


A Duality-Aware Calculus for
Quantified Boolean Formulas

Katalin Fazekas Martina Seidl Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University

Linz, Austria

24. September, 2016
18th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing



INTRODUCTION



Introduction (1)

Quantified Boolean Formulas (QBF):

� Extension of propositional logic with explicit quantifiers
(∀, ∃) over the variables

� Canonical PSPACE-complete problem: more succinct
encoding than SAT

� Several application domains: synthesis, AI, verification, ...

∃x∃y∀u∃z.(u⇒ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z) ∧ (x⇔ ¬y)

closed QBF in prenex form

prefix matrix

1/14



Introduction (1)

Quantified Boolean Formulas (QBF):

� Extension of propositional logic with explicit quantifiers
(∀, ∃) over the variables

� Canonical PSPACE-complete problem: more succinct
encoding than SAT

� Several application domains: synthesis, AI, verification, ...

∃x∃y∀u∃z.(u⇒ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z) ∧ (x⇔ ¬y)

closed QBF in prenex form

prefix matrix

1/14



Introduction (1)

Quantified Boolean Formulas (QBF):

� Extension of propositional logic with explicit quantifiers
(∀, ∃) over the variables

� Canonical PSPACE-complete problem: more succinct
encoding than SAT

� Several application domains: synthesis, AI, verification, ...

∃x∃y∀u∃z.(u⇒ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z) ∧ (x⇔ ¬y)

closed QBF in prenex form

prefix

matrix

1/14



Introduction (1)

Quantified Boolean Formulas (QBF):

� Extension of propositional logic with explicit quantifiers
(∀, ∃) over the variables

� Canonical PSPACE-complete problem: more succinct
encoding than SAT

� Several application domains: synthesis, AI, verification, ...

∃x∃y∀u∃z.(u⇒ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z) ∧ (x⇔ ¬y)

closed QBF in prenex form

prefix matrix

1/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)

literals clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)

cube

DNF

2/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)
literals

clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)

cube

DNF

2/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)
literals clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)

cube

DNF

2/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)
literals clause

CNF

� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)

cube

DNF

2/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)
literals clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)

cube

DNF

2/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)
literals clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)
cube

DNF

2/14



Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)
literals clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)
cube

DNF

2/14



Introduction (3)

PCNF (PDNF) formula under assignment

� remove clauses (cubes) with satisfied (falsified) literals

� remove falsified (satisfied) literals from clauses (cubes)

Semantics of QBF

� QBF ∀xQ.ϕ is satisfiable iff Q.ϕ[x] and Q.ϕ[¬x] are
satisfiable

� QBF ∃xQ.ϕ is satisfiable iff Q.ϕ[x] or Q.ϕ[¬x] is satisfiable

3/14



Introduction (3)

PCNF (PDNF) formula under assignment

� remove clauses (cubes) with satisfied (falsified) literals

� remove falsified (satisfied) literals from clauses (cubes)

Semantics of QBF

� QBF ∀xQ.ϕ is satisfiable iff Q.ϕ[x] and Q.ϕ[¬x] are
satisfiable

� QBF ∃xQ.ϕ is satisfiable iff Q.ϕ[x] or Q.ϕ[¬x] is satisfiable

3/14



Introduction (4)

Tree model of true formula:

∀x∃y.(x ∨ ȳ) ∧ (x̄ ∨ y)

x

y

> ⊥

y

⊥ >

Tree refutation of false formula:

∃x∀y.(x ∨ ȳ) ∧ (x̄ ∨ y)

x

y

> ⊥

y

⊥ >

4/14



Introduction (4)

Tree model of true formula:

∀x∃y.(x ∨ ȳ) ∧ (x̄ ∨ y)

x

y

> ⊥

y

⊥ >

Tree refutation of false formula:

∃x∀y.(x ∨ ȳ) ∧ (x̄ ∨ y)

x

y

> ⊥

y

⊥ >

4/14



SEARCH-BASED QBF
SOLVING



Search-Based QBF Solving: QCDCL (1)

� QBF-specific version of
SAT CDCL algorithm

� expects the problem to be
formulated in PCNF

� traverses the assignment
tree of the input formula

� conflict analysis similar to
SAT solvers

� satisfaction recognition
requires additional efforts

5/14



Search-Based QBF Solving: QCDCL (2)

PCNF φ QBCP+Decide Conflict/Solution?

Backtracking Learn
clause/cube C

Done

A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

1. Construct assignment (A) by QBF specific propagation and
decisions.

6/14



Search-Based QBF Solving: QCDCL (2)

PCNF φ QBCP+Decide Conflict/Solution?

Backtracking Learn
clause/cube C

Done

A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

1. Construct assignment (A) by QBF specific propagation and
decisions.

2. Check the followings:

� Is there a falsified clause under A and universal reduction?
(Conflict)

� Are all the clauses of the formula satisfied under A? (Solution)

6/14



Search-Based QBF Solving: QCDCL (2)

PCNF φ QBCP+Decide Conflict/Solution?

Backtracking Learn
clause/cube C

Done

A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

3. Derive a clause (cube) C from A and φ and learn it.

6/14



Search-Based QBF Solving: QCDCL (2)

PCNF φ QBCP+Decide Conflict/Solution?

Backtracking Learn
clause/cube C

Done

A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

3. Derive a clause (cube) C from A and φ and learn it.
4. Use the learned clause (cube) to backtrack.

� C = ∅: no place to backtrack, the formula is UNSAT (SAT).
� C 6= ∅: C is ’driving’ the backtracking.

6/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



ABSTRACT QBF SOLVING



Duality-Aware Abstract QBF Solver

Abstract Solver:

� Describes the essential properties of QBF solvers similar
to the well-known DPLL transition system

� Provides a framework for analysing, comparing and
composing solvers without technical details

� Duality-Aware: Conflicts and solutions are handled in the
same way

8/14



State Transition System as QBF Solver

Possible states of a QBF solver: A ‖ D ‖ C

� A quantifier prefix: Q
� The current assignment (sequence of literals): A

� A set of cubes: D
� A set of clauses: C

Possible steps of a QBF solver:

� Transition relation over the states defined by conditional
transition rules

� Different specializations, heuristics can be seen as
refinements of the relations

Describe the solving process as a derivation in the calculus.

9/14



State Transition System as QBF Solver

Possible states of a QBF solver: A ‖ D ‖ C

� A quantifier prefix: Q
� The current assignment (sequence of literals): A

� A set of cubes: D
� A set of clauses: C

Possible steps of a QBF solver:

� Transition relation over the states defined by conditional
transition rules

� Different specializations, heuristics can be seen as
refinements of the relations

Describe the solving process as a derivation in the calculus.

9/14



State Transition System as QBF Solver

Possible states of a QBF solver: A ‖ D ‖ C

� A quantifier prefix: Q
� The current assignment (sequence of literals): A

� A set of cubes: D
� A set of clauses: C

Possible steps of a QBF solver:

� Transition relation over the states defined by conditional
transition rules

� Different specializations, heuristics can be seen as
refinements of the relations

Describe the solving process as a derivation in the calculus.

9/14



Calculus Rules
A ‖ D ‖ C ∧ C

A `∃ ‖ D ‖ C ∧ C
`∃ existential unit in C[A] (Unit∃)

A ‖ D ∨ C ‖ C

A ¬`∀ ‖ D ∨ C ‖ C
`∀ universal unit in C[A] (Unit∀)

A ‖ D ‖ C

A `∃ ‖ D ‖ C
`∃ ∈ RQ

∃ (D[A]) is pure (Pure∃)

A ‖ D ‖ C

A ¬`∀ ‖ D ‖ C
`∀ ∈ RQ

∀ (C[A]) is pure (Pure∀)

A ‖ D ‖ C

A ‖ D ‖ C ∧ C
C �Q C (LearnCNF)

A ‖ D ‖ C

A ‖ D ∨ C ‖ C
D �Q

C (LearnDNF)

A`d∃A′ ‖ D ‖ C

A ‖ D ‖ C
(Undo∃)

A`d∀A′ ‖ D ‖ C

A ‖ D ‖ C
(Undo∀)

A ‖ D ‖ C ∧ ∅
⊥

(FinalCNF)

A ‖ D ∨ ∅ ‖ C
>

(FinalDNF)

A ‖ D ‖ C

A `d ‖ D ‖ C
` is unassigned and all `′ with `

′
<Q ` are assigned in A (Decide)

10/14



Remarks

� Strategy: Additional constraints in order to guarantee
termination and to make the solver more realistic.

� Extendable: further rules to represent functionalities of
practical solvers (e.g. forget, restart).

� If duality can not be assumed, it is possible to easily adopt
the system for PCNF-based solvers.

11/14



Remarks

� Strategy: Additional constraints in order to guarantee
termination and to make the solver more realistic.

� Extendable: further rules to represent functionalities of
practical solvers (e.g. forget, restart).

� If duality can not be assumed, it is possible to easily adopt
the system for PCNF-based solvers.

11/14



Remarks

� Strategy: Additional constraints in order to guarantee
termination and to make the solver more realistic.

� Extendable: further rules to represent functionalities of
practical solvers (e.g. forget, restart).

� If duality can not be assumed, it is possible to easily adopt
the system for PCNF-based solvers.

11/14



Example (1)

� Given the following formula

∃x∀y.x⇔ y

� in PCNF (C):

∃x∀y∃p. p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y)

� in PDNF (D):

∃x∀y∀q. q ∨ (¬q ∧ ¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y)

� Merged Prefix:
Q =∃x∀y∃p∀q

� Starting state:
S = ∅ ‖ D ‖ C

12/14



Example (1)

� Given the following formula

∃x∀y.x⇔ y

� in PCNF (C):

∃x∀y∃p. p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y)

� in PDNF (D):

∃x∀y∀q. q ∨ (¬q ∧ ¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y)

� Merged Prefix:
Q =∃x∀y∃p∀q

� Starting state:
S = ∅ ‖ D ‖ C

12/14



Example (1)

� Given the following formula

∃x∀y.x⇔ y

� in PCNF (C):

∃x∀y∃p. p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y)

� in PDNF (D):

∃x∀y∀q. q ∨ (¬q ∧ ¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y)

� Merged Prefix:
Q =∃x∀y∃p∀q

� Starting state:
S = ∅ ‖ D ‖ C

12/14



Example (1)

� Given the following formula

∃x∀y.x⇔ y

� in PCNF (C):

∃x∀y∃p. p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y)

� in PDNF (D):

∃x∀y∀q. q ∨ (¬q ∧ ¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y)

� Merged Prefix:
Q =∃x∀y∃p∀q

� Starting state:
S = ∅ ‖ D ‖ C

12/14



Example (1)

� Given the following formula

∃x∀y.x⇔ y

� in PCNF (C):

∃x∀y∃p. p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y)

� in PDNF (D):

∃x∀y∀q. q ∨ (¬q ∧ ¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y)

� Merged Prefix:
Q =∃x∀y∃p∀q

� Starting state:
S = ∅ ‖ D ‖ C

12/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C Unit∃:

A ‖ D ‖ C ∧ C

A `∃ ‖ D ‖ C ∧ C

`∃ existential unit in C[A]

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C

Unit∃:

A ‖ D ‖ C ∧ C

A `∃ ‖ D ‖ C ∧ C

`∃ existential unit in C[A]

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C

Unit∀:

A ‖ D ∨ C ‖ C
A ¬`∀ ‖ D ∨ C ‖ C

`∀ universal unit in C[A]

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C

Unit∀:

A ‖ D ∨ C ‖ C
A ¬`∀ ‖ D ∨ C ‖ C

`∀ universal unit in C[A]

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C

Unit∃:

A ‖ D ‖ C ∧ C

A `∃ ‖ D ‖ C ∧ C

`∃ existential unit in C[A]

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C
Unit∃

p ¬q x ‖ D ‖ C

Unit∃:

A ‖ D ‖ C ∧ C

A `∃ ‖ D ‖ C ∧ C

`∃ existential unit in C[A]

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C
Unit∃

p ¬q x ‖ D ‖ C

LearnCNF:

A ‖ D ‖ C
A ‖ D ‖ C ∧ C

C �Q C

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C
Unit∃

p ¬q x ‖ D ‖ C
LearnCNF

p ¬q x ‖ D ‖ C ∧ ∅

LearnCNF:

A ‖ D ‖ C
A ‖ D ‖ C ∧ C

C �Q C

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C
Unit∃

p ¬q x ‖ D ‖ C
LearnCNF

p ¬q x ‖ D ‖ C ∧ ∅

FinalCNF:

A ‖ D ‖ C ∧ ∅
⊥

13/14



Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
Unit∃

p ‖ D ‖ C
Unit∀

p ¬q ‖ D ‖ C
Unit∃

p ¬q x ‖ D ‖ C
LearnCNF

p ¬q x ‖ D ‖ C ∧ ∅
FinalCNF⊥

FinalCNF:

A ‖ D ‖ C ∧ ∅
⊥

13/14



Conclusion

Abstract search-based QBF solvers

� Simple formalism to describe the behavior of search-based
QBF solvers without the technical details

� Provides better understanding of individual solving
techniques

� Flexible representation: specialization of calculus rules to
describe e.g. different decision heuristics

� Step towards verified QBF solvers

Future work

� Formalize preprocessing techniques

� Comparison to non-QCDCL solvers

14/14


	Introduction
	Search-Based QBF Solving
	Abstract QBF Solving

