Formal Models #342.251

SS 2020 Johannes Kepler University Linz, Austria

Armin Biere Martina Seidl Institute for Formal Models and Verification

http://fmv.jku.at/fm

Version 2020.3

ta 2 2020.3

use automata for modeling, specification and verification

Definition a *finite automaton* $A = (S, I, \Sigma, T, F)$ consists of the following components

- set of states *S* (usually finite)
- set of initial states $I \subseteq S$
- input-alphabet Σ (usually finite as well)
- transition relation T ⊆ S × Σ × S written s → s' iff (s, a, s') ∈ T iff T(s, a, s') "holds"
- set of final states $F \subseteq S$

Definition FA *A* accepts a word $w \in \Sigma^*$ iff there exists s_i and a_i with

$$s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} \dots \xrightarrow{a_{n-1}} s_{n-1} \xrightarrow{a_n} s_n,$$

where $n \ge 0$, $s_0 \in I$, $s_n \in F$ and $w = a_1 \cdots a_n$ $(n = 0 \Rightarrow w = \varepsilon)$.

Definition the *language* L(A) of A is the set of words accepted by it

• use regular languages for syntax specification

(e.g. in a scanner / parser)

• use FA or regular languages to specify event streams

Formal Models #342.251 SS 2020

Definition the product automaton $A = A_1 \times A_2$ of two FA A_1 and A_2 over the same alphabet $\Sigma_1 = \Sigma_2$ has the following components:

 $S = S_1 \times S_2 \qquad I = I_1 \times I_2$ $\Sigma = \Sigma_1 = \Sigma_2 \qquad F = F_1 \times F_2$ $T((s_1, s_2), a, (s'_1, s'_2)) \quad \text{iff} \quad T_1(s_1, a, s'_1) \text{ and } T_2(s_2, a, s'_2)$

Theorem let A, A_1 , and A_2 as above, then $L(A) = L(A_1) \cap L(A_2)$

Example construct automaton, which accepts words with prefix *ab* and suffix *ba*. (as regular expression: $a \cdot b \cdot \mathbf{1}^* \cap \mathbf{1}^* \cdot b \cdot a$, where **1** denotes all letters)

Definition for $s \in S$, $a \in \Sigma$ let $s \xrightarrow{a}$ denote the set of successors of *s* defined as

$$s \stackrel{a}{\rightarrow} = \{s' \in S \mid T(s, a, s')\}$$

Definition an FA is *complete* iff |I| > 0 and $|s \xrightarrow{a}| > 0$ for all $s \in S$ and $a \in \Sigma$.

Definition ... *deterministic* iff $|I| \le 1$ and $|s \xrightarrow{a}| \le 1$ for all $s \in S$ and $a \in \Sigma$.

Proposition ... deterministic and complete iff |I| = 1 and $|s \xrightarrow{a}| = 1$ for all $s \in S$, $a \in \Sigma$.

Formal Models #342.251 SS 2020

Definition the *power-automaton* $A = \mathbb{P}(A_1)$ of an FA A_1 consists of the components:

$$S = \mathbb{P}(S_1) \quad (\mathbb{P} = \text{power set}) \qquad I = \{I_1\}$$
$$\Sigma = \Sigma_1 \qquad \qquad F = \{F' \subseteq S_1 \mid F' \cap F_1 \neq \emptyset\}$$
$$T(S', a, S'') \quad \text{iff} \quad S'' = \bigcup_{s \in S'} s \xrightarrow{a}$$

Theorem let *A*, A_1 as above, then $L(A) = L(A_1)$ and *A* is deterministic and complete.

Example: spam-filter based on the white-list "abb", "abba", and "abacus"! (regular expression: "abb" | "abba" | "abacus")

Definition the *complement-automaton* $A = C(A_1)$ of an FA A_1 has the same components as A_1 , except for the set of final states, which is $F = S \setminus F_1$.

Theorem the complement-automaton $A = C(A_1)$ of a deterministic and complete FA A_1 accepts the complement language $L(A) = \overline{L(A_1)} = \Sigma^* \setminus L(A_1)$.

Example: spam-filter based on the black-list "abb", "abba", and "abacus"! (regular expression: "abb" | "abba" | "abacus")

fa 8

Idea: replace non-determinism with oracle

Definition the *oracle-automaton* $A = Oracle(A_1)$ of FA A_1 has the following components:

- $S = S_1$
- $I = I_1$
- $\Sigma = \Sigma_1 \times S_1$
- T(s,(a,t),s') iff s' = t and $T_1(s,a,t)$
- $F = F_1$

Proposition $\pi_1(L(Oracle(A_1))) = L(A_1)$ (π_1 projection on first component)

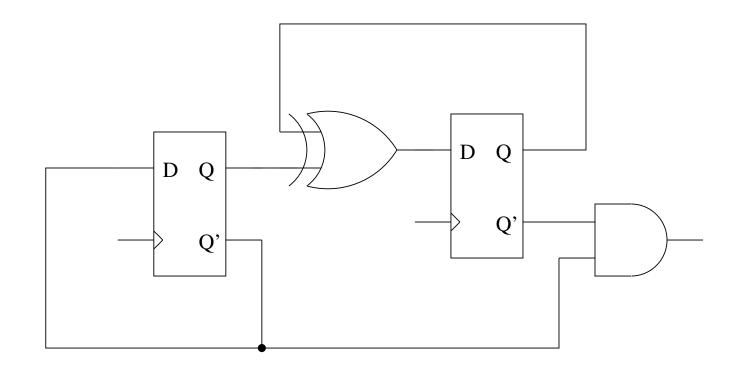
Proposition *Oracle*(A_1) is deterministic iff $|I_1| \le 1$.

Proposition Oracle(A₁) is almost always incomplete (e.g. $T_1 \neq S_1 \times \Sigma_1 \times S_1$ and $|S_1| > 1$).

Note completeness can be achieved, if A_1 is complete, and if $\{0, ..., n-1\}$ is added to Σ_1 instead of S_1 , where *n* is the maximum number of successors: $n = \max_{s \in S, a \in \Sigma} |s \xrightarrow{a}|$.

$$T(s, (a, i), s')$$
 iff $s' = s_j$, $s \stackrel{a}{\rightarrow} = \{s_0, \dots, s_{m-1}\}$, $j \equiv i \mod m$

Exercise construct the oracle automaton for $a \cdot b \cdot \mathbf{1}^* \cap \mathbf{1}^* \cdot b \cdot a$



implementations of automata have to be deterministic

Definition *I/O-automaton* $A = (S, i, \Sigma, T, \Theta, O)$ consists of:

- a (finite) set of states *S*,
- exactly **one** initial state *i*,
- an input alphabet Σ ,
- a transition function $T: S \times \Sigma \rightarrow S$
- an output alphabet Θ , with
- output function $O: S \times \Sigma \to \Theta$ (Moore machine: $O: S \to \Theta$)

Formal Models #342.251 SS 2020

fa 11

Let $w \in \Sigma^*$ and $a \in \Sigma$.

interpret T as *extended* transition function $T: S \times \Sigma^* \to S$ as follows: Definition

$$s = T(s, \varepsilon)$$
 and $s' = T(s, a \cdot w) \Leftrightarrow \exists s''[s'' = T(s, a) \land s' = T(s'', w)].$

interpret *O* as *extended* output function $O: S \times \Sigma^* \to \Theta^*$ as follows: Definition $O(s,\varepsilon) = \varepsilon$ and $O(s,a \cdot w) = b \cdot w'$, with b = O(s,a), s' = T(s,a) and w' = O(s',w).

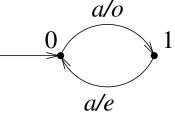
the *behavior* $B: \Sigma^* \to \Theta^*$ of an I/O-automaton is defined as B(w) = O(i, w). Definition

0 **Example** $S = \{0, 1\}, \Sigma = \{a\}, \Theta = \{e, o\},$ a/e

$$T(0, a^{2n}) = 0$$
, $T(0, a^{2n+1}) = 1$, $T(1, a^{2n}) = 1$, $T(1, a^{2n+1}) = 0$

$$B(a^{2n}) = (oe)^n$$
, $B(a^{2n+1}) = (oe)^n o$

Formal Models #342.251 SS 2020



given an I/O-automaton $A = (S, i, \Sigma, T, \Theta, O)$.

Definition the FA for A is defined as $A' = (S, \{i\}, \Sigma \times \Theta, T', S)$ with

$$T'(s, (a, b), s')$$
 iff $s' = T(s, a)$ and $b = O(s, a)$.

Proposition B(w) = w' iff $(w, w') \in L(A')$

(graphically almost no difference)

let $A = (S, I, \Sigma, T, F)$ be an FA

Definition the I/O-automaton for *A* is defined as $A' = (\mathbb{P}(S), I, \Sigma, T', \{0, 1\}, O)$ with *T'* the transition relation of $\mathbb{P}(A)$ and O(S', a) = 1 iff $S' \cap F \neq \emptyset$.

Proposition $w \in L(A)$ iff $B(w \cdot x) \in \mathbf{1}^{|w|} \cdot 1$ for one $x \in \Sigma$

Conclusion of the comparison of I/O-automata with FA:

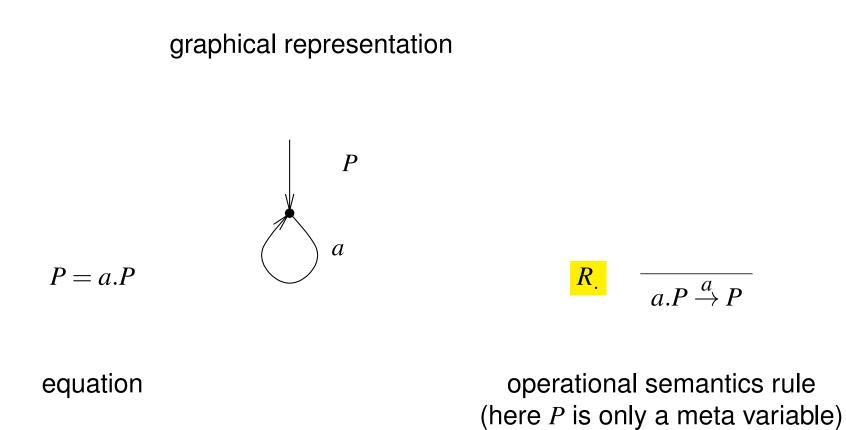
in substance both are the same mathematical structure

we concentrate on the more compact and more elegant FA version

in particular non-determinism is easier to use with FA

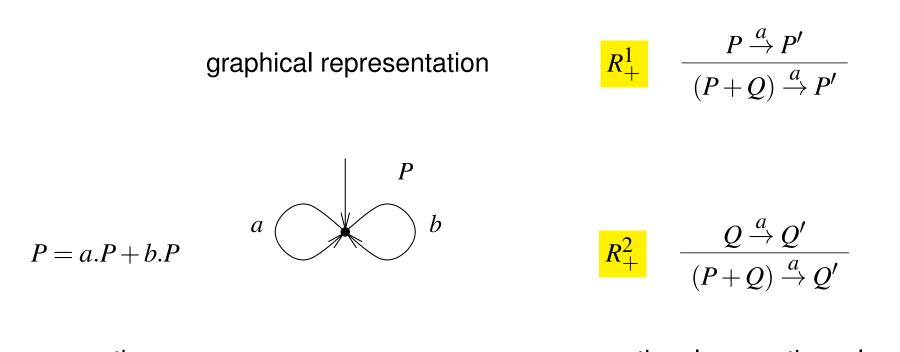
- modeling of *distributed* systems
 - Calculus of Communicating Systems (CCS) [Milner80]
 - Communicating Sequential Processes (CSP) [Hoare85]
 - more specifically: asynchronously communicating processes (protocols / SW)
- synthesis: process algebra (PA) as programming language (e.g. Occam, Lotos)
- verification of (abstract) PA models is simpler
- theory: mathematical properties of distributed systems
 - how to compare distributed systems?
 - simulation, bisimulation, observability, divergence $(\Rightarrow model checking course)$

- right linear grammar = regular language = Chomsky 3 language grammar G: $N = \varepsilon | aM | bM$ M = cN | dN start symbol N \Rightarrow language $L(G) = ((a | b)(c | d))^*$ (as regular expression)
- syntax in PA:
 - same idea: equations of non-terminals = processes
 - concatenation not with juxtaposition but with '.' operator
 - choice represented with '+' operator (not with '|')
- semantics
 - we are only interested in potential sequences = event streams



.' operator means sequential composition

Formal Models #342.251 SS 2020



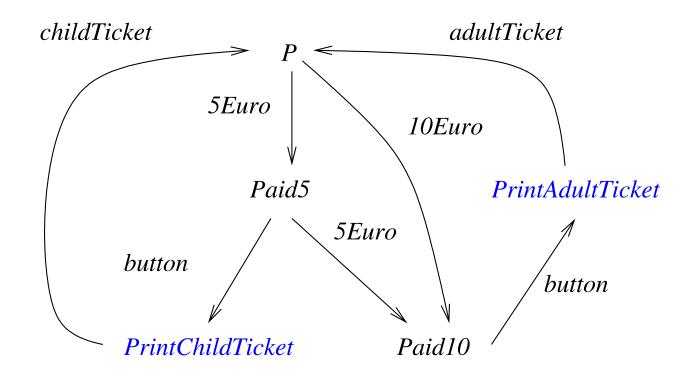
equation

operational semantics rule (here again P, Q are meta variables)

'+' operator means non-deterministic choice

Formal Models #342.251 SS 2020

P = 5Euro.Paid5 + 10Euro.Paid10 Paid5 = button.childTicket.P + 5Euro.Paid10 Paid10 = button.adultTicket.P



- LTS as operational semantics of PAE
- almost the same as an automaton, but ...
 - no final states: in some sense all states are final
 - only possible event streams matter
- LTS $A = (S, I, \Sigma, T)$ with
 - state set *S*
 - actions Σ
 - transition relation $T \subseteq S \times \Sigma \times S$ defined through operational semantics
 - initial states $I \subseteq S$

- divergent self-cycles
 - P = a.P + P is an **invalid** PAE
 - there are no ϵ -transitions in contrast to FAs

(actions "need time", ε has connotation of not really taking time)

- avoid self-cycles
 - term *T* is **guarded** if *T* only occurs in the form *a*.*T*

(where *a* can be different for all occurrences of *T* of course)

simplest restriction:

process variables on the right hand side (RHS) of an PAE are all guarded

- or more complex: each "cycle" contains at least one action

Data in PA

- actions and states can be parameterized
 - which also gives rise to parameterized equations
- previous example with $x \in \{5, 10\}$:

P = euro(x).Paid(x) Paid(5) = button.print(childTicket).P + euro(5).Paid(10)Paid(10) = button.print(adultTicket).P

• it is possible to operate on data as well:

$$Paid(x) = euro(y).Paid(x+y) + button.ticket(x).P$$

- actually allows modeling of *infinite systems*
- and turns PA into a real programming language

$$\frac{P \xrightarrow{a} P'}{\text{if } B \text{ then } P \text{ else } Q \xrightarrow{a} P'} \quad B$$
$$Q \xrightarrow{a} O'$$

$$\frac{Q \to Q}{\text{if } B \text{ then } P \text{ else } Q \xrightarrow{a} Q'} \neg B$$

(and similar rules for if-then alone)

$$Paid(X) = euro(Y).Paid(X+Y) + button.Print(X)$$

 $Print(X) = if(X = 5)$ then $childTicket.P + if(X = 10)$ then $adultTicket.P$

Formal Models #342.251 SS 2020

synchronization through rendezvous in CSP

$$\Theta \subseteq \Sigma$$

$$\begin{array}{c} R_{||_{\Theta}} & \frac{P \xrightarrow{a} P' \quad Q \xrightarrow{a} Q'}{P \mid \mid_{\Theta} Q \xrightarrow{a} P' \mid \mid_{\Theta} Q'} \quad a \in \Theta & \text{rendezvous} \\ \\ \hline R_{||_{\Theta}}^{1} & \frac{P \xrightarrow{a} P'}{P \mid \mid_{\Theta} Q \xrightarrow{a} P' \mid \mid_{\Theta} Q} \quad a \notin \Theta & \text{interleaving} \\ \\ \hline R_{||_{\Theta}}^{2} & \frac{Q \xrightarrow{a} Q'}{P \mid \mid_{\Theta} Q \xrightarrow{a} P \mid \mid_{\Theta} Q'} \quad a \notin \Theta & \text{interleaving} \end{array}$$

rendezvous does not distinguish sender and receiver

$$\frac{R_{||}}{P || Q \xrightarrow{a} P' ||_{\Theta} Q'}{P || Q \xrightarrow{a} P' || Q'} \quad \Theta = \Sigma(P) \cap \Sigma(Q)$$

 $\Sigma(P)$ is the subset of actions of Σ which occur in *P* syntactically

Proposition || is commutative: $P || Q \xrightarrow{a} P' || Q'$ iff $Q || P \xrightarrow{a} Q' || P'$

proof follows directly from the rules

Proposition || is associative

proof: Let $P = P_1 \mid | (P_2 \mid | P_3), P' = P'_1 \mid | (P'_2 \mid | P'_3), Q = (P_1 \mid | P_2) \mid | P_3, Q' = (P'_1 \mid | P'_2) \mid | P'_3$

To show: $P \xrightarrow{a} P' \quad \Leftrightarrow \quad Q \xrightarrow{a} Q'$

8 cases of $a \in \Sigma(P_i)$ resp. $a \notin \Sigma(P_i)$ for each direction

intuition:

1. $a \in \Sigma(P_i) \Rightarrow P_i \stackrel{a}{\rightarrow} P'_i$

- 2. P_i with $a \notin \Sigma(P_i)$ does not change $(P'_i = P_i)$
- 3. the sames applies for every "parallel composition" of the P_i

• "parenthesis" around || can be omitted:

```
P \mid\mid (Q \mid\mid R) behaves like (P \mid\mid Q) \mid\mid R behaves like P \mid\mid Q \mid\mid R
```

• order is irrelevant:

 $P \parallel Q \parallel R$ behaves like $P \parallel R \parallel Q$ behaves like $Q \parallel P \parallel R$ etc.

• parallel composition $\frac{||}{i \in J} P_i$ of arbitrary processes P_i over an index set J:

$$\frac{\forall P_i, a \in \Sigma(P_i) \quad P_i \xrightarrow{a} P'_i \qquad \forall P_i, a \notin \Sigma(P_i) \quad P'_i = P_i \\ ||P_i \quad \xrightarrow{a} \quad ||P'_i \qquad \exists P_i \quad P_i \xrightarrow{a} P'_i$$

 $R_{|}$

Hiding

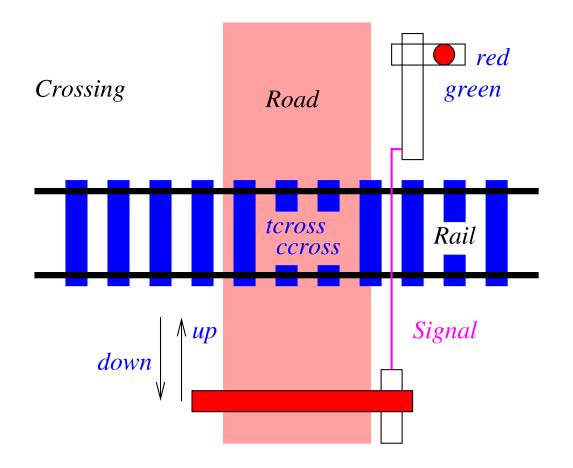
- hiding resp. abstraction of internal, **unobservable** actions
- abstracted to "silent" action $\boldsymbol{\tau}$
 - assumption: $\tau \notin \Sigma$
 - $* \,$ formally consider only $\Sigma \, \dot{\cup} \, \{\tau\}$ as actions
 - $\ast\,$ it is not possible to synchronize on τ
 - $-\tau$ still needs time

• typical usage of internal synchronization $R = (||_{i=1}^{n} Q_i) \setminus \{x_1, \dots, x_n\}$

Railroad Crossing

[BradfieldStirling]

- Road = car.up.ccross.down.Road
 - Rail = train.green.tcross.red.Rail
- Signal = green.red.Signal + up.down.Signal
- $Crossing = (Road || Rail || Signal) \setminus \{green, red, up, down\}$



pa **28**

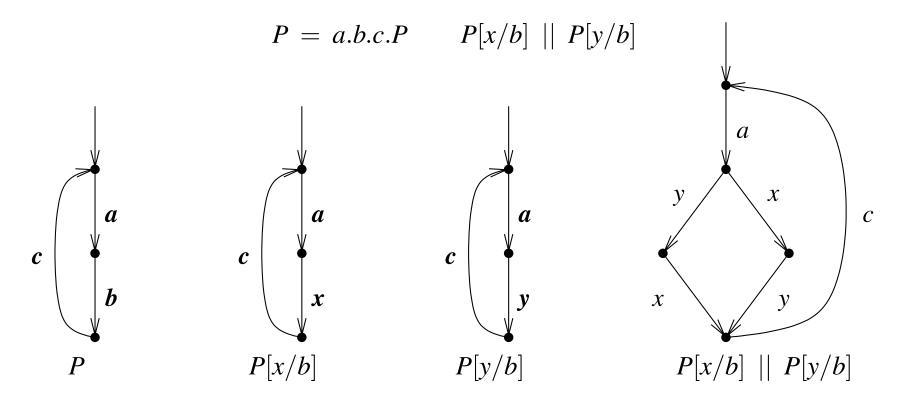
2020.3

Linking

Linking as substitution of actions

$$\begin{array}{c|c} P \xrightarrow{a} Q \\ \hline R_{[]} & P[b/a] \xrightarrow{b} Q[b/a] \end{array} \end{array}$$
 Example: $(a.P)[b/a] \xrightarrow{b} P[b/a]$

needed to "link" processes or instantiate templates:



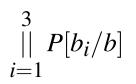
Formal Models #342.251 SS 2020

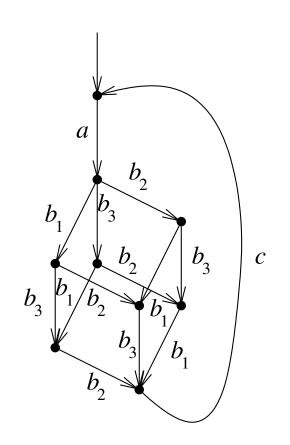
Armin Biere Martina Seidl JKU Linz

29

ра 2020.3

$$P = a.b.c.P$$





- classical example of process algebra
 - modeling of a round robin scheduler
- scheduling of *n* processes $||P_i|$ with P = a.z.b.P and $P_i = P[a_i/a, z_i/z, b_i/b]$
 - *a* start one run of a process
 - *z* internal action(s)
 - *b* end of one run of a process
- Restrictions:
 - processes are started round robin in the order P_1, P_2, \ldots
 - no restriction on the execution order of the b_i

- idea: proxy for each process
- divide scheduler R' in token ring of *n* parallel cyclic processes Q'
- each Q'_i controls start (a_i) and end (b_i) of P_i, \ldots
- ... hands over x_i control to next Q'_{i+1} ...
- and then waits to get control x_{i-1} from previous Q'_{i-1} in ring

$$Q' = a.x.b.y.Q'$$

$$Q'_{1} = Q'[a_{1}/a, x_{1}/x, b_{1}/b, x_{n}/y]$$

$$Q'_{i} = (y.Q')[a_{i}/a, x_{i}/x, b_{i}/b, x_{i-1}/y] \qquad i \in \{2, ..., n\}$$

$$R' = \prod_{i=1}^{n} Q'_{i}$$

- incorrect solution does **not** accept the legal sequence:
 - ending P_2 before P_1 : $a_1a_2b_2b_1...$
- decouple ending (*b*) and accepting control (*y*)

$$Q = a.x. (b.y + y.b) .Q$$

$$Q_{1} = Q[a_{1}/a, x_{1}/x, b_{1}/b, x_{n}/y]$$

$$Q_{i} = (y.Q)[a_{i}/a, x_{i}/x, b_{i}/b, x_{i-1}/y] \qquad i \in \{2, ..., n\}$$

$$R = \prod_{i=1}^{n} Q_{i}$$

- implemented by non blocking waiting on two different messages
 - in programming languages: try-locking, multiple threads, select (java.nio), ...
- slightly sloppy alternative notation $b.y+y.b=b \parallel y$ (we do not have a *nil* process)

- actions: $\Sigma \dot{\cup} \overline{\Sigma} \dot{\cup} \{\tau\}$ overlined actions are outputs, otherwise inputs
- different hiding principle (new syntax: double instead of single backslash)

$$\frac{P \xrightarrow{a} Q}{P \setminus \Theta \xrightarrow{a} Q \setminus \Theta} \quad a \notin \Theta \cup \overline{\Theta}$$

• pairwise **explicit** synchronization

$$\begin{array}{c}
R_{|||} & \frac{P \xrightarrow{a} P' \quad Q \xrightarrow{a} Q'}{P \mid \mid \mid Q \xrightarrow{\tau} P' \mid \mid \mid Q'} \quad a \in \Sigma \stackrel{\cdot}{\cup} \overline{\Sigma} \\
\end{array}$$

$$\begin{array}{c}
R_{|||} & \frac{P \xrightarrow{a} P'}{P \mid \mid \mid Q \xrightarrow{\tau} P' \mid \mid \mid Q} \quad R_{|||}^{2} & \frac{Q \xrightarrow{a} Q'}{P \mid \mid \mid Q \xrightarrow{\tau} P' \mid \mid \mid Q'}
\end{array}$$

- Rail = train.green.tcross.red.Rail
- Signal = green.red.Signal + up.down.Signal

 $Crossing = (Road || Rail || Signal) \setminus \{green, red, up, down\}$

resp. in CCS

 $Road = car.up.\overline{ccross.down.Road}$

Rail = train.green.tcross.red.Rail

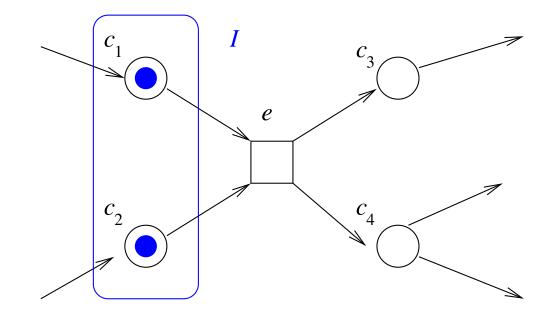
- $Signal = \overline{green}.red.Signal + \overline{up}.down.Signal$
- $Crossing = (Road ||| Rail ||| Signal) \setminus \{green, red, up, down\}$

- originally CSP had channels with data
 - inputs: *channel*? *datain*, outputs: *channel*! *dataout*
- *π*-calculus after [MilnerParrowWalker]
 - (references to) channels / connections can be used as data as well
 - example: *TimeAnnounce* = *ring*(*caller*).*caller*(*CurrentTime*).*hangup*.*TimeAnnounce*
- probabilistic behavior
 - transitions have a "transition probability"
- timed process algebra
 - transitions need (explicitly specified) time

- beside process algebra the most common modeling language for *distributed* systems
 - investigated since 60s, now also known as activity diagrams in UML
 - again: asynchronously communicating processes (protocols / SW)
- modeling and verification tools available
- **theory:** many interesting results, vast literature
 - finiteness, deadlock, ...
- extension motivated by practice
 - data, coloring, hierarchy, and again quantitative aspects etc.

Definition

A CEN N = (C, I, E, G) is made of conditions *C*, an initial marking $I \subseteq C$, events *E* and a dependence graph $G \subseteq (C \times E) \stackrel{.}{\cup} (E \times C)$

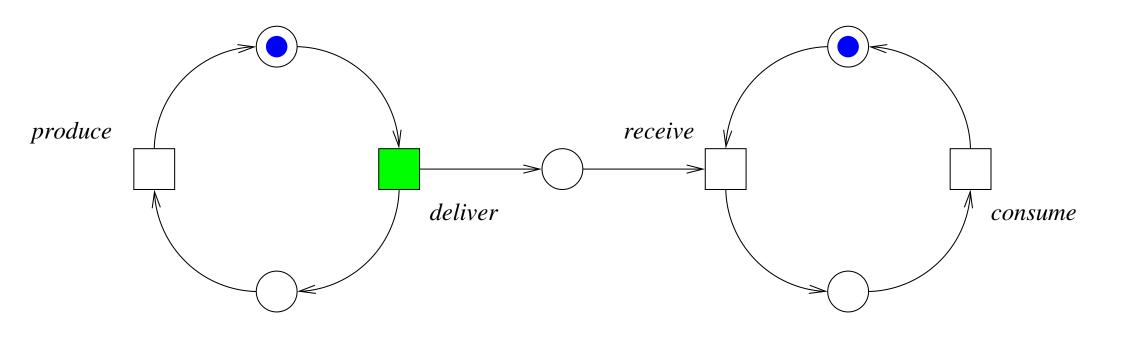


• we also use \rightarrow instead of G

- can be interpreted as *bipartite* graph or ...
- ... hyper graph with multiple source resp. target edges E

Formal Models #342.251 SS 2020

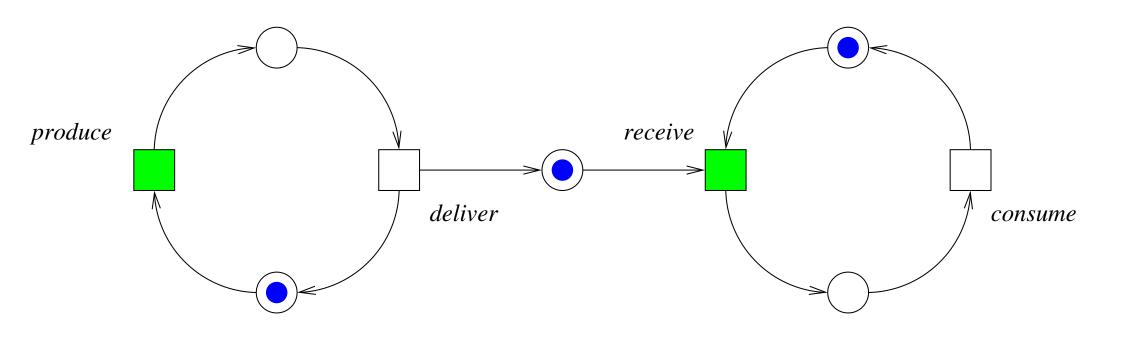
_____**99**



only one event / transition can fire

Formal Models #342.251 SS 2020

_____pn 40



two events / transitions can fire

Formal Models #342.251 SS 2020

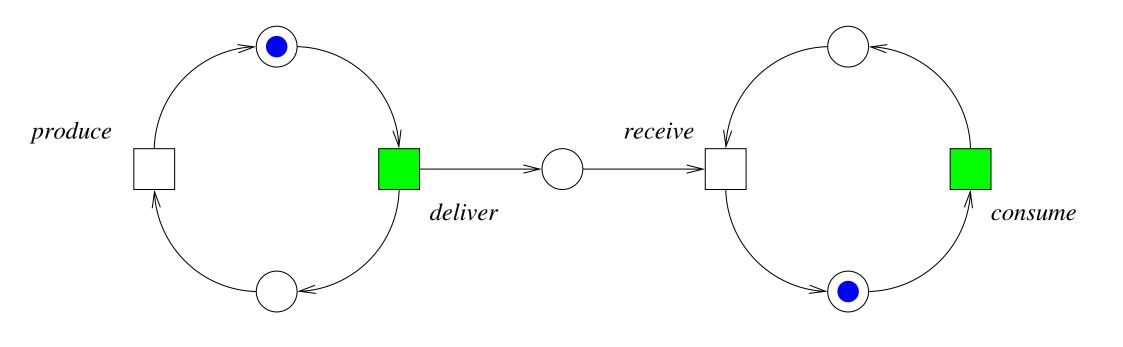
produce receive deliver consume

target condition of *deliver* occupied

Formal Models #342.251 SS 2020

pn **41**

_____pn **42**



again choice of two possible events

Formal Models #342.251 SS 2020

CEN Semantics as LTS

Definition Let CEN N = (C, I, E, G). The LTS $L = (S, \{I\}, \Sigma, T)$ for N is defined as

$$S = \mathbb{P}(C)$$
 $\Sigma = E$

$$T(C_1, e, C_2) \quad \text{iff} \quad G^{-1}(e) \subseteq C_1 \qquad \text{pre-conditions satisfied} \quad (1)$$

$$G(e) \cap C_1 = \emptyset \qquad \text{post-conditions satisfied} \quad (2)$$

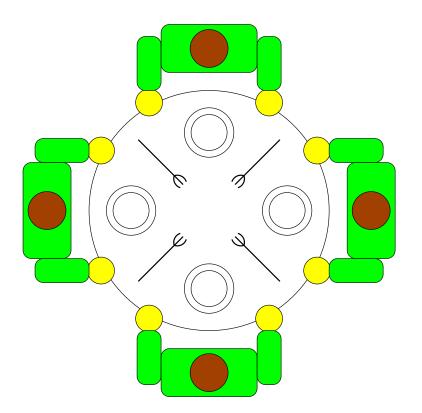
$$C_2 = (C_1 \setminus G^{-1}(e)) \cup G(e) \qquad \text{state update}$$

$$G(e) =$$
 post-conditions of event e (or $e \rightarrow$)
 $G^{-1}(e) =$ pre-conditions of event e (or $\rightarrow e$)

Formal Models #342.251 SS 2020

- states $M \in \mathbb{P}(C)$ of the LTS are also called markings of the CEN
- event *e* is **enabled** in *M* iff $M \xrightarrow{e} \neq \emptyset$
- marking $M \in \mathbb{P}(C)$ is a **deadlock** iff
 - *M* is is "dead end" in the reachability graph of the LTS iff
 - no event in *M* is enabled iff
 - all events are disabled iff
 - $\forall e \in E[M \xrightarrow{e} = \emptyset]$
- a CEN has a deadlock iff a deadlock is reachable

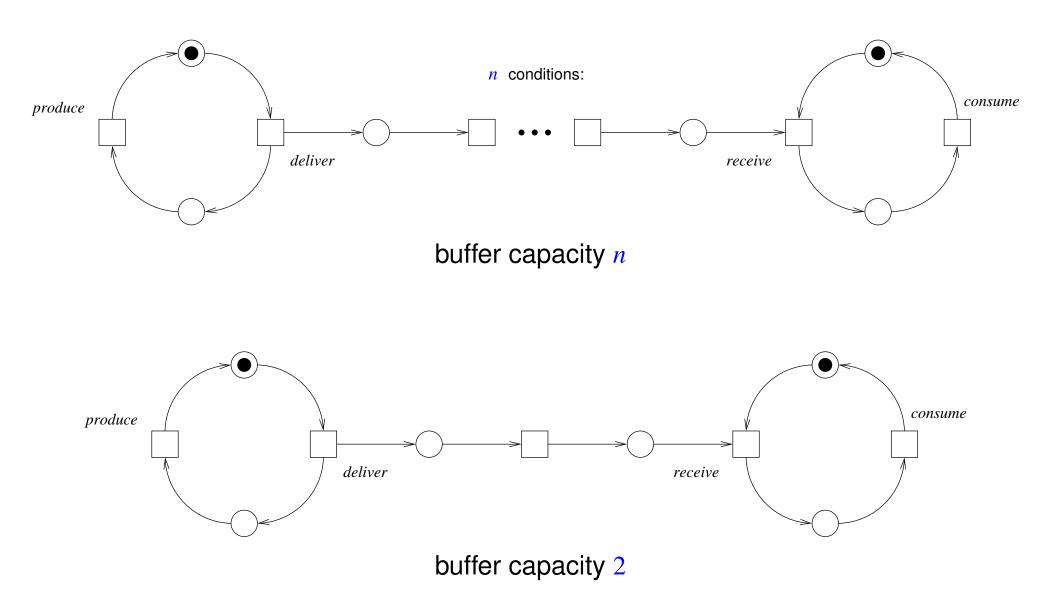
n philosophers, *n* forks, *n* plates



philosophers alternate in thinking and eating they need to pick up and use two forks to eat forks can not be picked up at the same time (atomically)

Capacities

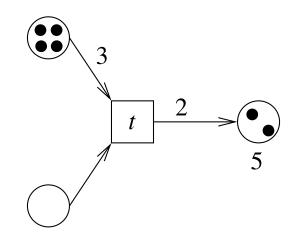
pn **46** 2020.3



Formal Models #342.251 SS 2020

Place Transition Net (PTN)

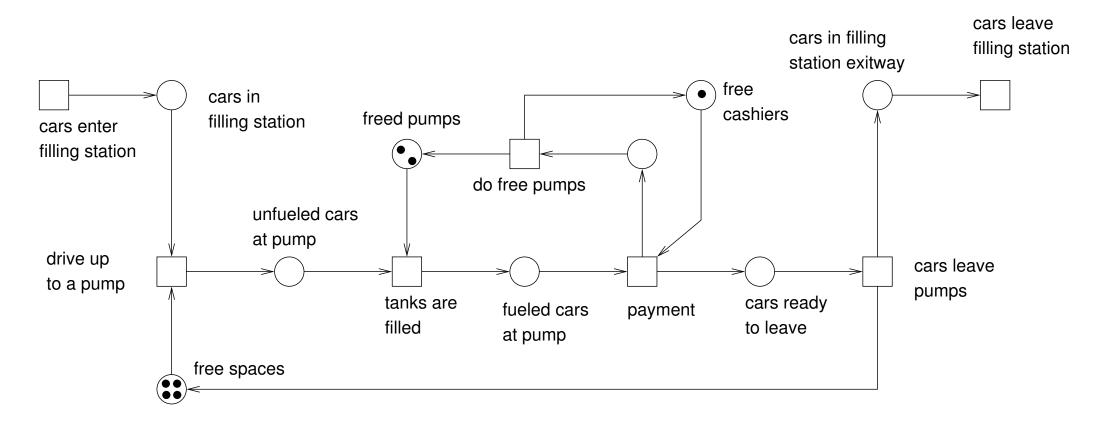
Definition A PTN N = (P, I, T, G, C) consists of places P, initial marking $I: P \to \mathbb{N}$, transitions T, connection graph $G \subseteq (P \times T) \stackrel{.}{\cup} (T \times P)$, and capacities $C: P \stackrel{.}{\cup} G \to \mathbb{N}_{\infty}$.



- capacity of a *connection* is finite and is one if not specified explicitly
- capacity of a *place* can be ∞ and is ∞ if not specified explicitly
- CEN can be interpreted as PTN with constant capacity $C \equiv 1$

Filling Station

from [W. Reisig, A Primer in Petri Net Design, 1992]



pn **48**

given a PTN N = (P, I, T, G, C)

Definitiontransition $t \in T$ can fire in a state / marking $M: P \to \mathbb{N}$ iff $C((p,t)) \leq M(p)$ for all $p \in G^{-1}(t)$ and $C((t,q)) + M(q) \leq C(q)$ for all $q \in G(t)$.

Definition transition $t \in T$ leads from $M_1: P \to \mathbb{N}$ to $M_2: P \to \mathbb{N}$ iff t can fire in M_1 , and $M_2 = M_1 - M_- + M_+$ with

$$M_{-}(p) = \begin{cases} C((p,t)) & p \in G^{-1}(t) \\ 0 & \text{otherwise} \end{cases} \qquad M_{+}(p) = \begin{cases} C((t,p)) & p \in G(t) \\ 0 & \text{otherwise} \end{cases}$$

Definition the LTS $L = (S, \{I\}, \Sigma, T_L)$ of *N* is defined through

 $S = \mathbb{N}^P$ $\Sigma = T$ and $T_L(M_1, t, M_2)$ iff t leads from M_1 to M_2

Formal Models #342.251 SS 2020

Temporal Logic application in computer science goes back to A. Pnueli

- often used to specify concurrent and reactive systems
- allows to relate properties at different time points
 - "tomorrow the weather is nice"
 - "reactor is not going to overheat"
 - "central locking of a car opens immediately after a crash"
 - "airbag only inflates if a car crash happens"
 - "acknowledge (ack) has to be preceded by a request (req)"
 - "if the elevator is called it will show up eventually"
- granularity of time steps has to be defined

Formal Models #342.251 SS 2020

HML is an example for temporal logic over LTS

let Σ be the alphabet of actions

Definition syntax consists of the usual boolean constants $\{0, 1\}$, boolean operators $\{\wedge, \neg, \rightarrow, \ldots\}$ and unary **modal operators** [a] and $\langle a \rangle$ with $a \in \Sigma$.

read [a] f as for all *a*-successors of the current state *f* holds

read $\langle a \rangle f$ as for one *a*-successor of the current state *f* holds

abbreviations $\langle \Theta \rangle f$ denotes $\bigvee_{a \in \Theta} \langle a \rangle f$ resp. $[\Theta] f$ for $\bigwedge_{a \in \Theta} [a] f$

 Θ can also be written as a boolean expression over Σ

e.g.
$$[a \lor b] f \equiv [\{a, b\}] f$$
 oder $\langle \neg a \land \neg b \rangle f \equiv \langle \Sigma \backslash \{a, b\} \rangle f$

Formal Models #342.251 SS 2020

Examples Simplified HML

1.	[<i>a</i>] 1	for all <i>a</i> -successor 1 holds (always true)
2.	[a]0	for all <i>a</i> -successor 0 holds (<i>a</i> is not possible)
3.	$\langle a \rangle$ 1	for one <i>a</i> -successor 1 holds (<i>a</i> should be possible)
4.	$\langle a angle 0$	for one a -successor 0 holds (always wrong)
5.	$\langle a angle 1 \wedge [b] 0$	a has to be possible but not b
6.	$\langle a angle 1 \wedge [eg a] 0$	a and only a should be possible
7.	$[a \lor b] \langle a \lor b \rangle 1$	after a or b again a or b should be possible
8.	$\left\langle a ight angle \left[b ight] \left[b ight] 0$	a should be possible and afterwards b not twice
9.	$[a](\langle a \rangle 1 \rightarrow [a] \langle a \rangle 1)$	if a is possible after a again, then also a second time

tl 52

2020.3

Given LTS $L = (S, I, \Sigma, T)$.

Definition semantics are defined recursively as $s \models f$ (read "*f* holds in *s*"), with $s \in S$ and *f* a simplified HML formula.

$$s \models 1$$

$$s \not\models 0$$

$$s \models [\Theta]g \quad \text{iff} \quad \forall a \in \Theta \; \forall t \in S: \quad \text{if } s \stackrel{a}{\rightarrow} t \text{ then } t \models g$$

$$s \models \langle \Theta \rangle g \quad \text{iff} \quad \exists a \in \Theta \; \exists t \in S: \quad s \stackrel{a}{\rightarrow} t \text{ and } t \models g$$

Definition $L \models f$ holds (read "f holds in L") iff $s \models f$ for all $s \in I$

Definition expansion of f is the set of states [[f]] in which f holds.

$$[[f]] = \{s \in S \mid s \models f\}$$

Formal Models #342.251 SS 2020

Armin Biere Martina Seidl JKU Linz

ti 53

Let $L = (S, I, \Sigma, T)$ be an LTS.

Definitions A Trace π of *L* is a finite or infinite sequence of states

 $\boldsymbol{\pi} = (s_0, s_1, \ldots)$

For each pair (s_i, s_{i+1}) in π there is an $a \in \Sigma$ with $s_i \xrightarrow{a} s_{i+1}$. Therefore there exist a_0, a_1, \ldots with

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

 $|\pi|$ is the length of π , e.g. $|\pi| = 2$ for $\pi = (s_0, s_1, s_2)$, and $|\pi| = \infty$ for infinite traces.

 $\pi(i)$ is the *i*'th state s_i of π for $i \leq |\pi|$

 $\pi^i = (s_i, s_{i+1}, ...)$ denotes the suffix of π starting with the *i*'th state s_i for $i \leq |\pi|$

Note: if $|\pi| = \infty$ then $|\pi^i| = \infty$ for all $i \in \mathbb{N}$

Formal Models #342.251 SS 2020

first only in combination with HML

Definition CTL/HML syntax based on the syntax of HML and additionally
unary temporal path operators X, F, G and one binary temporal path operator U.
Path operators have to be prefixed with a path-quantifier E or A.

EX f	in one (immediate) successor state f holds	$\equiv \langle \Sigma angle f$
$\mathbf{A}\mathbf{X}f$	in all successor states f holds	$\equiv [\Sigma] f$
$\mathbf{EF}f$	in one future f holds eventually	exists finally
AF f	in all possible orders of events f holds eventually	always finally
EGf	in one future f holds all the time	exists globally
AG f	f holds always	always globally
$\mathbf{E}[f \mathbf{U} g]$	potentially f holds until finally g gilt (note g has to hold on this trace eventually)	exists until
$\mathbf{A}[f \mathbf{U} g]$	f always holds until finally g occurs (note g has to hold on all traces eventually)	always until

tl 56

 $\neg \mathbf{E} \mathbf{X} f \equiv \mathbf{A} \mathbf{X} \neg f \qquad \neg \langle \mathbf{\Theta} \rangle f \equiv [\mathbf{\Theta}] \neg f \qquad \neg \mathbf{E} \mathbf{F} f \equiv \mathbf{A} \mathbf{G} \neg f \qquad \neg \mathbf{E} \mathbf{G} f \equiv \mathbf{A} \mathbf{F} \neg f$

(De'Morgan for $\mathbf{E}[\cdot \mathbf{U} \cdot]$ requires additional temporal path operator)

 $AG[\neg safe]0$ it is never possible to execute unsafe actions

EF $\langle \neg safe \rangle$ 1 potentially an unsafe action can be executed

 $\mathbf{E}[\neg \langle req \rangle \, \mathbf{I} \, \mathbf{U} \, \langle ack \rangle \, \mathbf{I}] \quad \text{there is an order of events in which } ack \text{ becomes possible} \\ \text{and } req \text{ was not possible before}$

 $AG[req]AF[\neg ack]0$ always after req a point is reached,from no other action than ack is possible

CTL/HML allows to combine requirements about states and actions

which is required to express useful facts and unfortunately not very elegant

Let f be a CTL/HML formula, L an LTS, π a trace of L, and $i, j \in \mathbb{N}$.

Definition semantics are defined recursively: $s \models f$ (read "*f* holds in *s*")

(only for the new CTL operators here)

$$s \models \mathbf{EX}f$$
 iff $\exists \pi[\pi(0) = s \land \pi(1) \models f]$

 $s \models \mathbf{AX}f$ iff $\forall \pi[\pi(0) = s \Rightarrow \pi(1) \models f]$

 $s \models \mathbf{EF}f$ iff $\exists \pi[\pi(0) = s \land \exists i[i \le |\pi| \land \pi(i) \models f]]$

$$s \models \mathbf{AF}f$$
 iff $\forall \pi[\pi(0) = s \Rightarrow \exists i[i \le |\pi| \land \pi(i) \models f]]$

 $s \models \mathbf{EG}f$ iff $\exists \pi[\pi(0) = s \land \forall i[i \le |\pi| \Rightarrow \pi(i) \models f]]$

$$s \models \mathbf{AG}f$$
 iff $\forall \pi[\pi(0) = s \Rightarrow \forall i[i \le |\pi| \Rightarrow \pi(i) \models f]]$

 $s \models \mathbf{E}[f \mathbf{U} g] \quad \text{iff} \quad \exists \pi[\pi(0) = s \land \exists i[i \le |\pi| \land \pi(i) \models g \land \forall j[j < i \Rightarrow \pi(j) \models f]]]$ $s \models \mathbf{A}[f \mathbf{U} g] \quad \text{iff} \quad \forall \pi[\pi(0) = s \Rightarrow \exists i[i \le |\pi| \land \pi(i) \models g \land \forall j[j < i \Rightarrow \pi(j) \models f]]]$

- classical semantic model for temporal logic
- only states, no actions
 - LTS with exactly one action $(|\Sigma| = 1)$
 - additionally annotation of states with atomic propositions
- has its roots in modal logics:
 - different "worlds" from S are connected through \rightarrow resp. T
 - []f iff for all immediate successor worlds f holds
 - $\langle \rangle f$ iff there is an immediate successor world in which f holds

tl **59**

Let \mathcal{A} be the set of atomic propositions (boolean predicates).

Definition a Kripke structure K = (S, I, T, L) consists of the following components:

- set of states *S*.
- initial states $I \subseteq S$ with $I \neq \emptyset$
- a *total* transition relation $T \subseteq S \times S$ (*T* total iff $\forall s[\exists t[T(s,t)]]$)
- labelling/marking/annotation $\mathcal{L}: S \to \mathbb{P}(\mathcal{A})$.

Labelling maps a state *s* on to the set of atomic propositions that hold in *s*:

$$\mathcal{L}(s) = \{gray, warm, dry\}$$

Formal Models #342.251 SS 2020

Definition the Kripke structure $K = (S_K, I_K, T_K, \mathcal{L})$ for a complete LTS $L = (S_L, I_L, \Sigma, T_L)$ is defined with the following components

$$\mathcal{A} = \Sigma$$
 $S_K = S_L \times \Sigma$ $I_K = I_L \times \Sigma$ $\mathcal{L}: (s, a) \mapsto a$
 $T_K((s, a), (s', a'))$ iff $T_L(s, a, s')$ and a' arbitrary

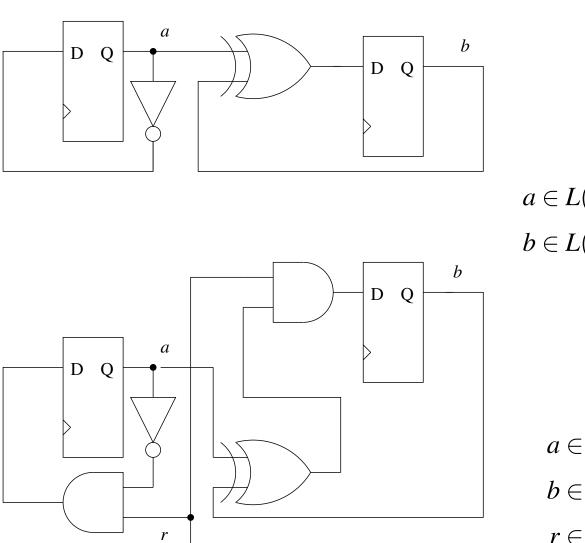
similar construction as the oracle automaton

Proposition

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \cdots \xrightarrow{a_{n-1}} s_n$$
 in L
iff
 $(s_0, a_0) \to (s_1, a_1) \cdots \to (s_n, a_n)$ in K

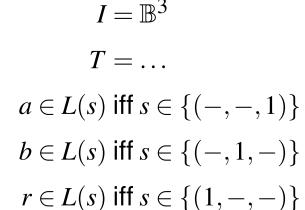
Note often $S \subseteq \mathbb{B}^n$, $\Sigma = \{a_1, \ldots, a_n\}$, and $\mathcal{L}((s_1, \ldots, s_n)) = \{a_i \mid s_i = 1\}$

Formal Models #342.251 SS 2020



 $S = \mathbb{B}^{2}$ $I = \mathbb{B}^{2}$ $T = \{((0,0), (0,1)), ((0,1), ($

tl 61



we assume that circuits abstracted to netlists do not have an initial state

classical version of CTL on Kripke structures

Definition CTL syntax contains all $p \in \mathcal{A}$, all boolean operators $\land, \neg, \lor, \rightarrow, \ldots$ and the temporal operators **EX**, **AX**, **EF**, **AF**, **EG**, **AG**, **E**[·**U**·] and **A**[·**U**·].

Definition CTL semantics over a Kripke structure K = (S, I, T, L) are defined recursively as for CTL/HML, except for the base case in which $s \models p$ iff $p \in L(s)$.

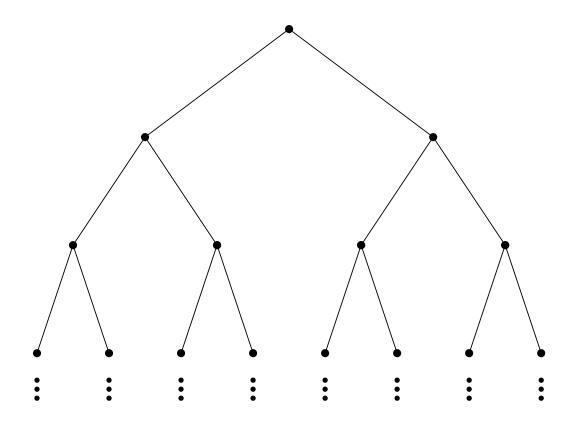
Examples for	$\mathbf{AG}(\overline{r} \to \mathbf{AX}(\overline{a} \wedge \overline{b}))$		
2-Bit counter with reset	$\mathbf{AG}\ \mathbf{EX}(\overline{a}\wedge\overline{b})$		
With reset	$\mathbf{AG}\ \mathbf{EF}(\overline{a}\wedge\overline{b})$		
	$\mathbf{AG} \ \mathbf{AF}(\overline{a} \wedge \overline{b})$	infinitely often	$\overline{a}\wedge\overline{b}$
	$\mathbf{AG}(\overline{a} \wedge \overline{b} \wedge r \to \mathbf{AX} \mathbf{A}[(a \lor b) \mathbf{U} (\overline{a} \wedge \overline{b})])$		
	$(\mathbf{AG} r) \rightarrow \mathbf{AF}(a \wedge b)$		

Definition f holds in K written $K \models f$ iff $s \models f$ for all $s \in I$

generic definition

tl 62

Formal Models #342.251 SS 2020

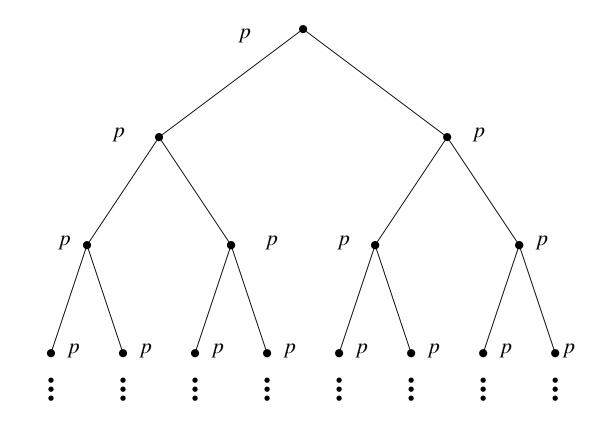


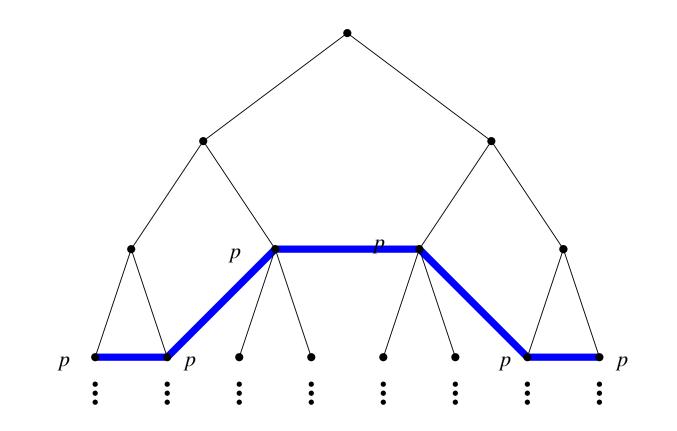
all possible orders of events are represented in one (infinite) computation tree

CTL describes the branching behavior of this computation tree

and has a local state view

every state is the starting point of new branching paths





Definition LTL syntax similar to CTL syntax, except that temporal operators do not have path quantifiers: LTL only has X, F, G and U.

Definition LTL semantics defined recursively along infinite paths π in *K*:

$$\begin{split} \pi &\models p & \text{iff} \quad p \in \mathcal{L}(\pi(0)) \\ \pi &\models \neg g & \text{iff} \quad \pi \not\models g \\ \pi &\models g \land h & \text{iff} \quad \pi \models g \text{ and } \pi \models h \\ \pi &\models \mathbf{X}g & \text{iff} \quad \pi^1 \models g \\ \pi &\models \mathbf{F}g & \text{iff} \quad \pi^i \models g \text{ for one } i \\ \pi &\models \mathbf{G}g & \text{iff} \quad \pi^i \models g \text{ for all } i \\ \pi &\models g \mathbf{U}h & \text{iff} \quad \text{exists } i \text{ with } \pi^i \models h \text{ and } \pi^j \models g \text{ for all } j < i \end{split}$$

Definition $K \models f$ iff $\pi \models f$ for all infinite paths π in K with $\pi(0) \in I$

Formal Models #342.251 SS 2020

- LTL only considers one single linear order of events
- then $(\mathbf{G}r) \rightarrow \mathbf{F}(a \wedge b)$ suddenly makes sense (premise is a restriction/assumption)
- LTL is compositional (w.r.t. sync. product of Kripke structures):

-
$$K_1 \models f_1, K_2 \models f_2 \Rightarrow K_1 \times K_2 \models f_1 \wedge f_2$$

-
$$K_1 \models f \rightarrow g, K_2 \models f \Rightarrow K_1 \times K_2 \models g$$

Proposition CTL and LTL have different expressibility:

AXEX*p* can not be specified in LTL, AFAG*p* does not have corresponding LTL formula

[Clarke and Draghicescu'88]

ACTL is the sub logic of CTL formulas without ${\bf E}$ path quantifiers in NNF

NNF: negations only occur in front of atomic propositions $p \in \mathcal{A}$

Definition for an ACTL formula f define $f \setminus A$ as the LTL formula obtained from f by deleting all path quantifiers, e.g. $(AGAFp) \setminus A = GFp$.

Definition f and g are equivalent iff $K \models f \Leftrightarrow K \models g$ for all Kripke structures K.

(f and g can be formulas in different logics)

Theorem if an ACTL formula f is equivalent to an LTL formula g, then also to $f \setminus \mathbf{A}$.

Proof
$$K \models f \stackrel{\text{assumption}}{\Leftrightarrow} \forall \pi[\pi \models g] \stackrel{\text{assumption}}{\Leftrightarrow} \forall \pi[\pi \models f] \stackrel{!}{\Leftrightarrow} \forall \pi[\pi \models f \setminus \mathbf{A}] \stackrel{\text{Def.}}{\Leftrightarrow} K \models f \setminus \mathbf{A}$$

(assume π to be initialized and in $\pi \models f$ interpreted as Kripke structure)

Formal Models #342.251 SS 2020

Syntactically Characterized Intersection of LTL and ACTL [M. Maidl'00]

Let *f* and *g* be CTL resp. LTL formulas and $p \in \mathcal{A}$.

Definition every sub formula of an CTL^{det} formula is of the following form:

 $p, f \wedge g, \mathbf{AX}f, \mathbf{AG}f, (\neg p \wedge f) \lor (p \wedge g)$ or $\mathbf{A}[(\neg p \wedge f) \mathbf{U} (p \wedge g)]$

Definition every sub formula of an LTL^{det} formula is of the following form:

$$p, f \wedge g, \mathbf{X}f, \mathbf{G}f, (\neg p \wedge f) \lor (p \wedge g)$$
 or $(\neg p \wedge f) \mathbf{U} (p \wedge g)$

Theorem the intersection of LTL and ACTL is equivalent to LTL^{det} resp. CTL^{det}

Intuition CTL semantics for CTL^{det} are restricted to one path

Hint $\mathbf{A}[f \mathbf{U} p] \equiv \mathbf{A}[(\neg p \land f) \mathbf{U} (p \land 1)]$ $\mathbf{AF} p \equiv \mathbf{A}[1 \mathbf{U} p]$

 \Rightarrow non deterministic specifications can be misinterpreted

Formal Models #342.251 SS 2020

[P. Wolper'83]

Specification "after *m*-th step *p*" holds (at least)

Proposition for all m > 1 there is no CTL nor LTL formula f with

 $K \models f$ iff $\pi(i) \models p$ for all initialized paths π of K and all $i = 0 \mod m$.

Problem $p \wedge \mathbf{G}(p \leftrightarrow \neg \mathbf{X}p)$ denotes "exactly every 2nd step p holds"

Solutions

- add modulo *m* counter to model (problems with compositionality)
- logic extensions
 - ETL with additional temporal operators defined through automata ...
 - ... resp. quantifiers over atomic propositions (embed automata into the logic)

- regular expressions:
$$\neg \left(\underbrace{(1;\ldots;1;p)^*;1;\ldots;1;m}_{m-1};\neg p \right)$$
 resp. $\underbrace{(1;\ldots;1;p)^{\omega}}_{m-1}$

Formal Models #342.251 SS 2020

- specifications often need additional *fairness* assumptions
 - e.g. abstraction of scheduler: "each process gets it's turn"
 - e.g. one component must be enabled infinitely often
 - e.g. infinitely often a transmission channel does not produce an error
- no problem in LTL: $(\mathbf{GF}f) \rightarrow \mathbf{G}(r \rightarrow \mathbf{F}a)$
- fair Kripke structures for CTL:
 - additional component F of fair states
 - path π fair iff $|\{i \mid \pi(i) \in F\}| = \infty$
 - only consider fair paths

Formal Models #342.251 SS 2020

- restricted class of quantifiers over sets of states
 - quantified variables $V = \{X, Y, \ldots\}$
 - in general also over sets and thus gives a second order logic
- fix point logic: least fix points specified with μ and largest with ν
- modal μ-calculus as extension of HML resp. CTL

 $\nu X[p \wedge []X] \equiv \mathbf{AG}p \qquad \mu X[q \vee (p \wedge \langle \rangle X)] \equiv \mathbf{E}[p \mathbf{U} q]$

 $vX[p \land [][]X]$ corresponds to "every 2nd step *p* holds"

 $\nu X[p \land \langle \rangle \mu Y[(f \land X) \lor (p \land \langle \rangle Y)]] \equiv \nu X[p \land \mathbf{EXE}[p \mathbf{U} f \land X]] \equiv \mathbf{EG}p$ under fairness f

Formal Models #342.251 SS 2020

again over Kripke structures K = (S, I, T, L).

Definition an assignment ρ of variables *V* is a mapping $\rho: V \to \mathbb{P}(S)$

Definition semantics $[[f]]_{\rho}$ of a μ -calculus formula f is defined recursively as expansion, i.e. as set of states in which f holds for a given assignment ρ :

$$\begin{split} [[p]]_{\rho} &= \{s \mid p \in \mathcal{L}(s)\} & [[X]]_{\rho} &= \rho(X) \\ [[\neg f]]_{\rho} &= S \setminus [[f]]_{\rho} & [[f \wedge g]]_{\rho} &= [[f]]_{\rho} \cap [[g]]_{\rho} \\ \mu X[f] &= \bigcap \{A \subseteq S \mid [[f]]_{\rho[X \mapsto A]} = A\} & \nu X[f] &= \bigcup \{A \subseteq S \mid [[f]]_{\rho[X \mapsto A]} = A\} \\ \text{with } \rho[A \mapsto X](Y) &= \begin{cases} A & X = Y \\ \rho(Y) & X \neq Y \end{cases} . \end{split}$$

Definition $K \models f$ iff $I \subseteq [[f]]_{\rho}$ for all assignments ρ

Proposition μ -calculus subsumes CTL and at least theoretically also LTL.

Formal Models #342.251 SS 2020

- Property Specification Language (PSL)
 - subsumes CTL, LTL and also regular expressions
 - Verilog and VHDL flavor
- System Verilog Assertions (SVA)
 - less general than PSL
 - closer to Hardware
 - part of System Verilog (extension of Verilog)
- verification tools (testing / formal) often come with their own temporal logic