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Motivation

� Satisfiability Modulo Theories (SMT)
� Satisfiability of ground first-order formula wrt. T
� Widely used: model checking, test case generation etc.

� Maximum Satisfiability (MaxSAT)
� Optimization in Boolean domain
� Widely used: planning, fault localization, etc.

� Maximum Satisfiability Modulo Theories (MaxSMT)
� Optimization over Boolean abstraction of first-order formula
� Extension of SMT with Boolean-based optimization
� Extension of MaxSAT with T -reasoning
� Many more potential application
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Goals

� Efficient, sound MaxSMT solving

� Harvest advances of SMT and MaxSAT:
� From SMT: separate T -reasoning and Boolean reasoning (as in DPLL(T ))
� From MaxSAT: decouple optimization from Boolean reasoning (as in IHS)

� Separation between optimization, propositional and theory specific reasoning
� Exploitation of more efficient specialized solvers
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Contributions
� Formal abstract framework for describing MaxSMT

� Transition system for formal reasoning
� Flexible: almost any scheduling leads to a solution
� Additionally extends DPLL(T ) with assumptions

� General solver architecture

SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM )

hard(F ) atoms(F )
cost over

soft(F ) K = ∅

κ/AM

Core/Sol.

A

Assume
AM

Lemma
C

Opt. Sol.

� Evaluation of some of the possible instantiations
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Maximum Satisfiability

Hitting Sets

Implicit Hitting Set Algorithms for MaxSAT

Implicit Hitting Set Algorithms for MaxSMT

Instantiations & Experiments
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Maximum Satisfiability - MaxSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

� Truth assignment for x1, x2, x3, x4 that maximizes the sum of weights of satisfied
clauses

� Weighted clauses (C ; n): cost of falsification of C is n
� (C ; ∞): hard clauses must be satisfied ( hard(F) vs. soft(F) )

� Solution: an assignment that satisfies all hard clauses
� Optimal Solution: solution with highest sum of weights of satisfied soft clauses
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Unsatisfiable Cores
Definition (Unsatisfiable Core)

An unsatisfiable core κ for a formula F is a subset of soft clauses that when combined
with the hard clauses forms an unsatisfiable set of clauses:

κ ⊆ soft(F) s.t. hard(F) ∪ κ is UNSAT

F = (¬x1 ∨ ¬x2 ; 1) ∧ (¬x2 ∨ x3 ; 1) ∧ (¬x3 ∨ ¬x4 ; 1) ∧ (x1 ; 1) ∧ (x2 ; 1) ∧ (x4 ; 1)

κ0 = {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x1 ; 1), (x2 ; 1), (x4 ; 1)}
κ1 = {((¬x1 ∨ ¬x2) ; 1), (x1 ; 1), (x2 ; 1)}
κ2 = {((¬x2 ∨ x3) ; 1), ((¬x3 ∨ ¬x4) ; 1), (x2 ; 1), (x4 ; 1)}
. . .
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Hitting Sets

Definition (Hitting Set)

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of K is a set of
soft clauses that has a non-empty intersection with every set in K: ∀κ ∈ K : η∩κ 6= ∅

HS(κ0, κ1, κ2) : {((¬x1 ∨ ¬x2) ; 1), ((¬x2 ∨ x3) ; 1)} cost
∑

: 2

� Minimum Cost Hitting Set: Hitting set with cost less than or equal to the cost of
any other hitting set

MinHS(κ0, κ1, κ2) : {(x2 ; 1)} cost
∑

: 1
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Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

To solve a MaxSAT problem F it is enough to find a minimum cost hitting set η of all
the unsatisfiable cores (U) of F .

� ∀κ ∈ U : η ∩ κ 6= ∅ ↔ {F − η} is SAT
� η is MinHS(U) ↔ all satisfying assignments of {F − η} is optimal
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Hitting Sets & Maximum Satisfiability
J. Davies, F. Bacchus: Solving MaxSAT by Solving a Sequence of Simpler SAT Instances (CP 2011)

Issue: We do not know all the unsatisfiable cores in advance.

Approach: Calculate a hitting set η for the already known unsatisfiable cores (K).

� If {F − η} is UNSAT: new core κ can be added to K.
� If {F − η} is SAT:

� If η is MinHS: Any satisfying assignment is guaranteed to be optimal.
� If η is arbritary HS: No guarantee of optimality.
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IHS Algorithms for MaxSAT
F

HS(K)

(¬x1 ∨ ¬x2) x1

(¬x2 ∨ x3) x2

(¬x3 ∨ ¬x4) x4








SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1, ¬a3, x2, x4}?
SAT(hard(F)) assuming {¬a1,¬a2,¬a3, x1, x4}?

SATOPT

optSoln(AM )

cost over
soft(F) K = ∅

κ
Core

hard(F)
A

Assume

Opt. Sol.
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IHS Algorithms for MaxSMT

(t1 6= t2 ∨ t1 6= t1 ∨ a1) ¬a1 t1 = t2

(t1 6= t1 ∨ x3 ∨ a2) ¬a2 t1 = t1

(¬x3 ∨ f(t1) 6= f(t2) ∨ a3) ¬a3 f(t1) = f(t2)





� Solution in MaxSMT: satisfies all hard clauses and all theory axioms
� When should we start to consider these axioms?
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IHS Algorithms for MaxSMT
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Opt. Sol.

AM
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A-MaxSMT Calculus
SAT/SMT-Transition
(LB,UB, µ) |K | 〈∗〉 =⇒

(LB,UB, µ) |K | 〈∗′〉
if
{
∗′ is reachable from ∗ by
a single A-Sat/A-Smt transition step

Core
(LB,UB, µ) |K | 〈conflict(F,C)〉 =⇒

(LB,UB, µ) |K,κ | 〈conflict(F,C)〉
if
{

κ = {(¬`) | ` ∈ C} and κ 6∈ K
(κ is set of soft clauses)

HS
(LB,UB, µ) |K | 〈∗〉 =⇒

(LB,UB, µ) |K | 〈A′ | ∅ | F 〉
if
{

η = HS(K)
A′ = {` | (`) ∈ (soft(F )− η)}

MinHS
(LB,UB, µ) |K | 〈∗〉 =⇒

(LB′,UB, µ) |K | 〈A′ | ∅ | F 〉
if

{
η = minHS(K)
A′ = {` | (`) ∈ (soft(F )− η)}
LB′ = max(LB, cost(η))

ImprovedSolution
(LB,UB, µ) |K | 〈T -SAT(AM,F )〉 =⇒

(LB, cost(AM), AM) |K | 〈T -SAT(AM,F )〉
if cost(AM) < UB

OptimalSolution
(LB,UB, µ) |K | 〈∗〉 =⇒ optSoln(µ) if LB ≥ UB 12/18



A-SMT Calculus
UnitProp
A |M | F =⇒ A |M ` | F if

{
There is a clause (C ∨ `) ∈ F s.t.
AM |= ¬C and atom(`) /∈ atoms(AM)

Decide
A |M | F =⇒ A |M `d | F if atom(`) ∈

(
atoms(F ) \ atoms(AM)

)
T -Backjump
A |M`dN | F =⇒ A |M `′ | F if

{
There is a clause C ∈ F s.t. AM`dN |= ¬C
and a clause C′ ∨ `′ s.t. F |=T C′ ∨ `′,
AM |= ¬C′ and atom(`′) ∈ atoms(`dN)

T -Learn
A |M | F =⇒ A |M | F,C if

{
F |=T C and C 6∈ F
atoms(C) ⊆

(
atoms(F ) ∪ atoms(AM)

)
T -Forget
A |M | F,C =⇒ A |M | F if F |=T C

T -Model
A |M | F =⇒ T -SAT(AM,F ) if AM |=T F

UnSat
A |M | F =⇒ conflict(F,C) if

{
There is a clause D ∈ F s.t. AM |= ¬D
M contains no decision literals
and C is a clause s.t. F |= C and A |= ¬C 13/18
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Some Instantiations

cplex-msat maxhs-msat

MathSAT5CPLEX

optSoln(AM )

hard(F )
cost over

soft(F ) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

MathSAT5MaxHS

optSoln(AM )

F hard(F)

κ/AM

Core/Sol.

A

Assume

Opt. Sol.
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Experiments
On benchmarks from A. Cimatti, A. Griggio, B. Joost Schaafsma, R. Sebastiani:

A Modular Approach to MaxSAT Modulo Theories (SAT 2013)

Solver
LIA(212) LRA(186)

Total
U R U R

cplex-msat 82 90 85 85 342
maxhs-msat 85 87 85 85 342
optimathsat-maxres 87 90 85 86 348
optimathsat-omt 75 72 85 85 317
z3-maxres 73 79 86 85 323
z3-wmax 69 77 88 88 322
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Experiments - Scaling
On benchmarks generated from a QF-LIA SMT-LIB benchmark family

� 10%-100% random unit soft clauses
� 312 problems in %-groups

Solver 10% 25% 50% 100% Total
cplex-msat 289 271 203 4 767
optimathsat-maxres 291 258 123 0 672
optimathsat-omt 240 130 0 0 370
z3-maxres 280 224 103 0 607
z3-wmax 304 288 4 0 596
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Experiments - Lexicographic problems
On benchmarks from R. Sebastiani, P. Trentin:

On Optimization Modulo Theories, MaxSMT and Sorting Networks (TACAS 2017)

Solver CTW Time[s] WTC Time[s]
maxhs-msat 3699 2401 s 2399 1367 s
optimathsat-maxres 3410 13851 s 1850 10209 s
optimathsat-omt 3481 9710 s 2068 10483 s
z3-maxres 3699 4555 s 2399 2231 s
z3-wmax 3651 5566 s 2295 9513 s
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Conclusion

� Different solvers for different problems
� Flexible formal framework to describe & reason
� Separation of Optimization, SAT solving, T -reasoning
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