JYU

JOHANNES KEPLER UNIVERSITY LINZ

Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories

 $\underline{\mathsf{Katalin}\;\mathsf{Fazekas}^1}\quad \mathsf{Fahiem}\;\mathsf{Bacchus}^2\quad\mathsf{Armin}\;\mathsf{Biere}^1$

¹Johannes Kepler University Linz, Austria ²University of Toronto, Canada

Oxford, 14. July, 2018 9th International Joint Conference on Automated Reasoning

Motivation

■ Satisfiability Modulo Theories (SMT)

- $\hfill\square$ Satisfiability of ground first-order formula wrt. $\mathcal T$
- $\hfill\square$ Widely used: model checking, test case generation etc.

Motivation

■ Satisfiability Modulo Theories (SMT)

- $\hfill\square$ Satisfiability of ground first-order formula wrt. $\mathcal T$
- $\hfill\square$ Widely used: model checking, test case generation etc.
- Maximum Satisfiability (MaxSAT)
 - Deptimization in Boolean domain
 - $\hfill\square$ Widely used: planning, fault localization, etc.

Motivation

■ Satisfiability Modulo Theories (SMT)

- $\hfill\square$ Satisfiability of ground first-order formula wrt. $\mathcal T$
- $\hfill\square$ Widely used: model checking, test case generation etc.
- Maximum Satisfiability (MaxSAT)
 - Deptimization in Boolean domain
 - □ Widely used: planning, fault localization, etc.
- Maximum Satisfiability Modulo Theories (MaxSMT)
 - Optimization over Boolean abstraction of first-order formula
 - $\hfill\square$ Extension of SMT with Boolean-based optimization
 - $\hfill\square$ Extension of MaxSAT with $\mathcal T\text{-reasoning}$
 - $\hfill\square$ Many more potential application

Goals

■ Efficient, sound MaxSMT solving

Goals

■ Efficient, sound MaxSMT solving

■ Harvest advances of SMT and MaxSAT:

 \Box From SMT: separate \mathcal{T} -reasoning and Boolean reasoning (as in DPLL(\mathcal{T}))

□ From MaxSAT: decouple optimization from Boolean reasoning (as in IHS)

Goals

■ Efficient, sound MaxSMT solving

■ Harvest advances of SMT and MaxSAT:

 \Box From SMT: separate \mathcal{T} -reasoning and Boolean reasoning (as in DPLL(\mathcal{T}))

□ From MaxSAT: decouple optimization from Boolean reasoning (as in IHS)

 \blacksquare Separation between optimization, propositional and theory specific reasoning

 \Box Exploitation of more efficient specialized solvers

Contributions

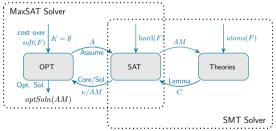
- Formal abstract framework for describing MaxSMT
 - $\hfill\square$ Transition system for formal reasoning
 - $\hfill\square$ Flexible: almost any scheduling leads to a solution
 - \Box Additionally extends $\mathsf{DPLL}(\mathcal{T})$ with assumptions

Contributions

■ Formal abstract framework for describing MaxSMT

- $\hfill\square$ Transition system for formal reasoning
- $\hfill\square$ Flexible: almost any scheduling leads to a solution
- \Box Additionally extends $\mathsf{DPLL}(\mathcal{T})$ with assumptions

■ General solver architecture

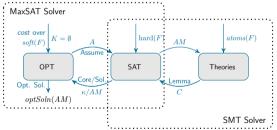


Contributions

■ Formal abstract framework for describing MaxSMT

- $\hfill\square$ Transition system for formal reasoning
- \Box Flexible: almost any scheduling leads to a solution
- \Box Additionally extends $\mathsf{DPLL}(\mathcal{T})$ with assumptions

General solver architecture



Evaluation of some of the possible instantiations

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

$$\mathcal{F}=egin{array}{c} (
egin{array}{c} x_1ee
egin{array}{c} \neg x_2 \end{array};1) \wedge (
egin{array}{c} x_2ee x_3 \end{array};1) \wedge (
egin{array}{c} x_3ee
egin{array}{c} \neg x_4 \end{array};1) \wedge (x_1 \end{array};1) \wedge (x_2 \end{array};1) \wedge (x_4 \end{array};1) \end{pmatrix}$$

Truth assignment for x_1, x_2, x_3, x_4 that maximizes the sum of weights of satisfied clauses

 $\mathcal{F}=\ (
eg x_1 ee
eg x_2\,;1) \land (
eg x_2 ee x_3\,;1) \land (
eg x_3 ee
eg x_4\,;1) \land (x_1\,;1) \land (x_2\,;1) \land (x_4\,;1)$

- Truth assignment for x_1, x_2, x_3, x_4 that maximizes the sum of weights of satisfied clauses
- Weighted clauses (C; n): cost of falsification of C is n \Box $(C; \infty)$: hard clauses must be satisfied $(hard(\mathcal{F}) vs. soft(\mathcal{F}))$

 $\mathcal{F}=\ (
eg x_1 ee
eg x_2\,;1) \land (
eg x_2 ee x_3\,;1) \land (
eg x_3 ee
eg x_4\,;1) \land (x_1\,;1) \land (x_2\,;1) \land (x_4\,;1)$

- Truth assignment for x_1, x_2, x_3, x_4 that maximizes the sum of weights of satisfied clauses
- Weighted clauses (C; n): cost of falsification of C is n

 $\Box~(C\,;\infty)$: hard clauses must be satisfied ($\mathrm{hard}(\mathcal{F})~$ vs. $~\mathrm{soft}(\mathcal{F})$)

Solution: an assignment that satisfies all hard clauses

 $\mathcal{F}=\ (
eg x_1 ee
eg x_2\,;1) \land (
eg x_2 ee x_3\,;1) \land (
eg x_3 ee
eg x_4\,;1) \land (x_1\,;1) \land (x_2\,;1) \land (x_4\,;1)$

- Truth assignment for x_1, x_2, x_3, x_4 that maximizes the sum of weights of satisfied clauses
- Weighted clauses (C; n): cost of falsification of C is n

 $\Box~(C\,;\infty)$: hard clauses must be satisfied ($\mathrm{hard}(\mathcal{F})~$ vs. $~\mathrm{soft}(\mathcal{F})$)

- **Solution**: an assignment that satisfies all hard clauses
- **Optimal Solution**: solution with highest sum of weights of satisfied soft clauses

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula \mathcal{F} is a subset of soft clauses that when combined with the hard clauses forms an unsatisfiable set of clauses: $\kappa \subseteq \operatorname{soft}(\mathcal{F}) \text{ s.t. } \operatorname{hard}(\mathcal{F}) \cup \kappa \text{ is UNSAT}$

Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula \mathcal{F} is a subset of soft clauses that when combined with the hard clauses forms an unsatisfiable set of clauses: $\kappa \subset \operatorname{soft}(\mathcal{F}) \text{ s.t. hard}(\mathcal{F}) \cup \kappa \text{ is UNSAT}$

 $\mathcal{F}=\ (
eg x_1 ee
eg x_2\,;1) \land (
eg x_2 ee x_3\,;1) \land (
eg x_3 ee
eg x_4\,;1) \land (x_1\,;1) \land (x_2\,;1) \land (x_4\,;1)$

Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula \mathcal{F} is a subset of soft clauses that when combined with the hard clauses forms an unsatisfiable set of clauses:

 $\kappa \subseteq \operatorname{soft}(\mathcal{F}) \text{ s.t. } \operatorname{hard}(\mathcal{F}) \cup \kappa \text{ is UNSAT}$

$$\mathcal{F}= egin{array}{c} (
egin{array}{c} x_1 ee
egin{array}{c} \neg x_2 \end{array}; 1) \land (
egin{array}{c} x_2 ee x_3 \end{array}; 1) \land (
egin{array}{c} \neg x_3 ee
egin{array}{c} \neg x_4 \end{array}; 1) \land (x_2 \end{array}; 1) \land (x_$$

$$\kappa_0 = \{ ((\neg x_1 \lor \neg x_2)\,; 1), ((\neg x_2 \lor x_3)\,; 1), ((\neg x_3 \lor \neg x_4)\,; 1), (x_1\,; 1), (x_2\,; 1), (x_4\,; 1) \}$$

Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula \mathcal{F} is a subset of soft clauses that when combined with the hard clauses forms an unsatisfiable set of clauses:

 $\kappa \subseteq \operatorname{soft}(\mathcal{F}) \text{ s.t. } \operatorname{hard}(\mathcal{F}) \cup \kappa \text{ is UNSAT}$

$$\mathcal{F}= egin{array}{c} (
egin{array}{c} x_1 ee
egin{array}{c} \neg x_2 \end{array}; 1) \land (
egin{array}{c} x_2 ee x_3 \end{array}; 1) \land (
egin{array}{c} \neg x_3 ee
egin{array}{c} \neg x_4 \end{array}; 1) \land (x_2 \end{array}; 1) \land (x_$$

$$egin{aligned} &\kappa_0 = \{((
egin{aligned} &\mathbf{x_1} \lor
egin{aligned} &\mathbf{x_2} \end{smallmatrix}); \mathbf{1}), ((
egin{aligned} &\mathbf{x_2} \lor \mathbf{x_3}); \mathbf{1}), ((
egin{aligned} &\mathbf{x_1} \lor
egin{aligned} &\mathbf{x_1} \end{smallmatrix}), (x_1; \mathbf{1}), (x_2; \mathbf{1})\} \ &\kappa_1 = \{((
egin{aligned} &\mathbf{x_1} \lor
egin{aligned} &\mathbf{x_2} \end{smallmatrix}); \mathbf{1}), (x_1; \mathbf{1}), (x_2; \mathbf{1})\} \end{aligned}$$

Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula \mathcal{F} is a subset of soft clauses that when combined with the hard clauses forms an unsatisfiable set of clauses:

 $\kappa \subseteq \operatorname{soft}(\mathcal{F}) \text{ s.t. } \operatorname{hard}(\mathcal{F}) \cup \kappa \text{ is UNSAT}$

$$\mathcal{F}= egin{array}{c} (
egin{array}{c} x_1 ee
egin{array}{c} \neg x_2 \,; 1 \end{pmatrix} \wedge (
egin{array}{c} x_2 ee x_3 \,; 1 \end{pmatrix} \wedge (
egin{array}{c} x_3 ee
egin{array}{c} \neg x_4 \,; 1 \end{pmatrix} \wedge (x_1 \,; 1) \wedge (x_2 \,; 1) \wedge (x_4 \,; 1) \end{pmatrix}$$

Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula \mathcal{F} is a subset of soft clauses that when combined with the hard clauses forms an unsatisfiable set of clauses:

 $\kappa \subseteq \operatorname{soft}(\mathcal{F}) \text{ s.t. } \operatorname{hard}(\mathcal{F}) \cup \kappa \text{ is UNSAT}$

$$\mathcal{F}= \ (
eg x_1 ee
eg x_2\,;1) \land (
eg x_2 ee x_3\,;1) \land (
eg x_3 ee
eg x_4\,;1) \land (x_1\,;1) \land (x_2\,;1) \land (x_4\,;1)$$

$$egin{aligned} &\kappa_0 = \{((\neg x_1 \lor \neg x_2)\,;1), ((\neg x_2 \lor x_3)\,;1), ((\neg x_3 \lor \neg x_4)\,;1), (x_1\,;1), (x_2\,;1), (x_4\,;1)\} \ &\kappa_1 = \{((\neg x_1 \lor \neg x_2)\,;1), (x_1\,;1), (x_2\,;1)\} \ &\kappa_2 = \{((\neg x_2 \lor x_3)\,;1), ((\neg x_3 \lor \neg x_4)\,;1), (x_2\,;1), (x_4\,;1)\} \end{aligned}$$

. . .

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of soft clauses that has a non-empty intersection with every set in K: $\forall \kappa \in K : \eta \cap \kappa \neq \emptyset$

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of soft clauses that has a non-empty intersection with every set in K: $\forall \kappa \in K : \eta \cap \kappa \neq \emptyset$

$$egin{aligned} &\kappa_0 = \{((
egin{aligned} &arphi_1 arphi \neg x_2 arphi_1 arphi_1), ((
egin{aligned} &arphi_2 arphi_3 arphi_3 arphi_1 arphi_1), (x_1 arphi_1 arphi_1), (x_2 erphi_1 erphi_1), (x_2 erphi_1), (x_2$$

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of soft clauses that has a non-empty intersection with every set in K: $\forall \kappa \in K : \eta \cap \kappa \neq \emptyset$

$$egin{aligned} &\kappa_0 = \{((
egin{aligned} &arpi x_1 ee \neg x_2)\,;1), ((
egin{aligned} &arpi x_2 ee x_3)\,;1), (((
egin{aligned} &arpi x_3 ee \neg \neg x_4)\,;1), (x_1\,;1), (x_2\,;1)\} \ &\kappa_1 = \{((
egin{aligned} &arpi x_1 ee \neg \neg x_2)\,;1), (x_1\,;1), (x_2\,;1)\} \ &\kappa_2 = \{((
egin{aligned} &arpi x_2 ee x_3)\,;1), ((
egin{aligned} &arpi x_3 ee \neg \neg x_4)\,;1), (x_2\,;1), (x_4\,;1)\} \ \end{aligned}$$

$$HS(\kappa_0, \kappa_1, \kappa_2) : \{ ((\neg x_1 \lor \neg x_2); 1), ((\neg x_2 \lor x_3); 1) \} \quad \text{cost} \sum : 2$$

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of soft clauses that has a non-empty intersection with every set in K: $\forall \kappa \in K : \eta \cap \kappa \neq \emptyset$

$$egin{aligned} &\kappa_0 = \{((
egin{aligned} & \pi_1 \lor
egin{aligned} & \pi_2) \ ; 1), ((
egin{aligned} & \pi_2 \lor x_3) \ ; 1), ((
egin{aligned} & \pi_2 \lor x_3) \ ; 1), (x_1 \ ; 1), (x_2 \ ; 1) \} \ & \kappa_1 = \{((
egin{aligned} & \pi_1 \lor
egin{aligned} & \pi_2 \lor x_3 \ ; 1), (x_1 \ ; 1), (x_2 \ ; 1) \} \ & \kappa_2 = \{((
egin{aligned} & \pi_2 \lor x_3) \ ; 1), ((
egin{aligned} & \pi_2 \lor
egin{aligned} & \pi_3 \lor
egin{aligned} & \pi_4 \cr & \pi_$$

$$HS(\kappa_0, \kappa_1, \kappa_2) : \{ ((\neg x_1 \lor \neg x_2); 1), ((\neg x_2 \lor x_3); 1) \} \quad \text{cost} \sum : 2$$

Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of any other hitting set

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of soft clauses that has a non-empty intersection with every set in K: $\forall \kappa \in K : \eta \cap \kappa \neq \emptyset$

$$egin{aligned} &\kappa_0 = \{((
egin{aligned} & \pi_1 \lor
egin{aligned} & \pi_2) \ ; 1), ((
egin{aligned} & \pi_2 \lor x_3) \ ; 1), ((
egin{aligned} & \pi_2 \lor x_3) \ ; 1), (x_1 \ ; 1), (x_2 \ ; 1) \} \ & \kappa_1 = \{((
egin{aligned} & \pi_1 \lor
egin{aligned} & \pi_2 \lor x_3 \ ; 1), (x_1 \ ; 1), (x_2 \ ; 1) \} \ & \kappa_2 = \{((
egin{aligned} & \pi_2 \lor x_3) \ ; 1), ((
egin{aligned} & \pi_2 \lor
egin{aligned} & \pi_3 \lor
egin{aligned} & \pi_4 \cr & \pi_$$

$$HS(\kappa_0, \kappa_1, \kappa_2) : \{ ((\neg x_1 \lor \neg x_2); 1), ((\neg x_2 \lor x_3); 1) \} \quad \text{cost} \sum : 2$$

Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of any other hitting set

$$MinHS(\kappa_0, \kappa_1, \kappa_2) : \{(\boldsymbol{x_2}; \boldsymbol{1})\} \quad cost \sum : 1$$

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all the unsatisfiable cores (U) of F.

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all the unsatisfiable cores (U) of F.

$$\blacksquare \ \forall \kappa \in U : \eta \cap \kappa \neq \emptyset \leftrightarrow \{F - \eta\} \text{ is SAT}$$

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all the unsatisfiable cores (U) of F.

$$\blacksquare \ \forall \kappa \in U : \eta \cap \kappa \neq \emptyset \leftrightarrow \{F - \eta\} \text{ is SAT}$$

 $\blacksquare \eta \text{ is MinHS}(U) \leftrightarrow \text{all satisfying assignments of } \{F - \eta\} \text{ is optimal}$

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

If $\{F - \eta\}$ is UNSAT: new core κ can be added to K.

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

If {F − η} is UNSAT: new core κ can be added to K.
 If {F − η} is SAT:

Hitting Sets & Maximum Satisfiability

J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

■ If $\{F - \eta\}$ is UNSAT: new core κ can be added to K.

If $\{F - \eta\}$ is SAT:

 $\hfill\square$ If η is MinHS: Any satisfying assignment is guaranteed to be optimal.

Hitting Sets & Maximum Satisfiability

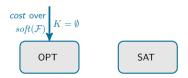
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

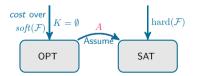
- If $\{F \eta\}$ is UNSAT: new core κ can be added to K.
- If $\{F \eta\}$ is SAT:

 $\Box \text{ If } \eta \text{ is MinHS: Any satisfying assignment is guaranteed to be optimal.}$ $\Box \text{ If } \eta \text{ is arbritary HS: No guarantee of optimality.}$



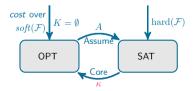
$$\begin{cases} \mathcal{F} & \mathsf{HS}(K) \\ (\neg x_1 \lor \neg x_2 \lor a_1) & \neg a_1 & x_1 \\ (\neg x_2 \lor x_3 \lor a_2) & \neg a_2 & x_2 \\ (\neg x_3 \lor \neg x_4 \lor a_3) & \neg a_3 & x_4 \end{cases} \begin{cases} \mathsf{HS}(K) \\ \mathsf{HS}($$

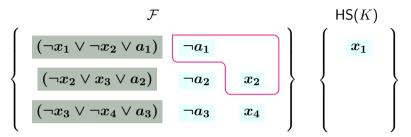
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?



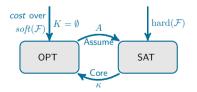
$$\begin{array}{cccc} \mathcal{F} & \mathsf{HS}(K) \\ \left\{ \begin{array}{ccc} (\neg x_1 \lor \neg x_2 \lor a_1) & \neg a_1 & x_1 \\ (\neg x_2 \lor x_3 \lor a_2) & \neg a_2 & x_2 \\ (\neg x_3 \lor \neg x_4 \lor a_3) & \neg a_3 & x_4 \end{array} \right\} \end{array} \left\{ \begin{array}{c} \mathsf{HS}(K) \\ \left\{ \begin{array}{c} \mathsf{HS}(K) \\ \mathsf{HS$$

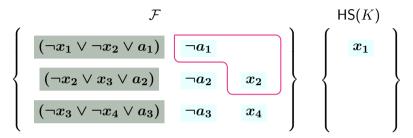
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?



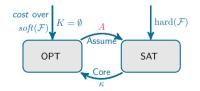


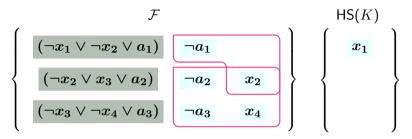
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?



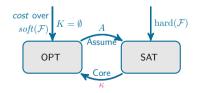


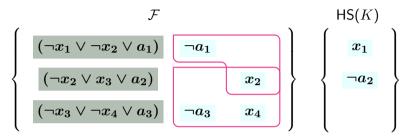
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }? SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?



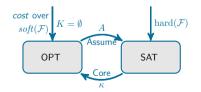


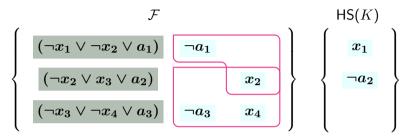
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }? SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?



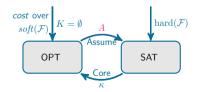


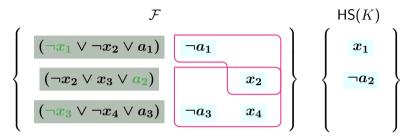
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }? SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?



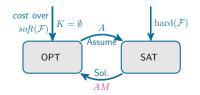


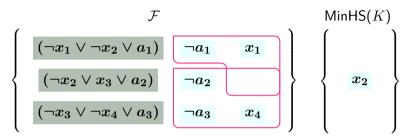
SAT(hard(
$$\mathcal{F}$$
)) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_3$, x_2 , x_4 }?



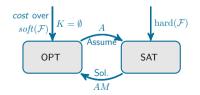


SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }? SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }? SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_3$, x_2 , x_4 }?

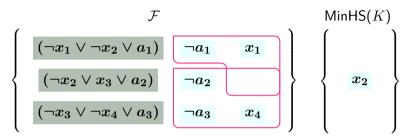




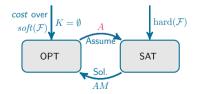
SAT(hard(
$$\mathcal{F}$$
)) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_3$, x_2 , x_4 }?

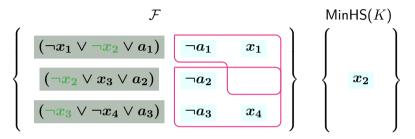


9/18

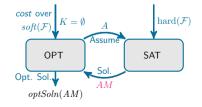


SAT(hard(
$$\mathcal{F}$$
)) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_3$, x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_4 }?





SAT(hard(
$$\mathcal{F}$$
)) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_3$, x_2 , x_4 }?
SAT(hard(\mathcal{F})) assuming { $\neg a_1$, $\neg a_2$, $\neg a_3$, x_1 , x_4 }?



9/18

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

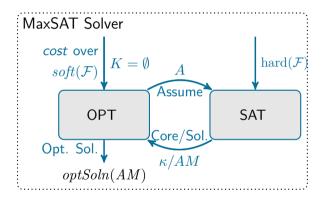
$$\begin{array}{ccc} (t_1 \neq t_2 \lor t_1 \neq t_1 \lor a_1) & \neg a_1 & t_1 = t_2 \\ \\ (t_1 \neq t_1 \lor x_3 \lor a_2) & \neg a_2 & t_1 = t_1 \\ \\ (\neg x_3 \lor f(t_1) \neq f(t_2) \lor a_3) & \neg a_3 & f(t_1) = f(t_2) \end{array}$$

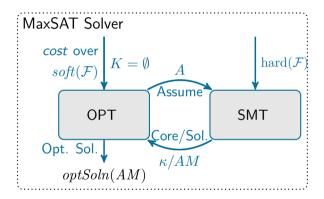
$$\begin{array}{ccc} (t_1 \neq t_2 \lor t_1 \neq t_1 \lor a_1) & \neg a_1 & t_1 = t_2 \\ \\ (t_1 \neq t_1 \lor x_3 \lor a_2) & \neg a_2 & t_1 = t_1 \\ \\ (\neg x_3 \lor f(t_1) \neq f(t_2) \lor a_3) & \neg a_3 & f(t_1) = f(t_2) \end{array}$$

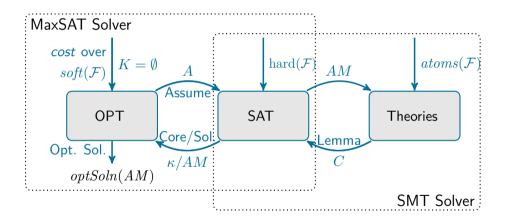
■ Solution in MaxSMT: satisfies all hard clauses and all theory axioms

$$\begin{array}{ccc} (t_1 \neq t_2 \lor t_1 \neq t_1 \lor a_1) & \neg a_1 & t_1 = t_2 \\ \\ (t_1 \neq t_1 \lor x_3 \lor a_2) & \neg a_2 & t_1 = t_1 \\ \\ (\neg x_3 \lor f(t_1) \neq f(t_2) \lor a_3) & \neg a_3 & f(t_1) = f(t_2) \end{array}$$

Solution in MaxSMT: satisfies all hard clauses and all theory axioms
 When should we start to consider these axioms?







A-MaxSMT Calculus

SAT/SMT-Transition

 $\begin{array}{c} (LB,\,UB,\,\mu)\,|\,K\,|\,\langle\ast\rangle \Longrightarrow \\ (LB,\,UB,\,\mu)\,|\,K\,|\,\langle\ast'\rangle \end{array}$

Core

 $\begin{array}{c} (LB,\,UB,\,\mu)\,|\,K\,|\,\langle conflict(F,C)\rangle \Longrightarrow \\ (LB,\,UB,\,\mu)\,|\,K,\,\kappa\,|\,\langle conflict(F,C)\rangle \end{array}$

HS

 $\begin{array}{c} (LB, UB, \mu) \mid K \mid \langle * \rangle \Longrightarrow \\ (LB, UB, \mu) \mid K \mid \langle A' \mid \emptyset \mid F \rangle \end{array}$

MinHS

 $\begin{array}{c} (LB, \, UB, \, \mu) \, | \, K \, | \, \langle * \rangle \Longrightarrow \\ (LB', \, UB, \, \mu) \, | \, K \, | \, \langle A' \mid \emptyset \mid F \rangle \end{array}$

ImprovedSolution

$$\begin{split} (LB, UB, \mu) \, | \, K \, | \, \langle T\text{-}SAT(AM, F) \rangle \Longrightarrow \\ (LB, \cos(AM), AM) \, | \, K \, | \, \langle T\text{-}SAT(AM, F) \rangle \end{split}$$

OptimalSolution

 $(LB, UB, \mu) | K | \langle * \rangle \Longrightarrow optSoln(\mu)$

if { *' is reachable from * by a single A-Sat/A-Smt transition step

$$\mathbf{f} \begin{cases} \kappa = \{(\neg \ell) \mid \ell \in C\} \text{ and } \kappa \notin K \\ (\kappa \text{ is set of soft clauses}) \end{cases}$$

$$\text{if} \ \left\{ \begin{array}{l} \eta = HS(K) \\ A' = \{\ell \mid (\ell) \in (soft(F) - \eta)\} \end{array} \right.$$

if
$$\begin{cases} \eta = minHS(K) \\ A' = \{\ell \mid (\ell) \in (soft(F) - \eta)\} \\ LB' = max(LB, cost(\eta)) \end{cases}$$

if cost(AM) < UB

i

if $LB \ge UB$

A-SMT Calculus

UnitProp $A \mid M \mid F \Longrightarrow A \mid M \ell \mid F$ Decide $A \mid M \mid F \Longrightarrow A \mid M \ell^d \mid F$

 $T-\mathsf{Backjump}$ $A \mid M\ell^d N \mid F \Longrightarrow A \mid M\ell' \mid F$

 $T\text{-Learn} \\ A \mid M \mid F \Longrightarrow A \mid M \mid F, C$

 $T\text{-}\mathsf{Forget}$ $A \mid M \mid F, C \Longrightarrow A \mid M \mid F$

T-Model

 $A \mid M \mid F \Longrightarrow T\text{-}SAT(AM, F)$

UnSat

 $A \mid M \mid F \Longrightarrow \mathit{conflict}(F,C)$

 $\text{if } \left\{ \begin{array}{l} \text{There is a clause } (C \lor \ell) \in F \text{ s.t.} \\ AM \models \neg C \text{ and } atom(\ell) \notin atoms(AM) \end{array} \right.$

if
$$atom(\ell) \in (atoms(F) \setminus atoms(AM))$$

 $\label{eq:interm} \text{if } \left\{ \begin{array}{l} \text{There is a clause } C \in F \text{ s.t. } AM\ell^d N \models \neg C \\ \text{and a clause } C' \lor \ell' \text{ s.t. } F \models_T C' \lor \ell', \\ AM \models \neg C' \text{ and } atom(\ell') \in atoms(\ell^d N) \end{array} \right.$

$$\mathbf{if} \begin{cases} F \models_T C \text{ and } C \notin F \\ atoms(C) \subseteq (atoms(F) \cup atoms(AM)) \end{cases}$$

if $F \models_T C$

 $\begin{array}{ll} \text{if} & AM\models_T F \\ \\ \text{if} & \left\{ \begin{array}{l} \text{There is a clause } D\in F \text{ s.t. } AM\models\neg D \\ M \text{ contains no decision literals} \\ \\ \text{and } C \text{ is a clause s.t. } F\models C \text{ and } A\models\neg C & 13/18 \end{array} \right. \end{array}$

Overview

Maximum Satisfiability

Hitting Sets

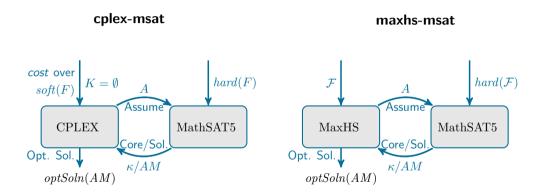
Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Some Instantiations



Experiments

On benchmarks from A. Cimatti, A. Griggio, B. Joost Schaafsma, R. Sebastiani:

A Modular Approach to MaxSAT Modulo Theories (SAT 2013)

Solver	LIA(212)		LRA(186)		Total
	U	R	U	R	Total
cplex-msat	82	90	85	85	342
maxhs-msat	85	87	85	85	342
optimathsat-maxres	87	90	85	86	348
optimathsat-omt	75	72	85	85	317
z3-maxres	73	79	86	85	323
z3-wmax	69	77	88	88	322

Experiments - Scaling

On benchmarks generated from a QF-LIA SMT-LIB benchmark family

- 10%-100% random unit soft clauses
- 312 problems in %-groups

Solver	10%	25%	50%	100%	Total
cplex-msat	289	271	203	4	767
optimathsat-maxres	291	258	123	0	672
optimathsat-omt	240	130	0	0	370
z3-maxres	280	224	103	0	607
z3-wmax	304	288	4	0	596

Experiments - Lexicographic problems

On benchmarks from R. Sebastiani, P. Trentin:

On Optimization Modulo Theories, MaxSMT and Sorting Networks (TACAS 2017)

Solver	CTW	Time[s]	WTC	Time[s]	
maxhs-msat	3699	2401 s	2399	1367 s	
optimathsat-maxres	3410	13851 s	1850	10209 s	
optimathsat-omt	3481	9710 s	2068	10483 s	
z3-maxres	3699	4555 s	2399	2231 s	
z3-wmax	3651	5566 s	2295	9513 s	

Overview

Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments

Conclusion

Conclusion

■ Different solvers for different problems

■ Flexible formal framework to describe & reason

 \blacksquare Separation of Optimization, SAT solving, $\mathcal{T}\text{-}\mathsf{reasoning}$

Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories

 $\underline{\mathsf{Katalin}\;\mathsf{Fazekas}^1}\quad \mathsf{Fahiem}\;\mathsf{Bacchus}^2\quad\mathsf{Armin}\;\mathsf{Biere}^1$

¹Johannes Kepler University Linz, Austria ²University of Toronto, Canada

Oxford, 14. July, 2018 9th International Joint Conference on Automated Reasoning

