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INTRODUCTION



Boolean Satisfiability Problem (SAT)

� Propositional logic

� NP-complete problem: Is this set of clauses satisfiable?

� If yes: Provide satisfying truth assignment

{a = >, b = ⊥}

= {a,¬b}

(

a

∨ ¬

b

) ∧ (a ∨ b) ∧ (¬a ∨ ¬b)
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Incremental SAT Solving

C1 ∧ · · · ∧ Cn

∧ C′
1 ∧ · · · ∧ C′

n′ ∧ C′′
1 ∧ · · · ∧ C′′

n′′

SAT?

∆0 ∆1 ∆2

F 0

F 1

F 2

For each i = 0 . . .m is F i =

i∧
d=0

∆d satisfiable?

� Extend formula with new clauses
� Avoid repeated work

� Keep gathered information (e.g. scores, search state variables)
� Keep learned clauses
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Inprocessing in SAT Solving [JärvisaloHeuleBiere-IJCAR’12]

� Satisfiability preserving clause addition or removal

� Abstract framework that captures generally inprocessing
� Deduction rules applied on abstract states

ϕ: Irredundant clauses ρ: Redundant clauses σ: Eliminated clauses

a ∨ b

b b : (a ∨ b)

¬a ∨ b

a ∨ c

a

a ∨ b
b
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Solution Reconstruction [Sörensson 2009, JHB-IJCAR’12]

� Inprocessing is satisfiability but not model preserving

� Solution reconstruction is necessary

F0 = (a ∨ b) ∧ (¬a ∨ b) ∧ (a)

a ∨ b

a ∨ b b : (a ∨ b)

¬a ∨ b

¬a ∨ b b : (¬a ∨ b)

a

R({a = >, b = ⊥}, (b : (a ∨ b)) · (b : (¬a ∨ b)))

=

R({a = >, b = >}, (b : (a ∨ b))) =

R({a = >, b = >}, ε) = {a = >, b = >}.
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INCREMENTAL INPROCESSING



Incremental Inprocessing – Problem

F0 = (a ∨ b) ∧ (¬a ∨ ¬b)

F1 = F0 ∧ (¬a) ∧ (¬b)

a ∨ b

a ∨ b a : (a ∨ b)

¬a ∨ ¬b

¬a ∨ ¬b ¬b : (¬a ∨ ¬b)
¬a
¬b

τ = {a = ⊥, b = ⊥}

R({a = ⊥, b = ⊥}, (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b))) = {a = >, b = ⊥}
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Incremental Clause Addition
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A clause C is clean w.r.t. a sequence of witness labelled clauses σ if and only if
for all (ω : D) ∈ σ we have that ¬C ∩ ω = ∅.

Lemma: If a clause C is clean on a sequence of witness labelled clauses σ,
then for all truth assignments τ with τ(C) = > we have that R(τ, σ)(C) = >.
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Reversing Weakenings

ϕ [ ρ ] σ · (ω : C) · σ′

ϕ ∧ C [ ρ ] σ · σ′ ∂

RESTORE

where ∂ is C is clean w.r.t. σ′

11/17



Incremental Inprocessing Rules

ϕ [ ρ ] σ

ϕ [ ρ ∧ C ] σ
]

ϕ [ ρ ∧ C ] σ

ϕ [ ρ ] σ

ϕ [ ρ ∧ C ] σ

ϕ ∧ C [ ρ ] σ

ϕ [ ρ ] σ

ϕ ∧∆ [ ρ ] σ
I

LEARN− FORGET STRENGTHEN ADDCLAUSES

ϕ ∧ C [ ρ ] σ

ϕ [ ρ ] σ · (ω : C)
[

ϕ ∧ C [ ρ ] σ

ϕ [ ρ ] σ
ø

ϕ [ ρ ] σ · (ω : C) · σ′

ϕ ∧ C [ ρ ] σ · σ′ ∂

WEAKEN+ DROP RESTORE

where ] is ϕ ∧ ρ |= C, [ is ϕ ∧ C ≡ω
sat ϕ, ø is ϕ |= C,

∂ is C is clean w.r.t. σ′ and I is that each clause in ∆ is clean w.r.t. σ

12/17



Incremental Inprocessing Rules

ϕ [ ρ ] σ

ϕ [ ρ ∧ C ] σ
]

ϕ [ ρ ∧ C ] σ

ϕ [ ρ ] σ

ϕ [ ρ ∧ C ] σ

ϕ ∧ C [ ρ ] σ

ϕ [ ρ ] σ

ϕ ∧∆ [ ρ ] σ
I

LEARN− FORGET STRENGTHEN ADDCLAUSES

ϕ ∧ C [ ρ ] σ

ϕ [ ρ ] σ · (ω : C)
[

ϕ ∧ C [ ρ ] σ

ϕ [ ρ ] σ
ø

ϕ [ ρ ] σ · (ω : C) · σ′

ϕ ∧ C [ ρ ] σ · σ′ ∂

WEAKEN+ DROP RESTORE

where ] is ϕ ∧ ρ |= C, [ is ϕ ∧ C ≡ω
sat ϕ, ø is ϕ |= C,

∂ is C is clean w.r.t. σ′ and I is that each clause in ∆ is clean w.r.t. σ

12/17



Incremental Inprocessing – Formal correctness

� Gathered information (including learned clauses) can be kept

F i+1 |= ρiki
where ρiki is ρ at the end of the evaluation of F i

� Satisfiability preserving derivation continuation

F i ≡sat ϕ
i
j ∧ ρ

i
j for all j with 0 ≤ j ≤ ki

� Solution reconstruction in any satisfiable state

τ (ϕi
ki

) = > =⇒ R(τ, σi
ki

)(F i) = > for all i with 0 ≤ i ≤ m
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IMPLEMENTATION



Algorithm to Restore and Add Clauses

AlgorithmRestoreAddClauses (new clauses ∆, reconstruction stack σ )

1 (ω1 : C1) · · · (ωn : Cn) := σ

2 for i from 1 to n

3 if exists ` ∈ ωi where ¬` occurs in ∆ then

4 ∆ := ∆ ∪ Ci , σ := σ \ (ωi : Ci)

5 return 〈∆, σ〉
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Thank you for your attention!
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