

Implicit Hitting Set Algorithms for
Maximum Satisfiability Modulo Theories

Katalin Fazekas1 Fahiem Bacchus2 Armin Biere1

1Johannes Kepler University Linz, Austria
2University of Toronto, Canada

Oxford, 14. July, 2018
9th International Joint Conference on

Automated Reasoning

Motivation

� Satisfiability Modulo Theories (SMT)
� Satisfiability of ground first-order formula wrt. T
� Widely used: model checking, test case generation etc.

� Maximum Satisfiability (MaxSAT)
� Optimization in Boolean domain
� Widely used: planning, fault localization, etc.

� Maximum Satisfiability Modulo Theories (MaxSMT)
� Optimization over Boolean abstraction of first-order formula
� Extension of SMT with Boolean-based optimization
� Extension of MaxSAT with T -reasoning
� Many more potential application

1/18

Motivation

� Satisfiability Modulo Theories (SMT)
� Satisfiability of ground first-order formula wrt. T
� Widely used: model checking, test case generation etc.

� Maximum Satisfiability (MaxSAT)
� Optimization in Boolean domain
� Widely used: planning, fault localization, etc.

� Maximum Satisfiability Modulo Theories (MaxSMT)
� Optimization over Boolean abstraction of first-order formula
� Extension of SMT with Boolean-based optimization
� Extension of MaxSAT with T -reasoning
� Many more potential application

1/18

Motivation

� Satisfiability Modulo Theories (SMT)
� Satisfiability of ground first-order formula wrt. T
� Widely used: model checking, test case generation etc.

� Maximum Satisfiability (MaxSAT)
� Optimization in Boolean domain
� Widely used: planning, fault localization, etc.

� Maximum Satisfiability Modulo Theories (MaxSMT)
� Optimization over Boolean abstraction of first-order formula
� Extension of SMT with Boolean-based optimization
� Extension of MaxSAT with T -reasoning
� Many more potential application

1/18

Goals

� Efficient, sound MaxSMT solving

� Harvest advances of SMT and MaxSAT:
� From SMT: separate T -reasoning and Boolean reasoning (as in DPLL(T))
� From MaxSAT: decouple optimization from Boolean reasoning (as in IHS)

� Separation between optimization, propositional and theory specific reasoning
� Exploitation of more efficient specialized solvers

2/18

Goals

� Efficient, sound MaxSMT solving
� Harvest advances of SMT and MaxSAT:

� From SMT: separate T -reasoning and Boolean reasoning (as in DPLL(T))
� From MaxSAT: decouple optimization from Boolean reasoning (as in IHS)

� Separation between optimization, propositional and theory specific reasoning
� Exploitation of more efficient specialized solvers

2/18

Goals

� Efficient, sound MaxSMT solving
� Harvest advances of SMT and MaxSAT:

� From SMT: separate T -reasoning and Boolean reasoning (as in DPLL(T))
� From MaxSAT: decouple optimization from Boolean reasoning (as in IHS)

� Separation between optimization, propositional and theory specific reasoning
� Exploitation of more efficient specialized solvers

2/18

Contributions
� Formal abstract framework for describing MaxSMT

� Transition system for formal reasoning
� Flexible: almost any scheduling leads to a solution
� Additionally extends DPLL(T) with assumptions

� General solver architecture

SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM)

hard(F) atoms(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume
AM

Lemma
C

Opt. Sol.

� Evaluation of some of the possible instantiations

3/18

Contributions
� Formal abstract framework for describing MaxSMT

� Transition system for formal reasoning
� Flexible: almost any scheduling leads to a solution
� Additionally extends DPLL(T) with assumptions

� General solver architecture

SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM)

hard(F) atoms(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume
AM

Lemma
C

Opt. Sol.

� Evaluation of some of the possible instantiations

3/18

Contributions
� Formal abstract framework for describing MaxSMT

� Transition system for formal reasoning
� Flexible: almost any scheduling leads to a solution
� Additionally extends DPLL(T) with assumptions

� General solver architecture

SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM)

hard(F) atoms(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume
AM

Lemma
C

Opt. Sol.

� Evaluation of some of the possible instantiations

3/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Maximum Satisfiability - MaxSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

� Truth assignment for x1, x2, x3, x4 that maximizes the sum of weights of satisfied
clauses

� Weighted clauses (C ; n): cost of falsification of C is n
� (C ; ∞): hard clauses must be satisfied (hard(F) vs. soft(F))

� Solution: an assignment that satisfies all hard clauses
� Optimal Solution: solution with highest sum of weights of satisfied soft clauses

4/18

Maximum Satisfiability - MaxSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

� Truth assignment for x1, x2, x3, x4 that maximizes the sum of weights of satisfied
clauses

� Weighted clauses (C ; n): cost of falsification of C is n
� (C ; ∞): hard clauses must be satisfied (hard(F) vs. soft(F))

� Solution: an assignment that satisfies all hard clauses
� Optimal Solution: solution with highest sum of weights of satisfied soft clauses

4/18

Maximum Satisfiability - MaxSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

� Truth assignment for x1, x2, x3, x4 that maximizes the sum of weights of satisfied
clauses

� Weighted clauses (C ; n): cost of falsification of C is n
� (C ; ∞): hard clauses must be satisfied (hard(F) vs. soft(F))

� Solution: an assignment that satisfies all hard clauses

� Optimal Solution: solution with highest sum of weights of satisfied soft clauses

4/18

Maximum Satisfiability - MaxSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

� Truth assignment for x1, x2, x3, x4 that maximizes the sum of weights of satisfied
clauses

� Weighted clauses (C ; n): cost of falsification of C is n
� (C ; ∞): hard clauses must be satisfied (hard(F) vs. soft(F))

� Solution: an assignment that satisfies all hard clauses
� Optimal Solution: solution with highest sum of weights of satisfied soft clauses

4/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}
. . .

5/18

Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}
. . .

5/18

Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}

κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}
. . .

5/18

Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}

κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}
. . .

5/18

Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}

. . .

5/18

Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}
. . .

5/18

Hitting Sets

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of
soft clauses that has a non-empty intersection with every set in K: ∀κ ∈ K : η∩κ 6= ∅

HS(κ0, κ1, κ2) : {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1)} cost
∑

: 2

� Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of
any other hitting set

MinHS(κ0, κ1, κ2) : {(x2 ; 1)} cost
∑

: 1

6/18

Hitting Sets

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of
soft clauses that has a non-empty intersection with every set in K: ∀κ ∈ K : η∩κ 6= ∅

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}

HS(κ0, κ1, κ2) : {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1)} cost
∑

: 2

� Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of
any other hitting set

MinHS(κ0, κ1, κ2) : {(x2 ; 1)} cost
∑

: 1

6/18

Hitting Sets

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of
soft clauses that has a non-empty intersection with every set in K: ∀κ ∈ K : η∩κ 6= ∅

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}

HS(κ0, κ1, κ2) : {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1)} cost
∑

: 2

� Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of
any other hitting set

MinHS(κ0, κ1, κ2) : {(x2 ; 1)} cost
∑

: 1

6/18

Hitting Sets

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of
soft clauses that has a non-empty intersection with every set in K: ∀κ ∈ K : η∩κ 6= ∅

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}

HS(κ0, κ1, κ2) : {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1)} cost
∑

: 2

� Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of
any other hitting set

MinHS(κ0, κ1, κ2) : {(x2 ; 1)} cost
∑

: 1

6/18

Hitting Sets

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of
soft clauses that has a non-empty intersection with every set in K: ∀κ ∈ K : η∩κ 6= ∅

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}

HS(κ0, κ1, κ2) : {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1)} cost
∑

: 2

� Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of
any other hitting set

MinHS(κ0, κ1, κ2) : {(x2 ; 1)} cost
∑

: 1
6/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all
the unsatisfiable cores (U) of F .

� ∀κ ∈ U : η ∩ κ 6= ∅ ↔ {F − η} is SAT
� η is MinHS(U) ↔ all satisfying assignments of {F − η} is optimal

7/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all
the unsatisfiable cores (U) of F .

� ∀κ ∈ U : η ∩ κ 6= ∅ ↔ {F − η} is SAT

� η is MinHS(U) ↔ all satisfying assignments of {F − η} is optimal

7/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all
the unsatisfiable cores (U) of F .

� ∀κ ∈ U : η ∩ κ 6= ∅ ↔ {F − η} is SAT
� η is MinHS(U) ↔ all satisfying assignments of {F − η} is optimal

7/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.
� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.
� If η is arbritary HS: No guarantee of optimality.

8/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.
Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.
� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.
� If η is arbritary HS: No guarantee of optimality.

8/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.
Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.

� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.
� If η is arbritary HS: No guarantee of optimality.

8/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.
Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.
� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.
� If η is arbritary HS: No guarantee of optimality.

8/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.
Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.
� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.

� If η is arbritary HS: No guarantee of optimality.

8/18

Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.
Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.
� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.
� If η is arbritary HS: No guarantee of optimality.

8/18

IHS Algorithms for MaxSAT
F

HS(K)

(¬x1 ∨ ¬x2) x1

(¬x2 ∨ x3) x2

(¬x3 ∨ ¬x4) x4

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F

HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x1

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x1

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?

SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1

(¬x2 ∨ x3 ∨ a2) ¬a2 x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x1

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?

SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1

(¬x2 ∨ x3 ∨ a2) x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x1

¬a2

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?

SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1

(¬x2 ∨ x3 ∨ a2) x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x1

¬a2

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F HS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1

(¬x2 ∨ x3 ∨ a2) x2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x1

¬a2

SAT(hard(F)) assuming { ¬a1, ¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming { ¬a1, ¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming { ¬a1, ¬a3, x2, x4 }?

SAT(hard(F)) assuming { ¬a1, ¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

AM

Sol.

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F MinHS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x2

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

AM

Sol.

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F MinHS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x2

SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

AM

Sol.

hard(F)
A

Assume

Opt. Sol.

9/18

IHS Algorithms for MaxSAT
F MinHS(K)

(¬x1 ∨ ¬x2 ∨ a1) ¬a1 x1

(¬x2 ∨ x3 ∨ a2) ¬a2

(¬x3 ∨ ¬x4 ∨ a3) ¬a3 x4

x2

SAT(hard(F)) assuming { ¬a1, ¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming { ¬a1, ¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming { ¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming { ¬a1,¬a2,¬a3, x1, x4 }?

SATOPT

optSoln(AM)

cost over
soft(F) K = ∅

AM

Sol.

hard(F)
A

Assume

Opt. Sol.

9/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

IHS Algorithms for MaxSMT

(t1 6= t2 ∨ t1 6= t1 ∨ a1) ¬a1 t1 = t2

(t1 6= t1 ∨ x3 ∨ a2) ¬a2 t1 = t1

(¬x3 ∨ f(t1) 6= f(t2) ∨ a3) ¬a3 f(t1) = f(t2)

� Solution in MaxSMT: satisfies all hard clauses and all theory axioms
� When should we start to consider these axioms?

10/18

IHS Algorithms for MaxSMT

(t1 6= t2 ∨ t1 6= t1 ∨ a1) ¬a1 t1 = t2

(t1 6= t1 ∨ x3 ∨ a2) ¬a2 t1 = t1

(¬x3 ∨ f(t1) 6= f(t2) ∨ a3) ¬a3 f(t1) = f(t2)

� Solution in MaxSMT: satisfies all hard clauses and all theory axioms

� When should we start to consider these axioms?

10/18

IHS Algorithms for MaxSMT

(t1 6= t2 ∨ t1 6= t1 ∨ a1) ¬a1 t1 = t2

(t1 6= t1 ∨ x3 ∨ a2) ¬a2 t1 = t1

(¬x3 ∨ f(t1) 6= f(t2) ∨ a3) ¬a3 f(t1) = f(t2)

� Solution in MaxSMT: satisfies all hard clauses and all theory axioms
� When should we start to consider these axioms?

10/18

IHS Algorithms for MaxSMT

MaxSAT Solver

SMT Solver

SATOPT

optSoln(AM)

Theories

hard(F)

atoms(F)

cost over
soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

AM

Lemma
C

11/18

IHS Algorithms for MaxSMT

MaxSAT Solver

SMT Solver

SMTOPT

optSoln(AM)

Theories

hard(F)

atoms(F)

cost over
soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

AM

Lemma
C

11/18

IHS Algorithms for MaxSMT

MaxSAT Solver

SMT Solver

SATOPT

optSoln(AM)

Theories

hard(F) atoms(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

AM

Lemma
C

11/18

A-MaxSMT Calculus
SAT/SMT-Transition
(LB,UB, µ) |K | 〈∗〉 =⇒

(LB,UB, µ) |K | 〈∗′〉
if
{
∗′ is reachable from ∗ by
a single A-Sat/A-Smt transition step

Core
(LB,UB, µ) |K | 〈conflict(F,C)〉 =⇒

(LB,UB, µ) |K,κ | 〈conflict(F,C)〉
if
{

κ = {(¬`) | ` ∈ C} and κ 6∈ K
(κ is set of soft clauses)

HS
(LB,UB, µ) |K | 〈∗〉 =⇒

(LB,UB, µ) |K | 〈A′ | ∅ | F 〉
if
{

η = HS(K)
A′ = {` | (`) ∈ (soft(F)− η)}

MinHS
(LB,UB, µ) |K | 〈∗〉 =⇒

(LB′,UB, µ) |K | 〈A′ | ∅ | F 〉
if

{
η = minHS(K)
A′ = {` | (`) ∈ (soft(F)− η)}
LB′ = max(LB, cost(η))

ImprovedSolution
(LB,UB, µ) |K | 〈T -SAT(AM,F)〉 =⇒

(LB, cost(AM), AM) |K | 〈T -SAT(AM,F)〉
if cost(AM) < UB

OptimalSolution
(LB,UB, µ) |K | 〈∗〉 =⇒ optSoln(µ) if LB ≥ UB 12/18

A-SMT Calculus
UnitProp
A |M | F =⇒ A |M ` | F if

{
There is a clause (C ∨ `) ∈ F s.t.
AM |= ¬C and atom(`) /∈ atoms(AM)

Decide
A |M | F =⇒ A |M `d | F if atom(`) ∈

(
atoms(F) \ atoms(AM)

)
T -Backjump
A |M`dN | F =⇒ A |M `′ | F if

{
There is a clause C ∈ F s.t. AM`dN |= ¬C
and a clause C′ ∨ `′ s.t. F |=T C′ ∨ `′,
AM |= ¬C′ and atom(`′) ∈ atoms(`dN)

T -Learn
A |M | F =⇒ A |M | F,C if

{
F |=T C and C 6∈ F
atoms(C) ⊆

(
atoms(F) ∪ atoms(AM)

)
T -Forget
A |M | F,C =⇒ A |M | F if F |=T C

T -Model
A |M | F =⇒ T -SAT(AM,F) if AM |=T F

UnSat
A |M | F =⇒ conflict(F,C) if

{
There is a clause D ∈ F s.t. AM |= ¬D
M contains no decision literals
and C is a clause s.t. F |= C and A |= ¬C 13/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Some Instantiations

cplex-msat maxhs-msat

MathSAT5CPLEX

optSoln(AM)

hard(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

MathSAT5MaxHS

optSoln(AM)

F hard(F)

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

14/18

Experiments
On benchmarks from A. Cimatti, A. Griggio, B. Joost Schaafsma, R. Sebastiani:

A Modular Approach to MaxSAT Modulo Theories (SAT 2013)

Solver
LIA(212) LRA(186)

Total
U R U R

cplex-msat 82 90 85 85 342
maxhs-msat 85 87 85 85 342
optimathsat-maxres 87 90 85 86 348
optimathsat-omt 75 72 85 85 317
z3-maxres 73 79 86 85 323
z3-wmax 69 77 88 88 322

15/18

Experiments - Scaling
On benchmarks generated from a QF-LIA SMT-LIB benchmark family

� 10%-100% random unit soft clauses
� 312 problems in %-groups

Solver 10% 25% 50% 100% Total
cplex-msat 289 271 203 4 767
optimathsat-maxres 291 258 123 0 672
optimathsat-omt 240 130 0 0 370
z3-maxres 280 224 103 0 607
z3-wmax 304 288 4 0 596

16/18

Experiments - Lexicographic problems
On benchmarks from R. Sebastiani, P. Trentin:

On Optimization Modulo Theories, MaxSMT and Sorting Networks (TACAS 2017)

Solver CTW Time[s] WTC Time[s]
maxhs-msat 3699 2401 s 2399 1367 s
optimathsat-maxres 3410 13851 s 1850 10209 s
optimathsat-omt 3481 9710 s 2068 10483 s
z3-maxres 3699 4555 s 2399 2231 s
z3-wmax 3651 5566 s 2295 9513 s

17/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Conclusion

� Different solvers for different problems
� Flexible formal framework to describe & reason
� Separation of Optimization, SAT solving, T -reasoning

18/18

Implicit Hitting Set Algorithms for
Maximum Satisfiability Modulo Theories

Katalin Fazekas1 Fahiem Bacchus2 Armin Biere1

1Johannes Kepler University Linz, Austria
2University of Toronto, Canada

Oxford, 14. July, 2018
9th International Joint Conference on

Automated Reasoning

	Maximum Satisfiability
	Hitting Sets
	Implicit Hitting Set Algorithms for MaxSAT
	Implicit Hitting Set Algorithms for MaxSMT
	Instantiations & Experiments
	Conclusion
	Appendix

