pc, agp) ∈ P . In this case the compositional relation should
also be deleted.

Both violations of invariants and the additional change operations
identified to repair them are given in Table 1.

Note that in general there are two possible changes to repair the
violated composition reference invariant (see Table 1). These are

2 For reasons of simplicity, at this point only dependencies concerning spe-
cialization and compositional relations are discussed, not considering con-
straints.

34

Change Incorrectness Additional Changes
Remove Concept ∃c2 ∈ C such that ∀c1 ∈ C, (c1, c2) /∈ H

add-specialization(c1, c2)
delete-concept(c2)

∃(a, p) ∈ P ∧ ¬∃c ∈ C with name(p) = name(c)
add-concept(c)
delete-composition(a, p)

Table 1. Identifying additional change operations.

adding the corresponding concept and deleting the relation. Both are
meaningful to repair the incorrectness – depending on the nature of
change that led to this incorrectness. Adding the concept that is miss-
ing for the compositional relation, however, is not appropriate in the
case that it has been deleted before due to the fact that this inverts the
intended deletion.

Change operations that are inappropriate for repair can generally
be identified based in their preconditions and postconditions. Delet-
ing a concept c has the precondition c ∈ C and postcondition c /∈ C,
while deleting concept c has the exactly inverse precondition c /∈ C
and postcondition c ∈ C. It is apparent that either of these changes is
not appropriate to repair an incorrectness that occurred because the
other change.

Not every incorrectness can be resolved automatically. Some alter-
native resolutions can seem equally well suited. Figure 3 for example
shows two conceivable scenarios. The descendants of the AGP card
do not have to be deleted; they may be kept for legacy support.

4.2 Change Propagation

The preconditions and postconditions of change operations can be
used to compute a temporal order. For some base operations there
might not be any limitations while further operations can only be
applied after postconditions of others satisfy preconditions of these.

Figure 4. Temporal order of the compound operation delete-subtree(agp).
Time proceeds from left to right. Arrows represent pre- and postconditions.

Dashed lines indicate persistence of propositions, if not negated.

Figure 4 depicts the temporal order of operations inside
delete-subtree(agp). The descendants of agp and the compositional
relation between pc and agp are deleted first (delete-subtree(4xagp),
delete-subtree(8xagp) and delete-composition(pc, agp)). Precon-
ditions for these are their existence – that is 4xagp, 8xagp ∈
C such that (agp, 4xagp), (agp, 8xagp) ∈ H and (pc, agp) ∈ P .
After that, agp itself can be deleted (delete-concept(agp)). Precon-
ditions for this are the existence agp ∈ C and that there are no

descendants d /∈ C such that (agp, d) ∈ H and no compositions
c /∈ C such that (c, agp) ∈ P .

The existence preconditions (agp ∈ C and 4xagp, 8xagp ∈
C such that (agp, 4xagp), (agp, 8xagp) ∈ H) have to be satisfied
before the compound operation can be applied. Therefore, they are
also preconditions of this compound operation. This is different for
the absence preconditions (c /∈ C such that (agp, c) ∈ H and
c /∈ C such that (c, agp) ∈ P): they are postconditions of other
operations inside this compound operation and therefore do not have
to be satisfied beforehand.

Note that in Figure 4 the propositions (pc, agp) /∈ P and c /∈
C such that (a, agp) ∈ P are treated equally because the PC is the
only aggregate that the AGP card is part of. Analogously, the propo-
sitions 4xagp, 8xagp /∈ C and c /∈ C such that (agp, c) ∈ H are also
treated equally.

At least one operation within a sound compound operation must
be applicable! If there are base operations that do not have precon-
ditions or that only have preconditions satisfied by the configuration
model, these can be applied first; in an arbitrary order. After a change
operation has been applied, the assertions represented by the config-
uration model have changed. This means that preconditions for other
base operations may have become satisfied. Therefore, the applica-
bility of all operations has to be verified after each application of an
operation.

The algorithm to compute a temporal order between the base op-
erations B within a sound compound operation o is given in the fol-
lowing. The configuration model is denoted withM.

ALGORITHM: computeTemporalOrder(o)

1. Initialize the set of applicable operations A = ∅.
2. If B = ∅, then return A.
3. For all b ∈ B do:

(a) If the set of preconditions of b is empty (Pb = ∅), then

i. add b to the set of applicable operations (A = A ∪ {b})
ii. remove b (B = B \ {b}).

(b) Else, for all p ∈ Pb, do:

i. If p is not satisfied (M∩ p = ∅), then
• move b to the end of B ({b, b1, . . . , bn} → {b1, . . . , bn, b})
• continue with next b.

ii. Else if p is the last element of Pb, then
• add b to the set of applicable operations (A = A ∪ {b})
• remove b (B = B \ {b}).
• continue with next b.

iii. Else continue with next p.

4. Continue with step (2).

In principle, the set of operations that belong to a compound op-
eration can be split into two sets, according to whether they are ap-
plicable or not. An operation is applicable if all its preconditions are
satisfied, if any, and cannot be applied elsewise. The order in which
applicable operations are applied is not of importance.

4.3 Change Validation
After change propagation has taken place, all invariants defined for
the configuration have to be checked against the model. If no viola-
tion is detected, the configuration model is transformed into a new,

35

correct, state – i.e. into a new version of that model. If a violation of
an invariant is detected, this means that the change has introduced an
incorrectness.

Incorrect configuration models are not viable. There are two pos-
sibilities to cope with this:

1. the configuration model has to be repaired by applying additional
changes, or

2. the intended change has to be undone.

The latter indicates the need to define transaction sets for the the
changes to a configuration model. All changes are accepted in one go
if the new version of the configuration model is correct. If the new
version is not correct and no additional changes are intended, it is
always possible to reclaim the version from before the change.

5 Related Work
There are a few research groups also dedicated to the evolution of
structure-based configuration models and models for product fami-
lies. For example, in [17, 16] the notion of generic objects and the
division of versions into variants and revisions [8] is used for evo-
lution of configuration knowledge. A lot of ideas also come from
previous work, for example [12, 13].

Ontology evolution has gained interest in recent years. This may
have a lot to do with the Semantic Web. In [9] for example there is a
taxonomy of change operations defined for ontology evolution. [20]
focuses on consistency of evolving ontologies and defines invariants
to check consistency of an ontology.

6 Outlook
This paper describes work in progress. This means that some work
still has to be done. Future work includes the following issues:

• Invariants define well-formed configuration models. A list of in-
variants that completely cover all facilities of the modeling lan-
guage is needed in order to guarantee correctness of a model de-
spite its changes.

• Change operations are to be defined in a taxonomy. The charac-
teristics according to which they may be aligned have to be identi-
fied. Possible choices are the types of changes (add, delete, mod-
ify), the knowledge entities they operate on (concept, specializa-
tion relation, compositional relation, constraint) or the precondi-
tions defining their applicability and the postconditions the opera-
tions have on the configuration model.

• Changes applied to a configuration model may potentially violate
invariants. Different types of changes applied to different knowl-
edge entities are conceivable (see Section 4.3). The identification
of appropriate change operations for all cases is still an open issue.
Possible choices of characteristics for this identification are the ar-
guments of an operation, its preconditions and postconditions, or
a semantic interpretation of the nature of the change.

7 Conclusion
This paper addresses potential problems that may arise within con-
tinual evolution of configuration models. It presents an approach to
prevent incorrect configuration models. This approach consists of a
set of invariants to check the syntactical correctness of model, clear
semantics of changes to the configuration model and their implemen-
tation in change operations. A three-step evolution process defines
how to compile compound change operations, propagate changes and
validate the configuration model after change propagation.

REFERENCES
[1] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth, ‘Se-

mantics and implementation of schema evolution in object-oriented
databases’, in Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Data, pp. 311–322. ACM Press, (1987).

[2] Ted J. Biggerstaff and Charles Richter, ‘Reusability framework, assess-
ment, and diretions.’, IEEE Software, 4(2), 41–49, (1987).

[3] Reidar Conradi and Bernhard Westfechtel, ‘Version models for soft-
ware configuration management’, ACM Computing Surveys (CSUR)
archive, 30(2), 232–282, (1998).

[4] Randall Davis, Howard E. Shrobe, and Peter Szolovits, ‘What is a
knowledge representation?’, AI Magazine, 14(1), 17–33, (1993).

[5] Dieter Fensel, Ontologies – A Silver Bullet for Knowledge Management
and Electronic Commerce, Springer Verlag, 2001.

[6] Dieter Fensel, ‘Ontologies: Dynamics networks of meaning’, in Pro-
ceedings of the 1st Semantic web working symposium, (2001).

[7] Thomas R. Gruber, ‘Ontolingua: A mechanism to support portable on-
tologies’, Technical Report KSL 91-66, Version 3.0, Stanford Univer-
sity, Knowledge Systems Laboratory, (1992).

[8] Randy H. Katz, Ellis E. Chang, and Rajiv Bhateja, ‘Version model-
ing concepts for computer-aided design databases’, in Proceedings of
the 1986 ACM SIGMOD International Conference on Management of
Data, pp. 379–386. ACM Press, (1986).

[9] Michel Klein, Change Management for Distributed Ontologies, Ph.D.
dissertation, Vrije Universiteit Amsterdam, 2004.

[10] Michel Klein and Natalya Noy, ‘A component-based framework for on-
tology evolution’, Technical Report IR-504, Department of Computer
Science, Vrije Universiteit Amsterdam, (2003).

[11] Tero Kojo, Tomi Männistö, and Timo Soininen, ‘Towards intelligent
support for managing evolution of configurable software product fam-
ilies’, in Proceedings of 11th International Workshop on Software
Configuration Management (SCM-11), pp. 86–101. Springer Verlag,
(2003).

[12] Thorsten Krebs, Lothar Hotz, Christoph Ranze, and Guido Vehring,
‘Towards evolving configuration models’, in PuK2003 – Papers from
the KI Workshop, pp. 123–134, (2003).

[13] Thorsten Krebs, Katharina Wolter, and Lothar Hotz, ‘Mass customiza-
tion for evolving product families’, in Proceedings of International
Conference on Economic, Technical and Organizational Apects of
Product Configuration Systems, pp. 79–86, (2004).

[14] David B. Leblang and Paul H. Levine, ‘Software configuration man-
agement: Why is it needed and what should it do?’, in Selected papers
from the ICSE SCM-4 and SCM-5 Workshops, on Software Configura-
tion Management, pp. 53–60. Springer-Verlag, (1995).

[15] Mark H. Lee, ‘On models, modelling and the distinctive nature of
model-based reasoning’, AI Communications, 12(3), 127–137, (1999).

[16] Tomi Männistö, A Conceptual Modelling Approach to Product Families
and Their Evolution, Ph.D. dissertation, 2000.

[17] Tomi Männistö, Hannu Peltonen, and Reijo Sulonen, ‘View to product
configuration knowledge modelling and evolution’, in Configuration
– Papers from the 1996 Fall Symposium, pp. 111–118. AAAI Press,
(1996).

[18] Natalya F. Noy, Sandhya Kunnatur, Michel Klein, and Mark A. Musen,
‘Tracking changes during ontology evolution’, 259–273, (2004).

[19] Daniel Sabin and Rainer Weigel, ‘Product configuration frameworks –
a survey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

[20] Ljiljana Stojanovic, Methods and Tools for Ontology Evolution, Ph.D.
dissertation, Universität Karlsruhe, 2004.

[21] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Sto-
janovic, ‘User-driven ontology evolution management’, in Proceed-
ings of the 13th European Conference on Knowledge Engineering and
Knowledge Management, (2002.).

[22] Ljiljana Stojanovic and Boris Motik. Ontology evolution within ontol-
ogy editors, 2002.

[23] W. F. Tichy, ‘Tools for software configuration management’, in Pro-
ceedings of the International Workshop on Software Version and Con-
figuration Control, pp. 1–20. Teubner Verlag, (1988).

[24] David Whitgift, Methods and Tools for Software Configuration Man-
agement, Wiley & Sons Ltd., 1991.

36

Short Papers and
Position Statements

Turning a Configurator into a Bargaining Table
Songlin Chen and Mitchell Tseng 1

Abstract. Customers are often unable to precisely articulate their
requirements a priori. Hence requirements are negotiable and should
be negotiated effectively during product configuration. This paper
views product configuration as a process of negotiation and presents
a framework, problem formulation, and problem solving procedure.
The motivation is to integrate the functionalities of a configurator
with a Negotiation Support System.

1 INTRODUCTION
Product configurators have been widely used for quotation making
by companies that offer custom made products like industrial ma-
chinery, commercial refrigeration systems, etc. Significant reduction
in quotation time and cost, improvement in quotation accuracy and
customer satisfaction have been reported ([1]). However, some com-
panies find themselves in a difficult situation: their configurators are
best in breed and maintained up to date, but are idle most of the time
while ‘special teams’ of experienced engineers are frequently called
in for RFQ processing. As the engineering director of an escalator
manufacturer described the problem, “All these tools (configurators)
are working fine if the sales input is strictly according to the offer-
ing. If there are customer wishes outside of the offering or other am-
biguities, the effectiveness of such tools becomes less and less and
process becomes more manual.” What’s disturbing is that such out-
lier customer requirements seem to be the norm instead of exception.
Despite the billions of product variants offered, the company found
that less than 30% of the quotes were generated directly from the
configurators.

Why are customer requirements so irregular? More importantly,
how can we make configurators more robust to effectively handle
them? These are the questions that this paper aims to address.

2 CUSTOMER REQUIREMENT NOISE
Several factors contribute to the irregularity of customer require-
ments. The first is product complexity. Many attributes need to be
specified to fully describe a product and there are constraints be-
tween different attributes, which customers may not be aware of. The
second is tradeoff making. Customers often have to make tradeoffs
among multiple competing objectives (e.g. price vs. performance).
More choices mean more efforts for comparison, and too many
choices may lead to confusion ([2]). The third factor is the so-called
stickiness of need information. According to von Hippel, need infor-
mation for custom products is generally sticky, i.e. costly to transfer
([3]). The fourth factor is the information asymmetry between cus-
tomers and suppliers. Customers often don’t have a clear understand-
ing of what is available or feasible when they specify requirements.

1 Advanced Manufacturing Institute, The Hong Kong University of Science
& Technology, Hong Kong, email: {songlin, tseng}@ust.hk

Given these factors, it is unlikely that customer requirements will
be ‘strictly according to the offering’ of a product configurator. So
from a supplier’s point of view, customer requirements are signal
of needs with noises. The task of configuration has conventionally
been defined as selecting and combining parts to satisfy given speci-
fications ([4]). Configurator design implicitly assumes an open-loop
typology, which is vulnerable to noises. If noises are not filtered, the
configurator will either fail to find a solution or find a solution that is
suboptimal.

One approach to remove requirement noises is to provide a tem-
plate for customers to specify their requirements via sequentially an-
swering a series of questions. The advantage of this approach is that
requirement consistency and completeness will be guaranteed. The
disadvantage is that there may be too many questions to be answered,
particularly for complex products. Another disadvantage is about the
sequence of the questions. Although the sequence generally follows
a hierarchical structure, it is often difficult and tedious to backtrack
and revise a previous choice. A practical limitation of this approach
is that customers may not be willing to use the requirement template
because they normally source from several competing suppliers.

3 TURNING A CONFIGURATOR INTO A
BARGAINING TABLE

3.1 Configuration via Negotiation

There will always be customer requirements outside of a configura-
tor’s offerings. It’s important to recognize that some of these irreg-
ular requirements genuinely represent customers’ real needs; some
are simply distorted need information. In the former case, the com-
pany needs to expand its offerings. In the latter case, the company
needs a better mechanism to explore available offerings and discover
customers’ true needs. Blindly expanding offerings in this case may
further confuse customers and distort the need information. It’s the
latter case that this study is focused upon. 2

It’s also important to recognize that configuration is essentially
about matching customers’ needs with suppliers’ capabilities. Mis-
match results mainly from the information asymmetry and prefer-
ential difference between customers and suppliers. Negotiation, the
natural discourse of give and take between buyers and sellers, pro-
vides a basis of interaction for both sides to acquire information and
to deal with conflicts. Configuration can be taken as a process of ne-
gotiation, in which customers and suppliers exchange information of
needs and capabilities, jointly resolve preferential conflicts, and col-
laboratively explore alternatives.

Approaching configuration via negotiation is actually widely prac-
ticed during customer/sales interaction. The process works as the fol-

2 The former case is a special case of the latter, in which customers know
exactly what they want.

38

lowing: sales representatives will review customers’ initial require-
ments, then empirically modify certain attributes if no feasible con-
figuration is available; the modified requirements will be loaded into
the configurator; the resulted configuration will then be presented to
the customer, who will update his requirements if not satisfied. The
process repeats until a satisfactory configuration is found or the con-
figuration task is transferred to a ‘special team’ for exception han-
dling. Figure 1 depicts the information flow of this process.

Figure 1. Information Flow

A drawback with current practice is the lack of knowledge support
and over-reliance on human experience. The only feedback from the
configurator is the resulted configuration, which is often difficult to
interpret or improve given the vast options available. With bounded
rationality, sales representatives tend to develop several ‘typical con-
figurations’ and get anchored to them over time. As a result, part
of the variety offered the company is not accessible ([5]). This may
also explain why configurators are not extensively utilized for quo-
tation making. The motivation of this paper is to integrate negotia-
tion support functionalities with a configurator so as to support cus-
tomer/sales interaction systematically.

3.2 Negotiation Support

In the past two decades, there’s been extensive research in designing
information systems to facilitate formulation and resolution of nego-
tiation problems. Among these so-called e-negotiation systems, Ne-
gotiation Support Systems (NSS) have been proved to be effective in
helping negotiators to realize joint gains and improving negotiation
efficiency ([6]). NSS functionalities range from facilitating negotia-
tion preparation to mediation, offer evaluation and post negotiation
settlement etc.

This study focuses on the process of interactive configuration
problem solving. Negotiation support is focused on leveraging a con-
figurator’s product knowledge to provide additional feedback to fa-
cilitate the customer/sales interaction (the dotted line in figure 1).
What and how to feedback are the primary questions to be addressed.

3.3 A Negotiation Framework

Configuration is a special form of design ([4]). Design, according to
the axiomatic design principles of Nam Suh, is a series of mappings
from customer variables (CVs) to functional requirements (FRs), to
design parameters (DPs), and to process variables (PVs) ([7]). One
feature of configuration as design is that it’s not creative in nature,
which basically means the mappings from FRs to DPs to PVs have
already been established3 and the task of configuration is to deter-
mine the specific values.

3 {FR} = [A]{DP} = [A][B]{PV}, where [A] and [B] are design matrices
that indicate the mapping relationships, which could be discrete or contin-
uous, linear or nonlinear.

Raiffa et al. define negotiation as a process of joint decision mak-
ing, which entails joint consequences, or payoffs, for each individual
([8]). Based on this definition, there are two elements for a negotia-
tion to take place: first, a channel for communication through which
decisions can be made jointly; second, a mechanism for each individ-
ual to evaluate the consequences so that alternatives can be compared
and negotiation can move forward. Based on this proposition, a ne-
gotiation framework for configuration is developed (Figure 3).

Figure 2. A Negotiation Framework for Configuration

The mapping relationships between FRs, DPs, and PVs establish a
channel for communication. As payoff evaluation is concerned, gen-
erally speaking, customers aim to have the best product with low-
est price and best delivery terms, while suppliers aim to maximize
profit4.

3.4 Problem Formulation
Product configuration can be formulated as a mixed integer program-
ming(MIP) problem ([9]), which can be converted into an integer
goal programming problem ([10]). The decision problem faced with
customers and suppliers are formulated as in figure 3 and 4 respec-
tively.

Figure 3. Customer’s Information and Decision

4 Without loss of generality, price is assumed to be the only non-technical at-
tribute, and PVs are omitted from discussion because they are functionally
equivalent to DPs.

39

d+
i and d−i measure the over- and under-achievement of the goals

respectively. They provide a direct measure of the mismatch between
customer requirements and suppliers’ offerings.

Figure 4. Supplier’s Information and Decision

Goals are desirable to achieve but do not have to be satisfied. The
solution of a goal programming problem is the alternative with min-
imum deviations from the goals. Goals can be prioritized into dif-
ferent levels or assigned different weights to indicate their relative
importance. Such a formulation is realistic and provides the nec-
essary flexibility for dealing with irregular customer requirements.
Even when customer requirements are ‘not strictly according to the
offering’, solving the problem is still able to generate an intermediate
solution to move negotiation forward.

Since the need information ({FR}) and solution information
({DP}) are distributed within the customer and supplier respec-
tively, solving the configuration problem is interactive in nature. In-
teractive goal programming methods have been applied for financial
planning([11]). They can be adapted for configuration problem solv-
ing. A general problem solving procedure is shown in figure 5.

Figure 5. Problem Solving Procedure

4 SUMMARY
Because of the presence of multiple attributes, objectives, and suppli-
ers, customer requirements for customized complex products often
do not fit right into the offerings of a supplier’s configurator. Many
product configurators respond poorly to such irregular requirements
because requirements are assumed as given or there’s no effective
feedback to the user. This paper treats customer requirements as ne-
gotiable and views configuration as a process of negotiation. A ne-
gotiation framework for configuration is developed, and an interac-
tive goal programming method is proposed for configuration problem
solving. The objective is to convert a product configurator into a bar-
gaining table, based on which customer needs and supplier capabil-
ities can be systematically explored and matched. Work is currently
in progress on algorithm and prototype system development. Future
work is needed on developing efficient methods for sensitivity anal-
ysis in mixed integer goal programming. The convergence property
of the negotiation process also needs further investigation.

ACKNOWLEDGEMENTS
We would like to thank the Research Grant Council(RGC) of HK-
SAR (China) and Natural Science Foundation of China(NSFC) for
their support under ”The theory, methods and key technology of pro-
duction organization and management for mass customization”.

REFERENCES
[1] Hvam, L. and S. Pape, ‘Optimizing the quotation process with product

configuration’, working paper, Technical University of Denmark, 2004.
[2] Huffman, C. and B. E. Kahn, ‘Variety for Sale: Mass Customization or

Mass Confusion?’, Journal of Retailing 74 491–513, 1008.
[3] Hippel, E. v. Democratizing innovation, Cambridge, Mass., MIT Press,

2005
[4] Sabin, D. and R. Weigel, ‘Product Configuration Frameworks - A Sur-

vey’, IEEE Intelligent Systems, 42–49, 1998.
[5] Salvador, F. and C. Forza, ‘Configuring products to address the

customization-responsiveness squeeze: A survey of management issues
and opportunities’, International journal of production economics, 91
273–291, 2004.

[6] Rangaswamy, A. and G. R. Shell, ‘Using Computers to Realize Joint
Gains in Negotiations: Toward an Electronic Bargaining Table’, Man-
agement Science, 43 1147–1163, 1997.

[7] Suh, N. P., The principles of design, Oxford University Press, New
York, 1990.

[8] Raiffa, H., j. Richardson, et al., Negotiation Analysis: the science and
art of collaborative decision making, Belknap Press, 2003.

[9] Thorsteinsson, E. S. and G. Ottosson, ‘Linear Relaxations and
Reduced-Cost Based Propagation of Continuous Variable Subscripts.’
Annals of Operations Research 115 15–29, 2002

[10] Schniederjans, M.J., Goal programming: methodology and applica-
tions, Boston, Kluwer Academic Publishers. 1995.

[11] Spronk, J., Interactive multiple goal programming: applications to fi-
nancial planning, Boston, M. Nijhoff., 1981.

40

Comparing Different Logic-Based Representations
of Automotive Parts Lists

Carsten Sinz 1

Abstract. Parts lists in the automotive industry can be of consid-
erable size. For the Mercedes cars of DaimlerChrysler, for example,
they consist of more than 30.000 entries for the larger model lines.
Selection of the right parts for a particular product instance is com-
plicated, and typically done via a logical formalism relating order
codes with parts. To simplify part assignment, formalisms which use
compact and concise formulae are required. We present and compare
five different formalisms for such compact logical representations.

1 INTRODUCTION
In the automotive industry there is a persistent trend towards indi-
vidually configured cars [1, 9]. This results in an enormous product
variety that has to be coped with in sales, engineering, production,
and after sales. Typically, the configuration of an individual car is ac-
complished on the level of order codes, which represent equipment
options that a customer can select [3]. Such options include, among
others, different engine types, wheel designs, interior and exterior
colors, as well as car electronics like audio and navigation systems,
and accessories like bike or ski carriers. As different equipment op-
tions may be mutually exclusive or require additional options, for-
malisms are needed to describe valid combinations. Moreover, auto-
matic checking algorithms are needed to verify whether a customer’s
order is valid. A common way to describe these constrains is via log-
ical formulae or rules [4, 5, 6, 7, 8, 10].

For each valid order (which satisfies all configuration constraints),
in a second step, the right parts have to be selected. Mathematically
speaking, this requires a mapping M : P(C) → P(P) from sets of
order codes to sets of parts (we denote by C the set of order codes, by
P the set of parts, and by P(X) the powerset of X). Typically, the
mapping can be broken down into a sequence of smaller mappings
M1, . . . , Mk, one for each assembly position in the car. For an order
S ⊆ C, the required parts list M(S) then is the collection of the
required parts for all assembly positions, i.e. M(S) = M1(S)∪· · ·∪
Mk(S). Moreover, the mapping for a position is often functional (but
not necessarily total), such that the definition of Mi can be changed
to Mi : P(C) → P , and M(S) becomes {Mi(S) | 1 ≤ i ≤ k}. We
will assume such functional mappings in the rest of this paper.

There are different ways to represent these mappings, and choos-
ing a suitable one is a non-trivial task, as it has to be concise, intel-
ligible, as well as easily maintainable. In what follows, we restrict
our attention to parts mappings for individual assembly positions,
i.e. we are only interested in constructing the smaller mappings Mi.
This makes a difference only from a practical point of view (sizes of
considered parts sets), and has no influence on the proposed math-
ematical formalisms. It should also be noted that the mappings Mi

1 Johannes Kepler University, Linz, Austria, email: carsten.sinz@jku.at

not only have a reduced range (of zero or one in the functional case),
but also typically depend only on a few dozen of codes, and thus can
also be considered to possess a reduced domain.

2 PARTS LIST REPRESENTATIONS

We now turn to the question, how such parts list mappings Mi can
be represented. Throughout this section, we use the following small
example to illustrate the proposed methods: Assume three different
order codes A, B, and C that influence an assembly position, and
four different parts P1, . . . , P4 which may be selected depending on
the combination of selected codes (in reality there are up to a few
dozen of codes and comparably many parts that have to be considered
for each position2). In each valid configuration we assume that at
least one of the codes A, B, C has to be present, and if A and B are
selected, then C must also be present in the order. We further assume
a parts mapping according to the following variant table:

variant A B C part
1 X P1
2 X P2
3 X –
4 X X P3
5 X X P2
6 X X X P4

Note that direct use of such a table is not feasible in practice, as, e.g.,
for a position depending on 20 codes it would contain up to 220 lines.

2.1 Direct Propositional Encoding

The direct propositional encoding of the parts map uses propositional
logic formulae (parts rules) that are associated with each part of a
position. The parts rule is built upon the order codes, which are used
as atomic propositions. To determine the matching part for a position,
all the position’s rules are evaluated based on the assignment induced
by the customer’s order (its characteristic function), and those parts
for which the rule evaluates to true are selected. In our example, we
would therefore obtain the following rule table:

parts rule part
A ∧ ¬B ∧ ¬C P1
¬A ∧B P2
A ∧ ¬B ∧ C P3
A ∧B ∧ C P4

2 The largest position for Mercedes’ E-Class limousines depends on 135 or-
der codes and contains 27 different parts.

41

For the order {A, C}, e.g., rule A ∧ ¬B ∧ C evaluates to true, and
thus part P3 is selected.

However, this representation suffers from the drawback that
negated codes have to be mentioned, too, which can cause a blow-
up of the rules and make them harder to construct and maintain. It
thus would be preferable to have a formalism that allows for more
compact rules.

2.2 Propositional Encoding with Implicit Negations
The propositional encoding with implicit negations (IN) avoids spec-
ification of negated codes in rules and thus delivers a more compact
encoding. Rules are computed from the variant table by building a
term (conjunction of literals) for each row, removing negated codes
from each term, and disjunctively composing terms that correspond
to the same part. The resulting table is as follows:

IN parts rule part
A P1
B ∨ (B ∧ C) P2
A ∧ C P3
A ∧B ∧ C P4

Now when computing the parts assignment for a particular order,
an additional decoding step is required before evaluating the rules
with the ordinary propositional semantics. This decoding works in
two steps, inverting the encoding process:

1. First, all rules are converted to disjunctive normal form (DNF),
such that they become disjunctions of terms (conjunctions).

2. Then, for each term, missing codes are added negatedly. Missing
codes are codes that occur in the position, but not in the term.

After decoding, rules are evaluated as usual and the suitable part is
computed as with the direct propositional encoding.

For the rule of part P2 (which is already in DNF), e.g., decoding
delivers (B ∧ ¬A ∧ ¬C) ∨ (B ∧ C ∧ ¬A), which is equivalent to
B ∧ ¬A (the same as in the direct encoding). Care has to be taken
in formulating the shortened IN rules in this formalism, however, as
the absorption rule of Boolean logic is not valid any more. Thus,
the rule for part P2 must not be simplified to B. Shortened rules
of this formalism cannot only be derived from the variant table, but
are supposed to be set up straightaway by the parts list maintenance
personnel. Note, however, that the IN formalism requires one term
for each row of the variant table for which a part is selected, which
puts a natural limit on the compression capabilities of this formalism.

2.3 Propositional Encoding with Implicit
Exclusions

A slight variant of the propositional encoding with implicit negations
is that with implicit exclusion (IE). Like the former, it adds negated
subformulae to terms of shortened rules in DNF and requires a de-
coding step to interpret rules; but in contrast to the former, it does
not add missing literals, but rules of other parts, so-called exclusion
formulae. The idea of exclusion formulae is to disambiguate part se-
lection for overlapping rules by not assigning any part to the overlap.
In more detail, the decoding step works as follows:

1. Compute the DNF of all rules, resulting in a set of conjunctions
(terms) for each rule.

2. For each term T of each rule, conjunctively add negations of all
terms S from other rules that are not subsumed by T , i.e. for which
S 6⊆ T holds (S and T are regarded as sets of literals here).

As an example, consider the following table with IE rules:

IE parts rule part
A P1
B ∨ (B ∧ C) P2
A ∧ C P3
A ∧B ∧ C P4

To decode the first IE rule (for part P1) we have to add negatedly all
non-subsumed terms from rules of other parts. These non-subsumed
exclusion terms are B, B ∧ C, A ∧ C and A ∧B ∧ C, such that the
decoded rule for part P1 becomes A∧¬B∧¬(B∧C)∧¬(A∧C)∧
¬(A ∧ B ∧ C), which is logically equivalent to A ∧ ¬B ∧ ¬C. As
a result, all overlaps with other parts are removed.

2.4 Propositional Encoding with Rule Priority
Another way to achieve more compact rules is by assigning them an
evaluation order. This can be done by adding priorities (RP). Rules
are then evaluated in order of decreasing priority. As soon as a rule
matches, the decoding process is aborted and the respective part is
selected. Using priorities we obtain a table like this for our example:

RP parts rule priority part
A ∧B ∧ C 3 P4
B 2 P2
A ∧ C 2 P3
A 1 P1

Now, for a customer’s order {A, C}, the rules are checked one by
one in order of decreasing priority, starting with the rule for part P4,
which has highest priority. As this rule does not match, we proceed to
any rule with next highest priority (2 in our case), from which the one
for part P3 matches. So this part is selected, and the decoding pro-
cess is finished. A general rule of thumb to assign priorities—to rules
consisting of only one term, at least—is to use the number of literals
in the term. The RP formalism is used, e.g., in SAP Automotive.

2.5 Cascaded Conditions Algorithm
If priorities assigned in the RP formalism are all distinct, the for-
malism can be re-written in a more programmatic way, as it then is
equivalent to a cascade (CC) of if-then-else expressions (or, alterna-
tively, a case statement). Modifying the priorities in turn to 4, 2, 3 and
1 for the rows of our exemplary RP table, we obtain this program:

if A ∧B ∧ C then select(P4)
else if A ∧ C then select(P3)
else if B then select(P2)
else if A then select(P1)

One problem with the if-then-else-cascades is that they are hard
to maintain, especially if the rules and number of cases grow larger.
Imagine, e.g., what would happen if {A, B} became a valid order
that selects no part? Which rules have to be changed in which way
then? Maintenance can thus become a non-trivial task.

2.6 Best-Fit Algorithm
At last, we want to present an algorithm that avoids ordering of parts
rules for evaluation, but still keeps advantageous properties of the
priority-based approach and combines them with ideas from the IE
formalism. It works by computing the quality of how good a rule fits

42

to a customer’s order, and selects the best fitting one (BF). Different
fitness (or quality) measures are possible, but we only present one
that maximizes the number of matching literals. It works as follows:

1. Compute DNFs for all rules, giving a set of terms for each rule.
2. For each term that matches the order (i.e. evaluates to true), com-

pute the number of literals that coincide with the order (matching
positive literals that occur in the order as well as negative literals
not occuring in the order are counted); this is the fitness measure.

3. If there is exactly one matching term with highest fitness mea-
sure, the corresponding part is included into the parts list. Other-
wise (i.e. if no or more than one term with highest fitness measure
matches), an ambiguity exists, and no part is chosen.

Consider again our examplary table, now with BF parts rules:

BF parts rule part
A P1
B ∨ (B ∧ C) P2
A ∧ C P3
A ∧B ∧ C P4

For the order {A, C} there are two matching terms, namely A and
A ∧ C. The latter’s fitness measure is 2, whereas the former’s is 1.
Thus part P3, corresponding to parts rule A ∧ C, is chosen.

3 COMPARISON
We now want to compare the aforementioned formalisms, starting
with the IN and IE encodings. They seem quite similar, but differ-
ences become discernible on even small examples. Consider two
parts rules, A and B ∧ C:

IN / IE parts rule IN decoding IE decoding part
A A ∧ ¬B ∧ ¬C A ∧ (¬B ∨ ¬C) P1
B ∧ C ¬A ∧B ∧ C ¬A ∧B ∧ C P2

If we visualize the IN / IE part rules in a Venn diagram (Fig. 1 left,
red/darker for the first, green/lighter for the second parts rule), we
see that there is an overlap between the rules for an order containing
all three codes A, B and C. The IN encoding (Fig. 1 middle) selects
part P1 only if none of the codes B and C is present, whereas the IE
decoding (Fig. 1 right) selects a part for all but the overlap, which is
perhaps the more natural interpretation.

Figure 1. Different interpretations of IN and IE encoding. Left: IN / IE
rule; middle: IN decoding; right: IE decoding.

Turning our attention now to all five logical parts list representa-
tions, we want to compare them regarding compactness of represen-
tation, intelligibility and ease of maintenance.

property IN IE RP CC BF
compactness – + + + +
intelligibility 0 0 0 + 0
ease of maintenance – – 0 – 0

In the encoding with implicit negation (IN) compactness suffers
due to the fact that it requires one term for each entry of the vari-
ant table. This is not the case for all other encodings, which thus are
more concise. Turning to intelligibility, all encodings should be com-
prehensible after some practice. However, the program-like encoding
CC is perhaps the easiest to grasp. Maintaining a (large) logic-based
parts list is not simple. This is especially the case for the IN encoding
with its resulting bulky rules, but also for the IE encoding, where it
might become hard for large rules to figure out the occurring over-
laps. The same holds for the CC encoding, where many rules may
have to be modified when inserting a new variant.

4 RELATED WORK
In knowledge representation similar problems like those of this pa-
per arise. The most frequently proposed solution is that of assign-
ing priorities (or weights) to rules [11]. Other related formalisms are
negation-as-failure (cf. Prolog) or the stable model semantics [2].

5 CONCLUSION
We have presented five different ways to compactly represent logic-
based parts lists. The relevance of these formalisms stems from the
fact that they are already in practical use at different automotive com-
panies. However, maintenance of logic-based parts lists is a compli-
cated task that requires a thorough understanding of the basic logi-
cal formalism. Most of the methods presented in this paper become
much more apprehensible when they are accompanied by tool sup-
port. In the IE or BF formalisms, e.g., a tool that shows rule overlaps
would be very helpful.

In general, we take up the position that rule compilation and main-
tenance should be considered a programming task. As such, it could
benefit from established software engineering methods like coding
style-guides, testing or verification.

REFERENCES
[1] S. M. Davis, Future Perfect, Addison-Wesley, 1987.
[2] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic pro-

gramming’, in Proc. 5th Intl. Conf. on Logic Programming, pp. 1070–
1080. The MIT Press, (1988).

[3] A. Haag, ‘Sales configuration in business processes’, IEEE Intelligent
Systems, 13(4), 78–85, (July/August 1998).

[4] D. Mailharro, ‘A classification and constraint-based framework for con-
figuration’, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AI EDAM), 12(4), 383–397, (1998).

[5] D.L. McGuinness, ‘Configuration’, in The Description Logic Hand-
book, eds., F. Baader, D. McGuinness, P. Nardi, and P. Patel-Schneider,
397–414, Cambridge University Press, (2003).

[6] S. Mittal and F. Frayman, ‘Towards a generic model of configuration
tasks’, in Proc. of the 11th Intl. Joint Conf. on Artificial Intelligence,
pp. 1395–1401, Detroit, MI, (August 1989).

[7] D. Sabin and E.C. Freuder, ‘Configuration as composite constraint sat-
isfaction’, in Proc. Artificial Intelligence and Manufacturing Research
Planning Workshop, ed., G.F. Luger, pp. 153–161, Albuquerque, NM,
(1996). AAAI Press.

[8] D. Sabin and R. Weigel, ‘Product configuration frameworks – a survey’,
IEEE Intelligent Systems, 13(4), 42–49, (July/August 1998).

[9] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin, ‘Formal methods
for the validation of automotive product configuration data’, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AI
EDAM), 17(1), 75–97, (January 2003).

[10] M. Stumptner, ‘An overview of knowledge-based configuration’, AI
Communications, 10(2), 111–125, (1997).

[11] R.J. Waldinger and M.E. Stickel, ‘Proving properties of rule based sys-
tems’, Intl. J. Software Engineering and Knowledge Engineering, 2(1),
121–144, (1992).

43

HP Rack Placement Optimization Case Study
Daniel Naus 1

Abstract. Hewlett-Packard designs and manufactures high-end
computer datacenter solutions, including a wide range of computing,
data storage and communication devices. Assembling such solutions
requires compliance with a number of constraints, including phys-
ical (heat dissipation, electrical), safety, ergonomic and regulatory,
as well as optimization of solution cost, high-availability, scalability
and serviceability.
This paper presents a case study of the datacenter solution configu-

ration problem, focusing on assisted physical device placement in an
e-commerce scenario and illustrates the challenges of implementing
both constraint satisfaction and optimization techniques using SAP
Internet Pricing and Configurator.

1 Rack placement problem

1.1 Vocabulary

Let us first define the vocabulary used to define the requirements.
Computer datacenters are composed of connected isles of cabinets,
called racks. Each rack houses a number of computer devices, called
rackables.
Rackables can be placed at discrete locations within the rack, this

process is called racking. Each rack itself also has a varying number
of components, such as doors, panels and mounting kits called rack
material. Racks can be tied to physically adjacent racks on the left
and the right.
The large majority of rackables have configurable subcomponents,

such as hard disk drives, processors, and power supplies, however
the description of these and their constraints is not the subject of this
paper. Each rackable will be considered as fully configured and de-
scribed in terms of aggregate requirements on its environment, such
as total power, heat dissipation, weight, etc.

1.2 Constraints

Apart from the obvious constraint of all rackables fitting physically
within their respective racks, there are a number of less obvious con-
straints, such as:

• Electric: each device must be properly powered within its operat-
ing range, taking into account peak loads such as initial power-
up. Also, some data connections suffer from decreasing signal
strength and must therefore be limited in length.

• Heat dissipation: each rackable dissipates heat which must be
properly evacuated from the rack. Satisfying this constraint often
requires additions of rack fans or, in extreme cases, re-racking to
distribute heat dissipating rackables across racks.

1 Hewlett-Packard, U.S.A, email: daniel.naus@hp.com

• Ergonomic: keyboards, monitors and physical switches can only
be placed in predefined areas, to comply with local ergonomic re-
quirements.

• Safety: majority of rackables is equipped with rails and can slide
in and out of the rack, which forces a complex set of stability
requirements. In some cases, this requires rack center of gravity
computations and additions of weight at the bottom of the rack
(called ballast), to ensure the rack will not topple over if a heavy
device is pulled out on its rails.

1.3 Optimization requirements
Satisfying the constraints above is a given, however most of the value
added of an assisted configuration process is in optimizing the fol-
lowing parameters of the solution:

• High-availability: rackables providing power such as uninter-
ruptible power supplies and rack materials for power distribution
can be configured to ensure redundant power paths to eliminate
single point of failure in the power system. Similar redundancy
requirements apply to networking and computer-storage data con-
nections.

• Scalability: datacenter solutions have a lifespan of years and
sometimes decades and the ability of the system to handle addi-
tional load is often expressed by multiplying peak current param-
eters by a scalability multiplier (larger than 1), which can vary for
different rackables (e.g. lower power buffer for expansion, how-
ever higher data storage capacity buffer).

• Serviceability: all rackables must be easily accessible and to the
extent possible, connectivity between devices should be confined
to a single rack. This facilitates upgrades, maintenance and can
result in significant time savings in case of device malfunction.

• Cost: final and often the most important requirement is to sat-
isfy all constrains and optimize all functional requirements with
the lowest possible cost. This does not always translate into min-
imizing unused fractional resources (power, free space in racks),
as sometimes a solution with a larger number of less-than-fully
utilized cheaper components can be more cost efficient.

2 User interaction requirements
Most previous implementations of assisted datacenter configuration
were focusing on the technical sales representative or a pre-sales
technical expert, both very familiar with the products and capable
of resolving often conflicting optimization requirements. In order to
address increasing competition in the high-tech market and cut sales
costs, a novel approach is identified in this paper addressing directly
the end users of the datacenter solution and forgoing some of the
flexibility advanced users require.

44

End users are not as familiar with the detailed operational param-
eters of rackables and some of the constraints on racking and do not
always require detailed ability to control placement or to modify the
configuration result. Often, they have a clear set of high-level pref-
erences and parameters that can be used to drive an automated opti-
mization process. Such preferences can be expressed as:

• What is the minimum time for rackables in a given rack or the
whole solution to remain operational in case of a power shortage?

• Should there be an additional safety buffer to account for powering
devices added after installation?

• Do you require a fully redundant power infrastructure without a
single point of failure?

• Do you prefer a vertically optimized solution (through taller racks
and vertical rack extensions) or a standard rack cabinet size for all
racks?

• Will you control your rackables using a remote network access or
will you require a monitor and a keyboard to be placed in racks?
If the latter, how many racks should a given monitoring location
control (one, two or more)?

These high-level preferences are to be used as input to a fully au-
tomated configuration and optimization process which needs to pro-
pose a single solution respecting all of the constraints above and at-
tempt to optimize the overall cost of the solution.
The presentation of the proposed solution must be made in a

graphical format, showing in detail all the rackables, their placement
and connectivity, which can also be used as assembly instructions
at the customer site, in case the whole solution can not be shipped
integrated:

ProLiant DL 360

ProLiant DL 360

UID

ProLiant DL580

9 . 1 G B

U

L T

R

A 3

S C

S

I

9 . 1 G B

U

L T

R

A 3

S C

S

I

9 . 1 G B

U

L T

R

A 3

S C

S

I

9 . 1 G B

U

L T

R

A 3

S C

S

I

Duplex Simplex 1 0 1 0 1 2 3 0 1 2

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

keyboard keyboard

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

NIC

1

NIC

2

NIC

3

1 8 . 2 G
B

U

L

T

R

A

3

S

C

S

I

BL20p

o

I

L/A

SP

L/A

SP

L/A

SP

L/A

SP

22

21

20

19

U1

U2

L/A

SP

L/A

SP

L/A

SP

L/A

SP

22

21

20

19

U1

U2

P

o

w

e

r

 Z

o

n

e

 2

 (

S

e

c

o

n

d

a

r

y

)

P

o

w

e

r

 Z

o

n

e

 1

 (

D

e

f

a

u

l t

)

F

a

u

l t

U

n

i t

 I d

e

n

t

i f

i c

a

t

i o

n

P

o

w

e

r

U

n

i t

 I d

e

n

t

i f

i c

a

t

i o

n

B

u

t

t

o

n

R

e

s

e

t

 B

u

t

t

o

n

P

o

w

e

r

 C

o

n

f

i g

u

r

a

t

i o

n

S

w

i t

c

h

Management Link
To enclose above

Management Link
To enclose below

N4
S8

S7

S6

S5

S4

S3

S2

S1

N3
S8

S7

S6

S5

S4

S3

S2

S1

N1
S8

S7

S6

S5

S4

S3

S2

S1

N2
S8

S7

S6

S5

S4

S3

S2

S1

B A

RJ-45Patch

Panel Ports

A B

RTN

-48V

RTN

-48V

shelf

keyboard

L/A

SP

L/A

SP

L/A

SP

L/A

SP

22

21

20

19

U1

U2

L/A

SP

L/A

SP

L/A

SP

L/A

SP

22

21

20

19

U1

U2

P

o

w

e

r

 Z

o

n

e

 2

 (

S

e

c

o

n

d

a

r

y

)

P

o

w

e

r

 Z

o

n

e

 1

 (

D

e

f

a

u

l t

)

F

a

u

l t

U

n

i t

 I d

e

n

t

i f

i c

a

t

i o

n

P

o

w

e

r

U

n

i t

 I d

e

n

t

i f

i c

a

t

i o

n

B

u

t

t

o

n

R

e

s

e

t

 B

u

t

t

o

n

P

o

w

e

r

 C

o

n

f

i g

u

r

a

t

i o

n

S

w

i t

c

h

Management Link
To enclose above

Management Link
To enclose below

N4
S8

S7

S6

S5

S4

S3

S2

S1

N3
S8

S7

S6

S5

S4

S3

S2

S1

N1
S8

S7

S6

S5

S4

S3

S2

S1

N2
S8

S7

S6

S5

S4

S3

S2

S1

B A

RJ-45Patch

Panel Ports

A B

B
U
S
B
A
R

Front View Rear View

Monitor

Figure 1. Example rack diagram

3 Design & Implementation

3.1 Design Decisions

Several decisions were taken early on in the implementation of the
configuration solution in order to leverage existing data sources at
HP and speed up implementation time:

• Reuse of SAP configuration models of individual rackables.
• Use of Visio as the graphical layout platform and leverage of ex-
isting stencils of HP products.

• Use of SAP Internet Pricing and Configurator (IPC) as the plat-
form maintaining the solution configuration content and enforcing
all declarative constraints.

• Implementation of optimization logic in custom Java code access-
ing SAP IPC APIs.

• User interface leveraging the standard SAP IPC JSP UI.
• Reuse of existing Excel-based calculation spreadsheets for de-
tailed component calculations.

3.2 IPC Model

The configuration model had to be capable of expressing all the nec-
essary solution attributes and relationships. SAP provides the follow-
ing configuration products:

• SAP R/3 Configurator (called Variant configurator), which is used
within the mySAP ERP system.

• SAP Internet Pricing and Configurator (IPC), which is currently
used in mySAP CRM and internet sales scenarios.

Variant configurator only executes within the mySAP ERP system
and can not be run in a standalone mode, so it was rejected as the
configuration execution environment for our project.
SAP IPC is a Java-based application, which can run standalone

and allows execution of configuration models that are either compat-
ible with the Variant Configurator (with all of its limitations), or take
advantage of additional SAP IPC capabilities (so called advanced
models).
Given our requirements, the IPC Advanced mode modeling was

chosen, as it allows for arbitrary relationships, uses a more flexible
decomposition structure and has additional summation and aggrega-
tion capabilities.
The core model in IPC is composed of three major components:

classification hierarchy, variant tables and constraints. Classification
hierarchy contains classes, their attributes called characteristics and
class to class links. Variant tables are used to store characteristic val-
ues for products allocated to classes and also used as support for con-
straints in cases where constrained relationships are best represented
as tabular combinations of characteristic values. Constraints are used
to express all of the declarative constraint requirements above.
Classification hierarchy design was governed by a small set of best

practices as identified by previous experience with SAP IPC:

1. Use a minimal and shallow class hierarchy capable of supporting
all of the constraints required. In other words, do not create new
classes unless there is at least one constraint that requires them.

2. Avoid multiple inheritance.
3. Build the hierarchy from the bottom up, incrementally allowing
characteristics to move up the hierarchy if a generic rule requires
them at higher levels.

45

Following these guidelines resulted in a relatively small class hi-
erarchy of about 150 classes with up to 3 levels of inheritance. About
40 different relationships (such as connected to, adjacent to, pulling
power from, etc.) were defined as part of the class hierarchy.
Variant tables are convenient way of expressing legal combina-

tions of features in a tabular form and were employed to store static
attributes of rackables and racks, such as dimensions, physical lo-
cations of ports, and operating limits. Tables were also used to ex-
press tabular relationships, such as compatible port to connector
types. Variant tables are not used in quite the same way as rela-
tional database tables, as often sets of records from a table are re-
trieved at once in support of imposing restrictions and often no sin-
gle primary/foreign keys are defined as there are multiple constraints,
each using the table in a different manner. Not all best practices for
database design can therefore be transported without modification,
but the fundamental ones do apply and were followed:

1. Clearly separate entity tables from relationship tables.
2. Map out and maintain foreign key relationships.
3. Attempt to normalize tables and eliminate white space. This rule is
broken at times as it conflicts with table ease-of-use maintenance
requirements.

This resulted in about 100 variant tables, from 2 up to 15 columns
wide, each with typically up to several hundred records.
Finally, the constraint design followed as well a small number of

practical rules of thumb in an effort to maximize consistency and
maintainability:

1. Group constraints into constraint nets by the principal class nodes
that they apply to. Use consistent naming convention shared be-
tween the class node names and its corresponding constraint net
and its constraints.

2. Apply constraints as high up in the class hierarchy as possible and
so eliminate redundant constraints in parallel branches.

3. Keep constraints atomic, performing as few inferences/restrictions
as possible, in order to facilitate changes in their class allocation.

SAP unfortunately does not support moving constraints from one
constraint net to another, so constraints were often cut and pasted
from constraint nets at lower class hierarchy levels to nets higher up.
This constraint design resulted in less than 2000 constraints, in-

cluding those used in internal rackable subcomponent configurations.
Each constraint consists typically of 10 to 20 lines of constraint
source code. As an example, a typical rule in datacenter configura-
tions is that all devices within the same cabinet have to support the
same voltage. The constraint syntax for this requirement is as fol-
lows:

Objects:
?Rackable is_a (300) HP_Rackable
WHERE

?Rack = is_racked_in
Restrictions:

?Rackable.Voltage = ?Rack.Voltage
Inferences:

?Rack.Voltage, ?Rackable.Voltage

3.3 Racking algorithm
SAP IPC advanced mode does not support any optimization capabil-
ities such as solution space search including backtracking and proce-
dural reasoning (for sorting and algorithmic logic), so the only avail-
able design was to create the rack optimization logic in Java (called

the racking algorithm). This java code had to have the following fun-
damental features:

1. Ability to run incrementally, after a change in user preferences or
addition/deletion of rackables.

2. Use only configuration information contained within the IPC con-
figuration model.

3. Minimize unproductive constraint engine execution when explor-
ing different optimization options (called churning).

4. Execute as fast as possible.

Development of the racking algorithm proved to be one of the
biggest challenges of the project. SAP IPC was not designed to be
used with an external optimization process and it turned out to be
rather expensive to maintain the complete configuration state there.
Also, the racking algorithm had to correctly recognize and detect in-
ternal state changes of the model in IPC.
At a high-level, the racking algorithm performs the following

steps:

1. Disassociate any currently placed rackables from their respective
racks.

2. Create as many racks as are necessary for physically housing all
of the rackables.

3. Group closely connected devices into groups (e.g. server and stor-
age devices connected together, ideally such groups can be di-
rectly identified by users).

4. Sort devices within a group by weight and start placement at the
bottom of the first rack.

5. Place all devices in racks while respecting all of their published
restrictions (such as allowed locations, adjacency requirements,
etc.)

6. Constantly check the rack model state as devices are being placed
and backtrack if any inconsistencies are found and attempt a dif-
ferent placement.

The following learnings can be inferred from our experience:

• Model steps in the optimization process as discrete states within
the IPC configuration model and only trigger constraints appro-
priate for any given step. At minimum, three different states
are needed: prior to racking, racking execution, and post-racking
state.

• Try to perform as much constraint driven logic in the pre-racking
phase and publish resulting restrictions through allowed charac-
teristic values.

• Clearly identify which constraints in the racking phase can trig-
ger an inconsistency (e.g. rack stability constraint can be violated
as devices are being placed). Keep these constraints as simple as
possible.

• Where applicable, define constraints that can be used to work
around inconsistencies, for example solving a rack stability prob-
lem by instantiating additional ballast.

Even with these guidelines in mind, execution of the racking algo-
rithm turned out to be rather expensive (from 10 seconds to several
minutes for very large configurations).

3.4 External calculation
Implementing some of the calculations necessary in high-end rack-
able products (such as precise power calculation) would not be prac-
tical using constraint technology due to the modeling effort required

46

and the overhead incurred by keeping track of extremely detailed
power calculation values as facts in the constraint engine. Instead, ex-
isting Excel-based calculation spreadsheets were identified, mapped
using a rigorous mapping to IPCmodel characteristic values and then
translated into native java classes using an off-the-shelf Java-based
spreadsheet engine from Actuate.
Our experience with this design has been very positive and very

large and complex engineering calculation spreadsheets with thou-
sands of formulas were leveraged, further optimizing the cost of the
solution (as opposed to using aggregate estimated requirements).

3.5 User interaction
At a high-level, configuration session consists of the following steps:

1. Specify/modify high-level configuration preferences.
2. Instantiate all of the rackables required and configure them fully,
including defining groups of rackables (such as servers and stor-
age connected together).

3. Execute the racking algorithm.
4. Review the results and if dissatisfied, repeat the process incremen-
tally applying changes in steps 1-2 and re-execute 3.

Thanks to largely automating the racking logic inside of the rack-
ing algorithm, the user entry screens were mostly simple pages with
drop down menus and checkboxes. A tree-control was used to navi-
gate the configuration content before and after the racking execution.
Our experience with the standard SAP Java Server Pages (JSP)

Configuration Interface was positive overall, even though the in-
tended use of it was only for demonstrations and testing. Several
areas of improvement were identified and customized:

• Configuration content navigation had to be significantly improved
to navigate by relationship rather than by bill-of-material decom-
position.

• Custom report screens and output capabilities were added (e.g. for
configuration result, power summary, saving of the configuration
or its graphical output, etc.)

Visualization of the configuration solution was built using the Mi-
crosoft Visio diagramming platform, as SAP does not provide a com-
parable visualization product. As we did not have a requirement for
an interactive graphical display, we decided on the following simpli-
fying design choices:

• Separate drawing logic completely from the IPC model execution
logic.

• Create a static mapping of Visio stencils to rackables and racks,
identifying connection points for different connectivity ports.

• Perform an export of all relevant drawing attributes (such as loca-
tion, connections, etc.) at the time of digram generation.

• Generate a Microsoft script for drawing of the whole diagram,
used to control the Visio drawing engine.

• Display the resulting Visio diagram in a web-based viewer.

The quality of the resulting output proved to be excellent, thanks
to outstanding diagramming features of Visio, however the overhead
associated with the diagram generation also proved to be rather large.
Also, this solution can not be recommended if a dynamic interactive
diagram is required, unless the visualization architecture would be
enhanced to handle incremental changes. Building of the visualiza-
tion layer was a significant investment (6 man months).

4 Conclusion
The results of this thorough study demonstrate that an assisted con-
figuration of computer datacenter solutions requires a technology
that natively supports both declarative constraint-based reasoning as
well as optimization capabilities (solution search and backtracking).
Our study did confirm feasibility of custom integration between a

purely declarative engine and a custom optimization process, how-
ever the difficulties encountered, performance characteristics and the
complexity of the resulting custom code warrant a native solution
integrated within the configuration engine.
As part of our study, we have identified a number of simple mod-

eling guidelines, which when applied consistently, lead to a rather
small footprint of the constraint model required to support datacen-
ter configuration.
It is also highly desirable to support callouts to external calculation

engines, such as java-based spreadsheet engines, as this simplifies the
core constraint design.
Visualization using Microsoft Visio is only recommended for non-

interactive scenarios requiring either exceptional drawing quality or
the ability to perform further modifications such as markups on the
resulting diagram.

47

Integrating Knowledge-Based Product Configuration and
Product Line Engineering: An Industrial Example

Rick Rabiser and Deepak Dhungana and Paul Grünbacher1

Abstract. The software product line and product configuration re-
search communities have evolved quite independently in the last
couple of years. More recently, however, researchers have started
working on the integration of software product line engineering and
(knowledge-based) product configuration approaches. In this paper
we describe an industrial example that suggests closer integration of
the two research fields. We propose a tentative approach that uses
concepts from both areas.

1 MOTIVATION

A software product line has been defined as ”a set of software-
intensive systems sharing a common, managed set of features that
satisfy the needs of a particular market segment and that are devel-
oped from a common set of core assets in a prescribed way” [4].
Product line engineering (PLE) is the discipline of creating and man-
aging software product lines. It aims at reducing cost and increasing
productivity and reliability through leveraging reuse of artefacts and
processes in particular domains [15].

Product configuration is concerned with automatic configuration
of technical products based on product models and well-defined
rules. Product configurators are among the most successful appli-
cations of artificial intelligence (AI) technology and have been suc-
cessfully applied in industrial environments [3, 8, 9]. The major con-
tribution of configuration systems is to enable the configuration of
complex products and services in shorter time and with less errors. It
has been demonstrated that by using configurators, individually cus-
tomized products can be configured at much lower costs.

A combination of the two approaches seems reasonable because
configuration approaches complement certain important activities in
PLE. Core assets of a product line (including their variabilities and
commonalities) are typically described formally using languages and
models such as feature models [2], architectural models [5], or deci-
sion models [16]. When deriving individual products, these assets
need to be customized and configured. The identification of valid
combinations of these assets and the automatic verification of the cor-
rectness and completeness of individual products can be supported
with existing configuration techniques. Various other AI techniques
(used in configuration approaches) like SAT Solving [14] can sup-
port PLE to deal with the complexity of real-world systems. By in-
tegrating PLE with product configuration we expect to improve our
industrial partner’s overall product derivation process. Many activ-
ities in this process are carried out by non-experts (the sales staff),
who could also benefit from the mentioned integration.

1 Christian Doppler Laboratory for Automated Software Engineering, Jo-
hannes Kepler University, A-4040 Linz, rabiser@ase.jku.at.

The remainder of this paper is structured as follows: In Sec-
tion 2 we describe challenges our industry partner in product cus-
tomization. Section 3 describes our tentative approach for integrat-
ing knowledge-based product configuration with PLE to overcome
the challenges discussed in Section 2. In Section 4 we briefly de-
scribe related work. Section 5 rounds out the paper with a conclusion
and some issues for discussion.

2 INDUSTRIAL EXAMPLE

Our industry partner Siemens VAI is the world’s leading engineering
and plant-building company for the iron, steel, and aluminum indus-
tries. In our ongoing research cooperation we apply a product-line
approach to automatically generate software from feature specifica-
tions that characterize individual members of the product line. One
important objective is the creation of an innovative approach for mak-
ing feature-based product configuration accessible to non-software-
experts. The expected outcomes of integrating software PLE and
product configuration approaches are an improved sales process and
an accelerated, less error-prone product configuration process.

The software system developed by Siemens VAI automates con-
tinuous casting in steel plants and provides capabilities for process
supervision, material tracking, and process optimization. The size is
about 1.3 million lines of Java code. The software has a state-of-the-
art component-oriented architecture which makes it highly config-
urable, customizable, and extendable. Each year our industry partner
delivers about 20-30 software solutions customized to the particular
needs of individual customers. The configuration and customization
work is accomplished by around 40 software engineers only. Due to
the size and complexity of the software there are many non-trivial de-
pendencies among the available features as well as between features,
architectural elements, and technical solution components.

Currently there exists a gap between the developers and the sales
people of our industrial partner, a well-known problem of many com-
panies. Sales people do not have access to architectural knowledge
needed to customize the product on feature-level. At the same time
developers are not informed adequately about new customer require-
ments and special wishes. The sales staff use Excel spreadsheets to
communicate the features of the software to the customers. The se-
lected features are then used by the software engineers to derive a
specific product from the product line. Several problems arise from
this manual form of configuration process. For instance, (1) the fea-
ture lists are often incomplete or not up to date and (2) the lists do not
take into account the dependencies between features and the under-
lying technical solution. The overall goal of the research project is
to provide better guidance for sales people and improve the commu-
nication between sales staff and engineers. In this way, our partner

48

 Knowledge
 Based
 Wizard
 Generator

Product
Configuration

System

Customer properties CSP variables

P
er

so
na

liz
ed

 U
se

r
In

te
rf

ac
e

(W
iz

ar
d)

interact

Sales people

Customers

use

present
knowledge to

(pre-)configure automatically

Product

Developers

configure
manually

info what needs
to be done manually

Architectural Model

extract/map

Feature Model

Already configured
products

extract

extract

extract
customer

requirements

Product Line
Engineering
Context

Product
Configuration
Context

formalize

Business rules CSP constraints

Product properties Product variables

Knowledge Base

Knowledge Acquistion and Maintenance

Knowledge Transformation

Figure 1. Knowledge-based approach integrating product line engineering and product configuration concepts (product configuration context based on [6])

expects a considerable productivity boost and significant reduction
of economic risks. The customers benefit from a shorter time-to-
market and products better customized and configured to their spe-
cific needs.

Apparently, an automated configuration and verification approach
during feature selection and product derivation is missing in the cur-
rent scenario. The absence of such an approach increases the likeli-
hood for errors in the product configuration process. It is therefore
necessary to ascertain that the features selected by the customers are
consistent with the underlying technical solution and that the com-
bination of the selected features is technically feasible. In the next
section, we explain how we expect a knowledge-based configuration
approach to address these problems.

3 TENTATIVE APPROACH
Our proposed approach relies on the existence of a product line vari-
ability model (PLE context, see Figure 1). Such a model covers the
features [2] and architecture [5, 13] together with a decision model
describing the decisions one needs to take during product configu-
ration [16]. The model thus captures the variability of the product
line and explicitly describes the dependencies between different core
assets (architectural elements, features, decisions). Due to space lim-
itations the methods for creating these models are not described in
this paper. The proposed approach consists of three main steps:

• Generation of a knowledge base from existing models and cus-
tomer requirements.

• Making the knowledge accessible to non-experts.
• Enabling automatic product configuration.

Generation of a knowledge base from existing models and cus-
tomer requirements. For building a knowledge base for the purpose
of configuration, the information required is gathered from the prod-
uct line variability model. As illustrated in Figure 1, the knowledge

base is created by formalizing product line models (the models in
the PLE context, i.e., feature model and architectural model) and
customer requirements. It contains information about the core assets
(product properties), customer requirements and properties, and busi-
ness rules (which express the relationships between different assets).
Felfernig et al. [7] report on an approach to automatically generate
such product configuration knowledge bases (see Section 4).

Making the knowledge accessible to non-experts. We consider a
tool-supported, interactive presentation of the features as essential to
deal with the challenges described in Section 2. To present the fea-
tures to the customers in a convenient and interactive manner based
on their needs is not trivial: On the one hand meta-information about
features should be available at all times in different forms (e.g., mul-
timedia feature explanations). On the other hand the dependencies
among features and between the features and the underlying techni-
cal solution should be constantly verified. Ideally, the consequences
of feature selection should be made visible to customers immedi-
ately. For example, if they choose a feature that requires other fea-
tures these should be selected automatically and a proper explanation
should be given to the customer.

The knowledge-based wizard generator (Figure 1) is a sys-
tem for building intelligent, personalized wizards that support the
sales advisory process between sales staff and customers. One ex-
ample for such wizards supporting the sales process are recom-
mender systems [1], successfully applied in e-commerce environ-
ments (e.g., [10]). Based on customer properties and wishes con-
cerning the technical solution, the wizard generator calculates which
decisions are to be taken and in which order they should be taken. A
wizard is generated for each individual customer based on his prop-
erties and his specific needs. Such wizards are flexible and interactive
which hides the complexity of the underlying system from the cus-
tomers. The customers select features they need and the sales staff
tailor the product to their specific needs. At the same time the under-
lying constraints and dependencies (business rules) can be checked.

49

Enabling automatic product configuration. The result of such a
presentation of the features is a consistent selection of core assets re-
quired for product derivation. Finding a valid configuration of the
required assets and verifying its correctness can be supported by
a product configurator. Such a tool is based on the same knowl-
edge base as the wizard generator and therefore the concepts used
by these tools can be mapped to each other. By and large, a con-
figuration problem can be tracked down to a constraint satisfaction
problem (CSP). Product properties can be mapped to product vari-
ables, customer properties to CSP variables, and business rules to
CSP constraints. A CSP solver [17] can then be used to generate a
valid product configuration. Although major parts of the product can
be configured automatically with the information received from the
sales process, some manual configuration work will still be required.
Therefore it is essential that the information about things that need
to be done manually is available after configuration. The developers
then finish the configuration of the system so that it can be deployed
to the customer.

4 RELATED WORK
The product configuration community has been developing ap-
proaches to automatically build knowledge bases from existing prod-
uct models. For example, in [7] the authors propose an approach for
generating a valid configuration knowledge base based on a UML
product model. The scale and complexity of our industry partners
software solution is much higher than those of the examples (i.e.
a configurable PC) described in [7] and other papers focussing on
knowledge-based configuration problems [9, 11]. Also PLE aspects
are not taken into account. However, these papers provide interesting
concepts on how to generate a knowledge base from our product line
models (feature models, architectural models, decision models).

The Advisor Suite described in [10] is a commercial system for
building intelligent, personalized sales advisory applications follow-
ing a knowledge-based approach. With such applications complex
product knowledge is presented to users via a personalized user
interface. The users are able to tailor a product to their specific
needs while simultaneously underlying business rules are satisfied.
Knowledge-based advisor applications provide a candidate solution
to present information about our industrial partners complex software
product line to the sales people/customers (Figure 1).

Männistö et al. [12] compare the areas of software product lines
and product configuration of traditional products based on the con-
cepts for modelling variety and evolution. This work is of great in-
terest as the authors also emphasize the integration of product con-
figuration and software product families.

5 CONCLUSION AND OPEN ISSUES
In this paper we described challenges and a candidate solution for
integrating concepts from two research communities, the software
product line community and the product configuration community.
In our tentative approach, product line knowledge is used as a basis
for knowledge-based configuration systems. We believe that such a
hybrid approach will help us to make feature-based configuration ac-
cessible to non-experts. We will provide experiences and prototypes
demonstrating the feasibility of our ideas in our further work. Three
issues are of particular interest in our research:

Automatic generation of knowledge bases from product line mod-
els. As already mentioned in Section 4, approaches exist for automat-
ically generating product configuration knowledge bases (e.g., [7]).

We will explore on how to adapt these approaches to fit our software
(PLE) context.

Evolution of the software product line. Another interesting ques-
tion to address is on how to manage evolution of the software prod-
uct line. A product configuration knowledge base also must evolve
in case of changes of the underlying product.

Acceptance of our approach and tools. We will have to keep in
mind that our users, i.e., sales people, must be able to use the de-
veloped tools. Usability is a prime concern and the approach has to
reduce their work load instead of increasing it.

REFERENCES
[1] G. Adomavicius and A. Tuzhilin, ‘Toward the next generation of rec-

ommender systems: A survey of the state-of-the-art and possible exten-
sions’, IEEE Transactions on Knowledge and Data Engineering, 17(6),
734–749, (2005).

[2] T. Asikainen, T. Männistö, and T. Soininen, ‘Representing feature mod-
els of software product families’, in 16th European Conference on Ar-
tificial Intelligence, (2004).

[3] T. Blecker, N. Abdelkafi, G. Kreuter, and G. Friedrich, ‘Product config-
uration systems: State-of-the-art, conceptualization and extensions’, in
Eight Maghrebian Conference on Software Engineering and Artificial
Intelligence (MCSEAI), pp. 25–36, (2004).

[4] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, SEI Series in Software Engineering, Addison-Wesley, 2005.

[5] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, ‘An infrastructure
for the rapid development of xml-based architecture description lan-
guages’, in ICSE ’02: Proceedings of the 24th International Conference
on Software Engineering, pp. 266–276, New York, NY, USA, (2002).
ACM Press.

[6] W. Falle, D. Stöfler, C. Russ, M. Zanker, and A. Felfernig, ‘Using
knowledge-based advisor technology for improved customer satisfac-
tion in the shoe industry’, in International Conference on Economic,
Technical and Organisational aspects of Product Configuration Sys-
tems, (2004).

[7] A. Felfernig, G.E. Friedrich, and D. Jannach, ‘Uml as domain specific
language for the construction of knowledge-based configuration sys-
tems’, International Journal of Software Engineering and Knowledge
Engineering, 10(4), 449–469, (2000).

[8] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner, ‘Configuring large systems using generative constraint
satisfaction’, IEEE Intelligent Systems, 13(4), 59–68, (1998).

[9] A. Günter and C. Kühn, ‘Knowledge-based configuration: Survey and
future directions’, in XPS ’99: Proceedings of the 5th Biannual Ger-
man Conference on Knowledge-Based Systems, pp. 47–66, Würzburg,
Germany, (1999). Springer.

[10] D. Jannach, ‘Advisor suite - a knowledge-based sales advisory-
system.’, in 16th European Conference on Artificial Intelligence, pp.
720–724, (2004).

[11] T. Krebs, L. Hotz, and A. Günter, ‘Knowledge-based configura-
tion for configuring combined hardware/software systems’, in Proc.
of 16. Workshop, Planen, Scheduling und Konfigurieren, Entwerfen
(PuK2002), Freiburg, Germany, (2002).

[12] T. Männistö, T. Soininen, and R. Sulonen, ‘Modelling configurable
products and software product families’, in International Joint Con-
ference on Artificial Intelligence (IJCAI), (2001).

[13] M. Matinlassi, ‘Comparison of software product line architecture de-
sign methods: Copa, fast, form, kobra and qada’, in ICSE ’04: Proceed-
ings of the 26th International Conference on Software Engineering, pp.
127–136, Washington, USA, (2004). IEEE Computer Society.

[14] A. Nareyek, E.C. Freuder, R. Fourer, E. Giunchiglia, R.P. Goldman,
H.A. Kautz, J. Rintanen, and A. Tate, ‘Constraints and ai planning.’,
IEEE Intelligent Systems, 20(2), 62–72, (2005).

[15] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering : Foundations, Principles and Techniques, Springer, 2005.

[16] K. Schmid and I. John, ‘A customizable approach to full lifecycle vari-
ability management’, Sci. Comput. Program., 53(3), 259–284, (2004).

[17] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
1995.

50

How to recommend configurable products?
Alexander Felfernig 1 and Christian Scheer and Peter Loos 2

Abstract. Knowledge-based configuration has a long history as a
successful application area for AI technologies [2, 15, 10, 8, 5, 9].
Starting with rule-based systems [2], higher level representation for-
malisms have been developed allowing a more intuitive representa-
tion of configurable products. The advantages of these representa-
tions are faster application development, higher maintainability, and
more flexible reasoning support. These representations have proven
their applicability in various real-world applications. What still re-
mains a challenging task for the configuration community is the
provision of flexible and intuitive interfaces which alleviate the ac-
cessibility of complex product assortments for customers. A first
step towards this direction has been conducted within the scope of
the CAWICOMS project [1], where multi-attribute object rating ap-
proaches and rule-based adaptation technologies have been devel-
oped in order to improve the accessibility of configurable products.
The goal of our work is to provide a general overview of recommen-
dation approaches [3, 4, 6, 7, 11, 12, 13, 14, 16, 17] and potential
applications in knowledge-based configuration processes (e.g., de-
termination of default values using collaborative filtering approaches
[6, 12, 14], etc.).

References
[1] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, G. Petrone,

R. Schaefer, and M. Zanker, ‘A Framework for the development of per-
sonalized, distributed web-based configuration systems’, AI Magazine,
24(3), 93–108, (2003).

[2] V.E. Barker, D.E. O’Connor, J.D. Bachant, and E. Soloway, ‘Expert
systems for configuration at Digital: XCON and beyond’, Communica-
tions of the ACM, 32(3), 298–318, (1989).

[3] R. Burke, ‘Knowledge-based Recommender Systems’, Encyclopedia of
Library and Information Systems, 69(32), (2000).

[4] R. Burke, ‘Hybrid Recommender Systems: Survey and Experiments’,
User Modeling and User-Adapted Interaction, 12(4), 331–370, (2002).

[5] G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner, and
M. Stumptner, ‘Configuring Large Systems Using Generative Con-
straint Satisfaction’, IEEE Intelligent Systems, 13(4), 59–68, (1998).

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. Riedl, ‘Evaluating
Collaborative Filtering Recommender Systems’, ACM Trans. on Infor-
mation Systems, 22(1), 5–53, (2004).

[7] B. Jiang, W. Wang, and I. Benbasat, ‘Multimedia-Based Interactive Ad-
vising Technology for Online Consumer Decision Support’, Communi-
cations of the ACM, 48(9), 93–98, (2005).

[8] E.W. Juengst and M. Heinrich, ‘Using Resource Balancing to Configure
Modular Systems’, IEEE Intelligent Systems, 13(4), 50–58, (1998).

[9] D. Mailharro, ‘A classification and constraint-based framework for
configuration’, Artificial Intelligence for Engineering, Design, Analy-
sis and Manufacturing Journal, Special Issue: Configuration Design,
12(4), 383–397, (1998).

1 Institute for Business Informatics and Application Systems, University
Klagenfurt, A-9020 Klagenfurt, Austria, email: alexander.felfernig@uni-
klu.ac.at

2 Information Systems and Management, Johannes Gutenberg-Universität
Mainz, D-55099 Mainz, Germany, {scheer, loos}@isym.bwl.uni-mainz.de

[10] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuration
Tasks’, in 11th International Joint Conference on Artificial Intelligence,
pp. 1395–1401, Detroit, MI, (1990).

[11] M. Pazzani, ‘A Framework for Collaborative, Content-Based and De-
mographic Filtering’, Artificial Intelligence Review, 13(5-6), 393–408,
(1999).

[12] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, ‘Grou-
pLens: An Open Architecture for Collaborative Filtering of Netnews’,
in ACM Conference on Computer Supported Cooperative Work, pp.
175–186, (1994).

[13] F. Ricci, A. Venturini, D. Cavada, N. Mirzadeh, D. Blaas, and
M. Nones, ‘Product Recommendation with Interactive Query Man-
agement and Twofold Similarity’, in 5th International Conference on
Case-Based Reasoning (ICCBR 2003), pp. 479–493, Trondheim, Nor-
way, (2003).

[14] B. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, ‘Item-based col-
laborative filtering recommendation algorithms’, in 10th International
World Wide Web Conference, pp. 285–295, (2001).

[15] S.Mittal and F. Frayman, ‘Towards a Generic Model of Configura-
tion Tasks’, in 11th International Joint Conference on Artificial Intelli-
gence, pp. 1395–1401, Detroit, MI, (1989).

[16] B. Smyth, E. Balfe, O. Boydell, K. Bradley, P. Briggs, M. Coyle, and
J. Freyne, ‘A Live User Evaluation of Collaborative Web Search’,
in 19th International Joint Conference on Artificial Intelligence, pp.
1419–1424, Edinburgh, Scotland, (2005).

[17] C. Thompson, M. Göker, and P. Langley, ‘A Personalized System for
Conversational Recommendations’, Journal of Artificial Intelligence
Research, 21, 393–428, (2004).

51

Extended Abstracts

Knowledge-based composition of recommendations
Extended Abstract

Markus Zanker1 and Markus Aschinger2 and Marius Silaghi3

Abstract. Recommender systems help users to orientate themselves
when confronted with a large variety of choices. However, in situa-
tions where the user desires recommendations on product bundles
most systems do not have adequate reasoning capabilities.

In our work we are therefore interested in exploring the problem
space of computing composite recommendations. Based on a generic
framework architecture we intend to develop a knowledge-based ap-
proach that integrates and combines recommendations for different
product categories.

1 Motivation
Recommender systems have become commonplace in many online
shops over the past decade. They serve online customers by mak-
ing personalized product proposals that best fit their needs. A va-
riety of different recommendation paradigms has been reported so
far: e.g. collaborative and content-based filtering [1, 10] as well as
knowledge-based [3, 2, 5] and case-based recommendation [8, 7].
Upon request recommender systems propose one or several items
out of a large set of product instances to a specific user.

However, in some domains like tourism the recommendation of
whole bundles of product instances would be desirable. When plan-
ning a trip, for instance recommender systems might not only pro-
pose appropriate accommodations to a user but also restaurants s/he
would like to go out for dining, sights that might match her/his in-
terest profile or different leisure and sporting activities. This issue
of travel planning and recommending has already been addressed
by several approaches. Ricci and Werthner [9] propose a case-based
travel recommender, that proposes past travel cases based on sim-
ilar user requirements. Torrens et al. [11] developed a light-weight
constraint library for Web applications that can solve travel plans on
the client-side, while Knoblock [6] presents a multi-agent planning
approach.

However, in our application domain we do not focus on planning
a trip schedule that conforms for instance with different flight con-
nections or other stringent time restrictions, but on making different
proposals to a tourist during his stay that do not contradict each other.

2 Approach
We will explore a knowledge-based approach, where explicit domain
knowledge is used for composing different product recommenda-
tions. The problem domain contains a set of different product types
T that restrict the product instances that might be recommended like

1 University Klagenfurt, Austria, email: markus.zanker@uni-klu.ac.at
2 University Klagenfurt, Austria, email: masching@edu.uni-klu.ac.at
3 Florida Institute of Technology, USA, email: msilaghi@fit.edu

sporting or leisure activities, restaurants or sights. Furthermore, a
model of the user U and explicit domain knowledge R is known.
The user model describes the user’s preferences and needs situation,
while R is constituted by a set of restrictions that derive from a do-
main expert. For instance recommended restaurants must not be lo-
cated too far away from the hotel the user is staying at or an overall
budget restriction must be obeyed.

For modeling and problem solving we are currently evaluating
a csp-based approach. A central mediator component requests au-
tonomous recommender systems for ranked lists of product propos-
als for different product types. Then recommendations are bundled
that do not conflict with restrictions in R. For solving we currently
employ the Choco constraint library [4]. The following challenges
are of interest for our future research:

• Balancing priorities between the different ranked lists of recom-
mendations to create an optimal recommendation bundle,

• intuitive knowledge acquisition for domain experts, and
• distributed solving strategy and dynamic domain extensions when

no solutions are found.

REFERENCES
[1] Marko Balabanovic and Yoav Shoham, ‘Fab: Content-based, collabo-

rative recommendation’, Communications of the ACM, 40(3), 66–72,
(1997).

[2] Robin Burke, ‘Knowledge-based recommender systems’, Encyclopedia
of Library and Information Systems, 69, (2000).

[3] Robin D. Burke, Kristian J. Hammond, and Benjamin C. Young, ‘The
findme approach to assisted browsing’, IEEE Expert, July/Aug., 32–40,
(1997).

[4] Laburthe Francois, Jussien Narendra, Rochart Guillaume, and Cam-
bazard Hadrien. Choco User Guide.

[5] Dietmar Jannach, ‘Advisor suite - a knowledge-based sales advisory
system’, in European Conference on Artificial Intelligence - ECAI
2004, (2004).

[6] Craig Knoblock, ‘Building software agents for planning, monitoring,
and optimizing travel’, in Proceedings of ENTER, (2004).

[7] Kevin McCarthy, James Reilly, Lorraine McGinty, and Barry Smyth,
‘Experiments in Dynamic Critiquing’, in Proceedings of the Intelligent
User Interfaces Conference (IUI), pp. 175–182, (2005).

[8] Francesco Ricci and Hannes Werthner, ‘Case base querying for travel
planning recommendation’, Information Technology and Tourism, 3,
215–266, (2002).

[9] Francesco Ricci and Hannes Werthner, ‘Case-based querying for travel
planning recommendation’, Information Technology and Tourism, 4(3-
4), 215–226, (2002).

[10] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl,
‘Analysis of recommendation algorithms for e-commerce’, in ACM
Conference on e-Commerce (EC), pp. 158–167, (2000).

[11] Marc Torrens, Patrick Hertzog, Loic Samson, and Boi Faltings, ‘reality:
a Scalable 1ntelligent Travel Planner’, in Proceedings of ACM Sympo-
sium on Applied Computing (SAC), pp. 623–630, (2003).

53

Industry specific ‘Standard Template Libraries’
for Configuration

Manikandan Sundaram and Rajasekhar Vinnakota and Praveen Vudoagiri

Trilogy Software Inc.

{manikandan.sundaram | rajasekhar.vinnakota | praveen.vudoagiri}@trilogy.com

Abstract

Developing solutions to real-world high-end
configuration problems is extremely complex and
effort-intensive. This paper makes a case for reducing
the challenges involved by using "Standard Template
Libraries" that encapsulate domain-specific solutions
and practices. This allows for reuse across
configuration deployments of configuration logic
patterns that represent the common product
characteristics and business processes within the same
or similar industries, as well as improving the quality
and usability of the deployments by creating
specialized run-time and maintenance interfaces that
use the industry-specific language familiar to users.

1 INTRODUCTION

Configurators are used to solve complex problems in a
wide range of sectors like Automotive, Computer,
Telecom, Furniture, Aerospace and Industrial
Equipment Manufacturing. Every industry has its own
unique set of challenges and uses for the configurator.
The solutions to these challenges often can be
designed to be generic and reusable within the
domain.

For example, racking a chassis such that
rack space is optimized is a standard challenge
encountered in configuration systems for enterprise
computer OEMs. There are typical manufacturing
considerations like the weight of the chassis, heat
dissipation, ease of cabling and safety/ergonomic
considerations that impact how the chassis is racked.
The solutions to the racking problem based on these
considerations are standard across all manufacturers in
the enterprise computer space.

Encapsulation of these standard solutions
based on the prevalent industry practices, in Standard
Template Libraries, aids in quickly deploying robust
and scalable configuration models. Each industry will
have its own set of libraries that captures the practices
and solutions specific to that industry domain.

2 STANDARD TEMPLATE LIBRARY

The Standard Template Library (STL) for a specific
industry, in addition to being a collection of highly
extensible models, objects and generic configuration
logic also is a repository of standard industry practices
prevalent in that industry. Access to this repository of
accumulated knowledge helps in rapid creation and

maintenance of models with complex configuration
needs and engineering standards.

A typical problem in the enterprise computer
industry is distribution of cards in a optimized fashion.
The common practice is to capture generic logic like
‘card needs a slot’ or ‘place case in a cabinet’ in
reusable functions and methods. However practices
like various card-packing techniques for optimization
(Bandwidth mode / Performance mode) are not
typically addressed. STL for enterprise computer
industry will contain algorithms for the standard
optimization techniques used for the above problems
in the industry. Solution developer can make use of
the logic to evolve models that provide optimized
solutions to the sales force.

Based on Trilogy's SalesBUILDER
configuration products, we have successfully
developed and deployed industry-specific frameworks
used to create solutions that capture the configuration
logic for our Fortune 500 customers in the enterprise
computing and telecommunications industries. One
key learning in our experience is that it is important to
minimize the amount of customization required to
represent each customer's product portfolio. By
offering multiple alternative implementations to the
common industry-standard configuration problems,
the solution developer can select the appropriate
approach rather than implementing something custom.
As proposed, STL is a formalization of this approach
used in our solutions.

3 FUTURE WORK

The potential next steps to explore is to enhance the
utility of the STL by incorporating the following
feature set:
1. Ability to replicate BOM structures from ERP

models in to product model.
2. Ability to auto generate user interface for a

product model.

4 CONCLUSION

Benefits of STL in configurator will come through in
the reduction of effort needed to develop each product.
STL provides a streamlined process to evolve a
product model in the configurator from requirements.
Thereby it reduces the development effort and hence
the time to market.

54

Configuration Support for Ubiquitous Workspaces
Markus Stumptner Bruce Thomas

Advanced Computing Research Centre, University of South Australia
5095 Mawson Lakes (Adelaide) SA, email: {mst|thomas}@cs.unisa.edu.au

Introduction

Ubiquitous workspaces are future media-rich environments
that employ new forms of operating systems and services to
coordinate and manage interactions between people, multiple
display surfaces, information, personal devices, and workspace
applications [VER04]. LiveSpaces is a ubiquitous workspaces
approach that is addressing how physical spaces such as meeting
rooms can be augmented with a range of display technologies,
personal information appliances, speech and natural language
interfaces, interaction devices and contextual sensors to provide
for future interactive/intelligent workspaces. The Figure below
shows the LiveSpaces environment that has been set up to support
the Commander’s Planning Group in the AuSPlanS (distributed
joint headquarters planning) project.

Experience with LiveSpaces operation has shown that a
significant issue is the actual management of the workspace setup:
making sure that, for example, the same (or synchronized)
information is shown on the different screens in the LiveSpace,
which includes the laptops. In addition, each particular meeting
will involve a specific selection of devices (screens, pointing
devices, lights, loudspeakers) to be activated that is geared
towards its specific needs. Certain devices may be dependent on
other ones, leading to a situation where making the changes
required to move to the next meeting becomes a major task in
itself. A stage was quickly reached where intelligent support for
the transitions and setup choices of the LiveSpace was required.

Basic LiveSpace Building Blocks

Configuration is generally defined as the problem of
designing a product using a set of predefined components to solve
a particular task while taking into account a set of restrictions on
how the components can be combined. In more complex cases,
the fixed set of components is replaced by the notion of a set of
component types, typically organised in a class hierarchy together

with a declarative description of how the component types relate,
thereby providing an ontology of the domain. To model a
comprehensive application environment, we are dealing with five
groups of entities: data, devices, applications, users, and processes
(meetings).

A device is any digitally controllable hardware installation
providing a particular service. A special case are platforms
corresponding to a server or desktop/laptop machine running
applications. Applications and services correspond to programs
running in the overall workspace. Users (user models) exist
essentially to store access rights and preferences. Meeting
(Process) objects will encapsulate the top level state and
functionality.

A Livespace environment maps in a reasonable fashion to
the configuration ontologies that have been used in the past to
describe software or combined software/hardware systems
[ASM03], and to constraint-based representations [FLE98]. The
intent is to solve the configuration problem in typical fashion by
defining the knowledge base (the set of components and the
constraints between them), the specification for a desired system
(the functionality or the key components required for the system)
and then automatically generating a configuration (i.e., set of
components and connections) that satisfies all constraints.
The livespace configurator is expected to solve multiple tasks of
variable complexity: setup for prespecified meetings, switching
between different meetings, and save and restart for a meeting
that covers multiple sessions. The declarative representations also
permits automated health monitoring of the LiveSpace ubiquitous
interface architecture, seamlessly integrating user modeling,
hardware and software configuration, as well as generic setups
and adaptations of individual meetings.

REFERENCES
 [ASM03] T. Asikainen and Timo Soininen and Tomi Männistö,
A Koala-Based Ontology for Configurable Software Product
Families. Proceedings IJCAI Workshop on Configuration,
pp.76—81, 2003.
 [FLE98] G. Fleischanderl, G. Friedrich, A. Haselbock, H.
Schreiner, M. Stumptner. Configuring large-scale systems with
generative constraint satisfaction. IEEE Intelligent Systems,
13(4), Special Issue on Configuration, Juli/August 1998.

[SFH98] M. Stumptner G. Friedrich A. Haselbock. Generative
constraint-based configuration of large technical systems. AI
EDAM, Volume 12, Issue 04, September 1998, pp 307-320
[VER04] Vernik M.J., Johnson S., Vernik R.J. (2004) "e-Ghosts:
leaving virtual footprints in ubiquitous workspaces", Australasian
User Interface Conference, Dunedin NZ.

55

Using Constraint Optimization to Enhance the Diversity
in the Set of Computed Configurations

Diego Magro 1
1 Extended Abstract

Configuration problems may usually have several solutions (valid

configurations) and in many cases we are interested in more than

one solution. Indeed, in several situations the user requirements may

be satisfied by several configured products and more than one option

should be presented to the user. However, providing the user with

a list containing all the possibilities is usually not a good idea for

various reasons. First of all, the number of suitable configurations

may be huge and the user could be disoriented by a list containing

too many items. Secondly, in the set of configurations fulfilling the

requirements, there may be some subsets whose elements are very

similar, i.e. such that in any subset, each configuration is only a slight

variant of each other configuration in the same subset and it may be

not interesting for a user to see all these variants. Moreover, finding

all the solutions to a configuration problem may be computationally

too expensive. Therefore, in many application domains, it would be

useful to have a configurator system that can provide the user with a

restricted and manageable set of diverse configurations, i.e. such that

each of them is reasonably different from the others.

The problem of improving the diversity in a set of recommended

products has been dealt with in the context of content-based recom-

mender systems [1].

Here we discuss a similar approach in the context of configuration.

Different from classical recommender system domains, in configura-

tion ones, the set of products is not explicitly available a priori; in-

stead, the set of suitable configurations is computed on the fly, given

a general description of the configurable objects (which implicitly

represents the set of all the valid configurations) and the user require-

ments. Since, in general, it is not feasible to first compute all the suit-

able configurations and then select a subset of them to be presented

to the user, the approaches designed for classical content-based rec-

ommender systems to improve diversity in their suggestions cannot

be directly used in the configuration task.

In the last decades, a considerable effort has been devoted by both

academic and industrial research in order to automate the configura-

tion task. After the first rule-based configurators, a widely accepted

conceptualization for configuration has been defined [10], and differ-

ent approaches for the knowledge representation and the inference

mechanisms have been adopted either based on logic, e.g. [9, 5, 8]),

on constraint satisfaction, e.g. [7, 11, 2, 6]), or on both [4].

Here, we refer to the CSP framework and we assume that a config-

uration problem is encoded into a CSP instance whose solutions are

the valid configurations. The problem of finding diverse (and similar)

solutions to CSP instances has also been dealt with in [3].

We assume that the similarity degree between two configurations1 University of Torino, Italy, email: magro@di.unito.it

can be measured as a weighted sum of the similarities between

the values of the corresponding variables in the two configurations.

Therefore, for each variable, we need a weight, representing its im-

portance w.r.t. the similarity assessment, and a similarity function

defined over each pair of valid values for that variable; moreover,

the similarity degree of a set of configurations is expressed as the

average similarity degree of each pair of configurations in the set.

Given that, the problem of finding a configuration with the small-

est similarity w.r.t. a set of already computed configurations can be

easily formalized as a Costraint Optimization Problem. This allows

one to define in the configuration domain an algorithm, similar to

the GreedySelection algorithm presented in [1], which (differently

from the GreedySelection algorithm) does not assume a given list of

items among which selecting those to recommend to the user and

such that it dynamically computes the configurations, instead. Even

if this approach does not offer the guarantee of always providing the

best set of products, we think that it could be interesting to see if it

can provide also in configuration domains the same benefits that it

has provided in classical content-based recommender systems [1].

REFERENCES

[1] K. Bradley and B. Smith, ‘Improving recommendation diversity’, in
Proc. 12th National Conference in Artificial Intelligence Cognitive Sci-
ence (AICS-01), pp. 75–84, (2001).

[2] E. Gelle and M. Sabin, ‘Solving methods for conditional constraint sat-
isfaction’, in Proc. IJCAI-03 Configuration WS, pp. 7–12, (2003).

[3] E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh, ‘Finding diverse

and similar solutions in constraint programming’, in Proc. of the AAAI
05, (2005).

[4] U. Junker and D. Mailharro, ‘The logic of ilog (j)configurator: Combin-
ing constraint programming with a description logic’, in Proc. IJCAI-03
Configuration WS, pp. 13–20, (2003).

[5] D. Magro and P. Torasso, ‘Decomposition strategies for configuration
problems’, AIEDAM, Special Issue on Configuration, 17(1), 51–73,
(2003).

[6] B. O’Sullivan, A. Ferguson, and E. Freuder, ‘A decision tree learning
and constraint satisfaction hybrid for interactive problem solving’, in
Proc. IJCAI-05 Configuration WS, pp. 1–6, (2005).

[7] D. Sabin and E.C. Freuder, ‘Configuration as composite constraint sat-
isfaction’, in Proc. Artificial Intelligence and Manufacturing. Research
Planning Workshop, pp. 153–161, (1996).

[8] C. Sinz, A. Kaiser, and W. küchlin, ‘Formal methods for the validation
of automotive product configuration data’, AIEDAM, Special Issue on

Configuration, 17(1), 75–97, (2003).
[9] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen, ‘Unified configu-

ration knowledge representation using weight constraint rules’, in Proc.

ECAI 2000 Configuration WS, pp. 79–84, (2000).
[10] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a gen-

eral ontology of configuration’, AI EDAM, 12(4), 383–397, (1998).

[11] M. Veron and M. Aldanondo, ‘Yet another approach to ccsp for con-
figuration problem’, in Proc. ECAI 2000 Configuration WS, pp. 59–62,
(2000).

56

