
INCREMENTAL INPROCESSING
IN SAT SOLVING

Katalin Fazekas1, Armin Biere1, Christoph Scholl2

July 9, 2019, Lisbon
1Johannes Kepler University Linz, Austria
2Albert–Ludwigs–University, Freiburg, Germany

INTRODUCTION

Boolean Satisfiability Problem (SAT)

� Propositional logic

� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥}

= {a,¬b}

(

a

∨ ¬

b

) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Boolean Satisfiability Problem (SAT)

� Propositional logic

� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥}

= {a,¬b}

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Boolean Satisfiability Problem (SAT)

� Propositional logic
� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥}

= {a,¬b}

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Boolean Satisfiability Problem (SAT)

� Propositional logic
� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥}

= {a,¬b}

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Boolean Satisfiability Problem (SAT)

� Propositional logic
� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥}

= {a,¬b}

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Boolean Satisfiability Problem (SAT)

� Propositional logic
� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥} = {a,¬b}

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Boolean Satisfiability Problem (SAT)

� Propositional logic
� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥} = {a,¬b}

(a ∨ ¬b) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)

1/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn

∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn

∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0

∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn

∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0

∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′

∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0

∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′

∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0 ∆1

∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′

∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0 ∆1

∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′ SAT?

∆0 ∆1

∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′ SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′ SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′ SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′ SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses

� Avoid repeated work
� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Incremental SAT Solving

C1 ∧ · · · ∧ Cn ∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′ SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses

2/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

� Satisfiability preserving clause addition or removal

� Abstract framework that captures generally inprocessing
� Deduction rules applied on abstract states

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

� Satisfiability preserving clause addition or removal
� Abstract framework that captures generally inprocessing

� Deduction rules applied on abstract states

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

� Satisfiability preserving clause addition or removal
� Abstract framework that captures generally inprocessing
� Deduction rules applied on abstract states

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses

ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses

σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN
where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧ C

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b b

b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN
where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧ C

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b b

b : (a ∨ b)

¬a ∨ b a ∨ c
a

a ∨ b
b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN
where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧ C

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b b

b : (a ∨ b)

¬a ∨ b a ∨ c
a

a ∨ b
b

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

STRENGTHEN

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b �b

b : (a ∨ b)

¬a ∨ b a ∨ c
a

a ∨ b

b

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

STRENGTHEN

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b �b

b : (a ∨ b)

¬a ∨ b a ∨ c
a

a ∨ b

b

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

FORGET

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b �b

b : (a ∨ b)

¬a ∨ b ���a ∨ c
a

a ∨ b

b

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

FORGET

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b �b

b : (a ∨ b)

¬a ∨ b ���a ∨ c
a

a ∨ b

b

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

WEAKEN
where [is ϕ ∧ C ≡l

sat ϕ

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

���a ∨ b �b b : (a ∨ b)
¬a ∨ b ���a ∨ c
a a ∨ b
b

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

WEAKEN
where [is ϕ ∧ C ≡l

sat ϕ

3/17

Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

���a ∨ b �b b : (a ∨ b)
¬a ∨ b ���a ∨ c
a a ∨ b
b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

LEARN FORGET STRENGTHEN WEAKEN

where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧ C and [is ϕ ∧ C ≡`
sat ϕ

3/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

� Inprocessing is satisfiability but not model preserving

� Solution reconstruction is necessary

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

a ∨ b

a ∨ b b : (a ∨ b)

¬a ∨ b

¬a ∨ b b : (¬a ∨ b)

a

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

� Inprocessing is satisfiability but not model preserving
� Solution reconstruction is necessary

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

a ∨ b

a ∨ b b : (a ∨ b)

¬a ∨ b

¬a ∨ b b : (¬a ∨ b)

a

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

a ∨ b

a ∨ b b : (a ∨ b)

¬a ∨ b

¬a ∨ b b : (¬a ∨ b)

a

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
¬a ∨ b

¬a ∨ b b : (¬a ∨ b)

a

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
���

�¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
��
��¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
���

�¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R(τ, ε) = τ, R(τ, σ · (ω : D)) =

R(τ, σ) if τ(D) = >

R((τ ◦ ω), σ) otherwise

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
���

�¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
���

�¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b))) =

R({a = >, b = >}, (b : (a ∨ b)))

=

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
���

�¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b))) =

R({a = >, b = >}, (b : (a ∨ b)))

=

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
���

�¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b))) =

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

���a ∨ b a ∨ b b : (a ∨ b)
��
��¬a ∨ b ¬a ∨ b b : (¬a ∨ b)
a

τ = {a = >, b = ⊥}

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b))) =

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.

4/17

INCREMENTAL INPROCESSING

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b)

F1 = F0 ∧ (¬a) ∧ (¬b)

a ∨ b

a ∨ b a : (a ∨ b)

¬a ∨ ¬b

¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b)

F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
¬a ∨ ¬b

¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b)

F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)

¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b)

F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)

¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b)

F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)

¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b) F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b) F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b) F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b) F1 = F0 ∧ (¬a) ∧ (¬b)

���a ∨ b a ∨ b a : (a ∨ b)
((((

(¬a ∨ ¬b ¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}

5/17

Incremental Inprocessing – Possible solutions

� Forbid inprocessing partially:
� Freeze & Melt – ’Don’t touch’ variables

[EénSörensson-ENTCS’03, KupferschmidLewisSchubertBecker-FMSD’11]

� Preprocessing in incremental SAT [NadelRyvchinStrichman-SAT’12]

� Variable elimination, (self-)subsumption

� General solution: Incremental Inprocessing
� Adapt and extend inprocessing rules

6/17

Incremental Inprocessing – Possible solutions

� Forbid inprocessing partially:
� Freeze & Melt – ’Don’t touch’ variables

[EénSörensson-ENTCS’03, KupferschmidLewisSchubertBecker-FMSD’11]

� Preprocessing in incremental SAT [NadelRyvchinStrichman-SAT’12]

� Variable elimination, (self-)subsumption

� General solution: Incremental Inprocessing
� Adapt and extend inprocessing rules

6/17

Incremental Inprocessing – Possible solutions

� Forbid inprocessing partially:
� Freeze & Melt – ’Don’t touch’ variables

[EénSörensson-ENTCS’03, KupferschmidLewisSchubertBecker-FMSD’11]

� Preprocessing in incremental SAT [NadelRyvchinStrichman-SAT’12]

� Variable elimination, (self-)subsumption

� General solution: Incremental Inprocessing
� Adapt and extend inprocessing rules

6/17

Constrained Learning

a ∨ b

¬a ∨ ¬b
a

b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN

where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧C

=⇒ ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN−

where] is ϕ ∧ ρ |= C

� Weaker than original LEARN

� No extended resolution (e.g. blocked clause addition)

7/17

Constrained Learning

a ∨ b ¬a ∨ ¬b

a

b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN

where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧C

=⇒ ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN−

where] is ϕ ∧ ρ |= C

� Weaker than original LEARN

� No extended resolution (e.g. blocked clause addition)

7/17

Constrained Learning

a ∨ b ¬a ∨ ¬b
a

b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN

where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧C

=⇒ ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN−

where] is ϕ ∧ ρ |= C

� Weaker than original LEARN

� No extended resolution (e.g. blocked clause addition)

7/17

Constrained Learning

a ∨ b ¬a ∨ ¬b
a

b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN

where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧C

=⇒ ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN−

where] is ϕ ∧ ρ |= C

� Weaker than original LEARN

� No extended resolution (e.g. blocked clause addition)

7/17

Constrained Learning

a ∨ b ¬a ∨ ¬b
a

b

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN

where] is ϕ ∧ ρ ≡sat ϕ ∧ ρ ∧C

=⇒ ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

LEARN−

where] is ϕ ∧ ρ |= C

� Weaker than original LEARN

� No extended resolution (e.g. blocked clause addition)

7/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

WEAKEN

where [is ϕ ∧ C ≡l
sat ϕ

=⇒=⇒

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

DROP

where ø is ϕ |= C

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

8/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

WEAKEN

where [is ϕ ∧ C ≡l
sat ϕ

=⇒

=⇒

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

DROP

where ø is ϕ |= C

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

8/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

WEAKEN

where [is ϕ ∧ C ≡l
sat ϕ

=⇒=⇒

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

DROP

where ø is ϕ |= C

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

8/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

� Syntax: ω is set of literals s.t. ω ∩ C 6= ∅
� Semantics: Propagation Redundancy [HeuleKieslBiere-CADE’17]

� Most general reconstructive redundancy property
� Polynomially reconstructible via witness ω:

Proposition: If τ(ϕ) = > and τ(C) 6= > then (τ ◦ ω)(ϕ ∧ C) = >

9/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

� Syntax: ω is set of literals s.t. ω ∩ C 6= ∅

� Semantics: Propagation Redundancy [HeuleKieslBiere-CADE’17]

� Most general reconstructive redundancy property
� Polynomially reconstructible via witness ω:

Proposition: If τ(ϕ) = > and τ(C) 6= > then (τ ◦ ω)(ϕ ∧ C) = >

9/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

� Syntax: ω is set of literals s.t. ω ∩ C 6= ∅
� Semantics: Propagation Redundancy [HeuleKieslBiere-CADE’17]

� Most general reconstructive redundancy property
� Polynomially reconstructible via witness ω:

Proposition: If τ(ϕ) = > and τ(C) 6= > then (τ ◦ ω)(ϕ ∧ C) = >

9/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

� Syntax: ω is set of literals s.t. ω ∩ C 6= ∅
� Semantics: Propagation Redundancy [HeuleKieslBiere-CADE’17]

� Most general reconstructive redundancy property

� Polynomially reconstructible via witness ω:

Proposition: If τ(ϕ) = > and τ(C) 6= > then (τ ◦ ω)(ϕ ∧ C) = >

9/17

Stronger Weakening

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

WEAKEN+

where [is ϕ ∧ C ≡ω
sat ϕ

� Syntax: ω is set of literals s.t. ω ∩ C 6= ∅
� Semantics: Propagation Redundancy [HeuleKieslBiere-CADE’17]

� Most general reconstructive redundancy property
� Polynomially reconstructible via witness ω:

Proposition: If τ(ϕ) = > and τ(C) 6= > then (τ ◦ ω)(ϕ ∧ C) = >

9/17

Incremental Clause Addition
ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

ADDCLAUSES

where I is that each clause of ∆ is clean w.r.t. σ

A clause C is clean w.r.t. a sequence of witness labelled clauses σ if and only if
for all (ω : D) ∈ σ we have that ¬C ∩ ω = ∅.

Lemma: If a clause C is clean on a sequence of witness labelled clauses σ,
then for all truth assignments τ with τ(C) = > we have that R(τ, σ)(C) = >.

10/17

Incremental Clause Addition
ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

ADDCLAUSES

where I is that each clause of ∆ is clean w.r.t. σ

A clause C is clean w.r.t. a sequence of witness labelled clauses σ if and only if
for all (ω : D) ∈ σ we have that ¬C ∩ ω = ∅.

Lemma: If a clause C is clean on a sequence of witness labelled clauses σ,
then for all truth assignments τ with τ(C) = > we have that R(τ, σ)(C) = >.

10/17

Incremental Clause Addition
ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

ADDCLAUSES

where I is that each clause of ∆ is clean w.r.t. σ

A clause C is clean w.r.t. a sequence of witness labelled clauses σ if and only if
for all (ω : D) ∈ σ we have that ¬C ∩ ω = ∅.

Lemma: If a clause C is clean on a sequence of witness labelled clauses σ,
then for all truth assignments τ with τ(C) = > we have that R(τ, σ)(C) = >.

10/17

Reversing Weakenings

ϕ [ρ] σ · (ω : C) · σ′

ϕ ∧ C [ρ] σ · σ′ ∂

RESTORE

where ∂ is C is clean w.r.t. σ′

11/17

Incremental Inprocessing Rules

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

LEARN− FORGET STRENGTHEN ADDCLAUSES

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

ϕ [ρ] σ · (ω : C) · σ′

ϕ ∧ C [ρ] σ · σ′ ∂

WEAKEN+ DROP RESTORE

where] is ϕ ∧ ρ |= C, [is ϕ ∧ C ≡ω
sat ϕ, ø is ϕ |= C,

∂ is C is clean w.r.t. σ′ and I is that each clause in ∆ is clean w.r.t. σ

12/17

Incremental Inprocessing Rules

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

LEARN− FORGET STRENGTHEN ADDCLAUSES

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

ϕ [ρ] σ · (ω : C) · σ′

ϕ ∧ C [ρ] σ · σ′ ∂

WEAKEN+ DROP RESTORE

where] is ϕ ∧ ρ |= C, [is ϕ ∧ C ≡ω
sat ϕ, ø is ϕ |= C,

∂ is C is clean w.r.t. σ′ and I is that each clause in ∆ is clean w.r.t. σ

12/17

Incremental Inprocessing – Formal correctness

� Gathered information (including learned clauses) can be kept

F i+1 |= ρiki
where ρiki is ρ at the end of the evaluation of F i

� Satisfiability preserving derivation continuation

F i ≡sat ϕ
i
j ∧ ρ

i
j for all j with 0 ≤ j ≤ ki

� Solution reconstruction in any satisfiable state

τ (ϕi
ki

) = > =⇒ R(τ, σi
ki

)(F i) = > for all i with 0 ≤ i ≤ m

13/17

Incremental Inprocessing – Formal correctness

� Gathered information (including learned clauses) can be kept

F i+1 |= ρiki
where ρiki is ρ at the end of the evaluation of F i

� Satisfiability preserving derivation continuation

F i ≡sat ϕ
i
j ∧ ρ

i
j for all j with 0 ≤ j ≤ ki

� Solution reconstruction in any satisfiable state

τ (ϕi
ki

) = > =⇒ R(τ, σi
ki

)(F i) = > for all i with 0 ≤ i ≤ m

13/17

Incremental Inprocessing – Formal correctness

� Gathered information (including learned clauses) can be kept

F i+1 |= ρiki
where ρiki is ρ at the end of the evaluation of F i

� Satisfiability preserving derivation continuation

F i ≡sat ϕ
i
j ∧ ρ

i
j for all j with 0 ≤ j ≤ ki

� Solution reconstruction in any satisfiable state

τ (ϕi
ki

) = > =⇒ R(τ, σi
ki

)(F i) = > for all i with 0 ≤ i ≤ m

13/17

IMPLEMENTATION

Algorithm to Restore and Add Clauses

AlgorithmRestoreAddClauses (new clauses ∆, reconstruction stack σ)

1 (ω1 : C1) · · · (ωn : Cn) := σ

2 for i from 1 to n

3 if exists ` ∈ ωi where ¬` occurs in ∆ then

4 ∆ := ∆ ∪ Ci , σ := σ \ (ωi : Ci)

5 return 〈∆, σ〉

14/17

EXPERIMENTS

Experiments

CaDiCaL SAT solver with inprocessing [Biere-SATCompProc’18]

� variable elimination [EénBiere-SAT’05]

� vivification [PietteHamadiSais-ECAI’08, LuoLiXiaoManyLü-IJCAI’17]

� equivalent-literal substitution [AspvallPlassTarjan-IPL’79, Brafman-IJCAI’01]

� hyper-binary resolution [BacchusWinter-SAT’03]

� (self-)subsumption [EénBiere-SAT’05]

� blocked clause elimination [JärvisaloBiereHeule-TACAS’10]

CaMiCaL: bounded model checker with CaDiCaL as back-end

� safety property track of HWMCC’17: 300 AIGER models

� solving a bound = (incremental) SAT call

15/17

Experiments

CaDiCaL SAT solver with inprocessing [Biere-SATCompProc’18]

� variable elimination [EénBiere-SAT’05]

� vivification [PietteHamadiSais-ECAI’08, LuoLiXiaoManyLü-IJCAI’17]

� equivalent-literal substitution [AspvallPlassTarjan-IPL’79, Brafman-IJCAI’01]

� hyper-binary resolution [BacchusWinter-SAT’03]

� (self-)subsumption [EénBiere-SAT’05]

� blocked clause elimination [JärvisaloBiereHeule-TACAS’10]

CaMiCaL: bounded model checker with CaDiCaL as back-end

� safety property track of HWMCC’17: 300 AIGER models

� solving a bound = (incremental) SAT call

15/17

Experiments

CaDiCaL SAT solver with inprocessing [Biere-SATCompProc’18]

� variable elimination [EénBiere-SAT’05]

� vivification [PietteHamadiSais-ECAI’08, LuoLiXiaoManyLü-IJCAI’17]

� equivalent-literal substitution [AspvallPlassTarjan-IPL’79, Brafman-IJCAI’01]

� hyper-binary resolution [BacchusWinter-SAT’03]

� (self-)subsumption [EénBiere-SAT’05]

� blocked clause elimination [JärvisaloBiereHeule-TACAS’10]

CaMiCaL: bounded model checker with CaDiCaL as back-end

� safety property track of HWMCC’17: 300 AIGER models

� solving a bound = (incremental) SAT call

15/17

Experiments

CaDiCaL SAT solver with inprocessing [Biere-SATCompProc’18]

� variable elimination [EénBiere-SAT’05]

� vivification [PietteHamadiSais-ECAI’08, LuoLiXiaoManyLü-IJCAI’17]

� equivalent-literal substitution [AspvallPlassTarjan-IPL’79, Brafman-IJCAI’01]

� hyper-binary resolution [BacchusWinter-SAT’03]

� (self-)subsumption [EénBiere-SAT’05]

� blocked clause elimination [JärvisaloBiereHeule-TACAS’10]

CaMiCaL: bounded model checker with CaDiCaL as back-end

� safety property track of HWMCC’17: 300 AIGER models

� solving a bound = (incremental) SAT call

15/17

Experiments

CaDiCaL SAT solver with inprocessing [Biere-SATCompProc’18]

� variable elimination [EénBiere-SAT’05]

� vivification [PietteHamadiSais-ECAI’08, LuoLiXiaoManyLü-IJCAI’17]

� equivalent-literal substitution [AspvallPlassTarjan-IPL’79, Brafman-IJCAI’01]

� hyper-binary resolution [BacchusWinter-SAT’03]

� (self-)subsumption [EénBiere-SAT’05]

� blocked clause elimination [JärvisaloBiereHeule-TACAS’10]

CaMiCaL: bounded model checker with CaDiCaL as back-end

� safety property track of HWMCC’17: 300 AIGER models

� solving a bound = (incremental) SAT call

15/17

Experimental Results

16/17

Experimental Results

16/17

Experimental Results

16/17

Experimental Results

16/17

Experimental Results

16/17

Conclusion & Future Work

� Incremental inprocessing in SAT

� Simplified solver use
� No need for variable freezing

� Simple and efficient implementation

Future Work:

� Limitations
� LEARN− (for e.g. blocked clause addition)

� Clean clause definition

� Inprocessing under assumptions

17/17

Conclusion & Future Work

� Incremental inprocessing in SAT
� Simplified solver use

� No need for variable freezing

� Simple and efficient implementation

Future Work:

� Limitations
� LEARN− (for e.g. blocked clause addition)

� Clean clause definition

� Inprocessing under assumptions

17/17

Conclusion & Future Work

� Incremental inprocessing in SAT
� Simplified solver use

� No need for variable freezing

� Simple and efficient implementation

Future Work:

� Limitations
� LEARN− (for e.g. blocked clause addition)

� Clean clause definition

� Inprocessing under assumptions

17/17

Conclusion & Future Work

� Incremental inprocessing in SAT
� Simplified solver use

� No need for variable freezing

� Simple and efficient implementation

Future Work:

� Limitations
� LEARN− (for e.g. blocked clause addition)

� Clean clause definition

� Inprocessing under assumptions

17/17

Conclusion & Future Work

� Incremental inprocessing in SAT
� Simplified solver use

� No need for variable freezing

� Simple and efficient implementation

Future Work:

� Limitations
� LEARN− (for e.g. blocked clause addition)
� Clean clause definition

� Inprocessing under assumptions

17/17

Conclusion & Future Work

� Incremental inprocessing in SAT
� Simplified solver use

� No need for variable freezing

� Simple and efficient implementation

Future Work:

� Limitations
� LEARN− (for e.g. blocked clause addition)
� Clean clause definition

� Inprocessing under assumptions

17/17

Thank you for your attention!

INCREMENTAL INPROCESSING
IN SAT SOLVING

Katalin Fazekas1, Armin Biere1, Christoph Scholl2

July 9, 2019, Lisbon
1Johannes Kepler University Linz, Austria
2Albert–Ludwigs–University, Freiburg, Germany

References I

[Aspvall et al., 1979] Aspvall, B., Plass, M. F., and Tarjan, R. E. (1979).
A linear-time algorithm for testing the truth of certain quantified boolean
formulas.
Information Processing Letters, 8(3):121–123.

[Bacchus and Winter, 2003] Bacchus, F. and Winter, J. (2003).
Effective preprocessing with hyper-resolution and equality reduction.
In Giunchiglia, E. and Tacchella, A., editors, Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, pages 341–355. Springer.

References II

[Biere, 2018] Biere, A. (2018).
CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the SAT
Competition 2018.
In Heule, M., Järvisalo, M., and Suda, M., editors, Proc. of SAT Competition
2018 – Solver and Benchmark Descriptions, volume B-2018-1 of Department of
Computer Science Series of Publications B, pages 13–14. University of Helsinki.

[Brafman, 2001] Brafman, R. I. (2001).
A simplifier for propositional formulas with many binary clauses.
In Nebel, B., editor, Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA,
August 4-10, 2001, pages 515–522. Morgan Kaufmann.

References III

[Eén and Biere, 2005] Eén, N. and Biere, A. (2005).
Effective preprocessing in SAT through variable and clause elimination.
In Bacchus, F. and Walsh, T., editors, Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23,
2005, Proceedings, volume 3569 of Lecture Notes in Computer Science, pages
61–75. Springer.

[Eén and Sörensson, 2003] Eén, N. and Sörensson, N. (2003).
Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci., 89(4):543–560.

References IV

[Heule et al., 2019] Heule, M. J. H., Kiesl, B., and Biere, A. (2019).
Strong extension-free proof systems.
Journal of Automated Reasoning.
To be published.

[Järvisalo et al., 2010] Järvisalo, M., Biere, A., and Heule, M. (2010).
Blocked clause elimination.
In Esparza, J. and Majumdar, R., editors, Tools and Algorithms for the
Construction and Analysis of Systems, 16th International Conference, TACAS
2010, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings,
volume 6015 of Lecture Notes in Computer Science, pages 129–144. Springer.

References V

[Järvisalo et al., 2012] Järvisalo, M., Heule, M., and Biere, A. (2012).
Inprocessing rules.
In Gramlich, B., Miller, D., and Sattler, U., editors, Automated Reasoning - 6th
International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29,
2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, pages
355–370. Springer.

[Kupferschmid et al., 2011] Kupferschmid, S., Lewis, M. D. T., Schubert, T., and
Becker, B. (2011).
Incremental preprocessing methods for use in BMC.
Formal Methods in System Design, 39(2):185–204.

References VI

[Luo et al., 2017] Luo, M., Li, C., Xiao, F., Manyà, F., and Lü, Z. (2017).
An effective learnt clause minimization approach for CDCL SAT solvers.
In Sierra, C., editor, Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, pages 703–711. ijcai.org.

[Nadel et al., 2012] Nadel, A., Ryvchin, V., and Strichman, O. (2012).
Preprocessing in incremental SAT.
In Cimatti, A. and Sebastiani, R., editors, Theory and Applications of
Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy,
June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer
Science, pages 256–269. Springer.

References VII

[Piette et al., 2008] Piette, C., Hamadi, Y., and Sais, L. (2008).
Vivifying propositional clausal formulae.
In Ghallab, M., Spyropoulos, C. D., Fakotakis, N., and Avouris, N. M., editors,
ECAI 2008 - 18th European Conference on Artificial Intelligence, Patras,
Greece, July 21-25, 2008, Proceedings, volume 178 of Frontiers in Artificial
Intelligence and Applications, pages 525–529. IOS Press.

Experimental Results

	Introduction
	Incremental Inprocessing
	Implementation
	Experiments
	Appendix

