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INTRODUCTION



Introduction (1)

Quantified Boolean Formulas (QBF):

� Extension of propositional logic with explicit quantifiers
(∀, ∃) over the variables

� Canonical PSPACE-complete problem: more succinct
encoding than SAT

� Several application domains: synthesis, AI, verification, ...

∃x∃y∀u∃z.(u⇒ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z) ∧ (x⇔ ¬y)

closed QBF in prenex form

prefix matrix
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Introduction (2)

� QBFs in Prenex CNF (PCNF):

∃x∃y∀u∃z.(¬u ∨ z) ∧ (y ∨ u ∨ ¬z) ∧ (x ∨ ¬u ∨ ¬z)

literals clause

CNF
� QBFs in Prenex DNF (PDNF):

∀x∀y∃u∀z.(u ∧ ¬z) ∨ (¬y ∧ ¬u ∧ z) ∨ (¬x ∧ u ∧ z)

cube

DNF
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Introduction (3)

PCNF (PDNF) formula under assignment

� remove clauses (cubes) with satisfied (falsified) literals

� remove falsified (satisfied) literals from clauses (cubes)

Semantics of QBF

� QBF ∀xQ.ϕ is satisfiable iff Q.ϕ[x] and Q.ϕ[¬x] are
satisfiable

� QBF ∃xQ.ϕ is satisfiable iff Q.ϕ[x] or Q.ϕ[¬x] is satisfiable
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Introduction (4)

Tree model of true formula:

∀x∃y.(x ∨ ȳ) ∧ (x̄ ∨ y)

x

y

> ⊥

y

⊥ >

Tree refutation of false formula:

∃x∀y.(x ∨ ȳ) ∧ (x̄ ∨ y)

x

y

> ⊥

y

⊥ >
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SEARCH-BASED QBF
SOLVING



Search-Based QBF Solving: QCDCL (1)

� QBF-specific version of
SAT CDCL algorithm

� expects the problem to be
formulated in PCNF

� traverses the assignment
tree of the input formula

� conflict analysis similar to
SAT solvers

� satisfaction recognition
requires additional efforts
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Search-Based QBF Solving: QCDCL (2)

PCNF φ QBCP+Decide Conflict/Solution?

Backtracking Learn
clause/cube C

Done

A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

1. Construct assignment (A) by QBF specific propagation and
decisions.
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A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

1. Construct assignment (A) by QBF specific propagation and
decisions.

2. Check the followings:

� Is there a falsified clause under A and universal reduction?
(Conflict)

� Are all the clauses of the formula satisfied under A? (Solution)
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PCNF φ QBCP+Decide Conflict/Solution?

Backtracking Learn
clause/cube C

Done

A = ∅ A

yes

no

C 6= ∅

A := A′

C = ∅

3. Derive a clause (cube) C from A and φ and learn it.
4. Use the learned clause (cube) to backtrack.

� C = ∅: no place to backtrack, the formula is UNSAT (SAT).
� C 6= ∅: C is ’driving’ the backtracking.
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Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



Observations

� Either too technical (pseudo-code) or simply informal
(high-level workflow) description of search-based QBF
solvers

� How to analyse the behaviour of search-based QBF
solvers?

� How to compare them with other QBF solving approaches?

� How to verify them?

7/14



ABSTRACT QBF SOLVING



Duality-Aware Abstract QBF Solver

Abstract Solver:

� Describes the essential properties of QBF solvers similar
to the well-known DPLL transition system

� Provides a framework for analysing, comparing and
composing solvers without technical details

� Duality-Aware: Conflicts and solutions are handled in the
same way

8/14



State Transition System as QBF Solver

Possible states of a QBF solver: A ‖ D ‖ C

� A quantifier prefix: Q
� The current assignment (sequence of literals): A

� A set of cubes: D
� A set of clauses: C

Possible steps of a QBF solver:

� Transition relation over the states defined by conditional
transition rules

� Different specializations, heuristics can be seen as
refinements of the relations

Describe the solving process as a derivation in the calculus.
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Calculus Rules
A ‖ D ‖ C ∧ C

A `∃ ‖ D ‖ C ∧ C
`∃ existential unit in C[A] (Unit∃)

A ‖ D ∨ C ‖ C

A ¬`∀ ‖ D ∨ C ‖ C
`∀ universal unit in C[A] (Unit∀)

A ‖ D ‖ C

A `∃ ‖ D ‖ C
`∃ ∈ RQ

∃ (D[A]) is pure (Pure∃)

A ‖ D ‖ C

A ¬`∀ ‖ D ‖ C
`∀ ∈ RQ

∀ (C[A]) is pure (Pure∀)

A ‖ D ‖ C

A ‖ D ‖ C ∧ C
C �Q C (LearnCNF)

A ‖ D ‖ C

A ‖ D ∨ C ‖ C
D �Q

C (LearnDNF)

A`d∃A′ ‖ D ‖ C

A ‖ D ‖ C
(Undo∃)

A`d∀A′ ‖ D ‖ C

A ‖ D ‖ C
(Undo∀)

A ‖ D ‖ C ∧ ∅
⊥

(FinalCNF)

A ‖ D ∨ ∅ ‖ C
>

(FinalDNF)

A ‖ D ‖ C

A `d ‖ D ‖ C
` is unassigned and all `′ with `

′
<Q ` are assigned in A (Decide)
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Remarks

� Strategy: Additional constraints in order to guarantee
termination and to make the solver more realistic.

� Extendable: further rules to represent functionalities of
practical solvers (e.g. forget, restart).

� If duality can not be assumed, it is possible to easily adopt
the system for PCNF-based solvers.
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Example (1)

� Given the following formula

∃x∀y.x⇔ y

� in PCNF (C):

∃x∀y∃p. p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y)

� in PDNF (D):

∃x∀y∀q. q ∨ (¬q ∧ ¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y)

� Merged Prefix:
Q =∃x∀y∃p∀q

� Starting state:
S = ∅ ‖ D ‖ C
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Example (2)

Q = ∃x∀y∃p∀q

∅pp ¬qp ¬q x

A DD[A]RQ
∃ (D[A]) CC[A]RQ

∀ (C[A])

q

¬x ∧ ¬y ∧ ¬q

x ∧ y ∧ ¬q

p

¬x ∨ y ∨ ¬p

x ∨ ¬y ∨ ¬p

∅

⊥

∅ ‖ D ‖ C
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FinalCNF:

A ‖ D ‖ C ∧ ∅
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Conclusion

Abstract search-based QBF solvers

� Simple formalism to describe the behavior of search-based
QBF solvers without the technical details

� Provides better understanding of individual solving
techniques

� Flexible representation: specialization of calculus rules to
describe e.g. different decision heuristics

� Step towards verified QBF solvers

Future work

� Formalize preprocessing techniques

� Comparison to non-QCDCL solvers
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