Formal Models

\#342.251

SS 2020

Johannes Kepler University
Linz, Austria

Armin Biere Martina Seidl
Institute for Formal Models and Verification

http://fmv.jku.at/fm

Version 2020.3
use automata for modeling, specification and verification

Definition a finite automaton $A=(S, I, \Sigma, T, F)$ consists of the following components

- set of states S (usually finite)
- set of initial states $I \subseteq S$
- input-alphabet Σ (usually finite as well)
- transition relation $T \subseteq S \times \Sigma \times S$
written $s \xrightarrow{a} s^{\prime}$ iff $\left(s, a, s^{\prime}\right) \in T$ iff $T\left(s, a, s^{\prime}\right)$ "holds"
- set of final states $F \subseteq S$

Definition FA A accepts a word $w \in \Sigma^{*}$ iff there exists s_{i} and a_{i} with
$s_{0} \xrightarrow{a_{1}} s_{1} \xrightarrow{a_{2}} s_{2} \xrightarrow{a_{3}} \ldots \xrightarrow{a_{n-1}} s_{n-1} \xrightarrow{a_{n}} s_{n}$,
where $\quad n \geq 0, \quad s_{0} \in I, \quad s_{n} \in F \quad$ and $\quad w=a_{1} \cdots a_{n} \quad(n=0 \Rightarrow w=\varepsilon)$.

Definition the language $L(A)$ of A is the set of words accepted by it

- use regular languages for syntax specification
(e.g. in a scanner / parser)
- use FA or regular languages to specify event streams

Definition the product automaton $A=A_{1} \times A_{2}$ of two FA A_{1} and A_{2} over the same alphabet $\Sigma_{1}=\Sigma_{2}$ has the following components:

$$
\begin{array}{ll}
S=S_{1} \times S_{2} & I=I_{1} \times I_{2} \\
\Sigma=\Sigma_{1}=\Sigma_{2} & F=F_{1} \times F_{2} \\
T\left(\left(s_{1}, s_{2}\right), a,\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right) & \text { iff } \quad T_{1}\left(s_{1}, a, s_{1}^{\prime}\right) \text { and } T_{2}\left(s_{2}, a, s_{2}^{\prime}\right)
\end{array}
$$

Theorem let A, A_{1}, and A_{2} as above, then $L(A)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$

Example construct automaton, which accepts words with prefix $a b$ and suffix $b a$. (as regular expression: $\quad a \cdot b \cdot \mathbf{1}^{*} \cap \mathbf{1}^{*} \cdot b \cdot a, \quad$ where $\mathbf{1}$ denotes all letters)

Definition for $s \in S, a \in \Sigma$ let $s \xrightarrow{a}$ denote the set of successors of s defined as

$$
s \xrightarrow{a}=\left\{s^{\prime} \in S \mid T\left(s, a, s^{\prime}\right)\right\}
$$

Definition an FA is complete iff $|I|>0$ and $|s \xrightarrow{a}|>0$ for all $s \in S$ and $a \in \Sigma$.

Definition ... deterministic iff $|I| \leq 1$ and $|s \xrightarrow{a}| \leq 1$ for all $s \in S$ and $a \in \Sigma$.

Proposition \ldots deterministic and complete iff $|I|=1$ and $|s \xrightarrow{a}|=1$ for all $s \in S, a \in \Sigma$.

Definition the power-automaton $A=\mathbb{P}\left(A_{1}\right)$ of an FA A_{1} consists of the components:

$$
\begin{array}{lcc}
S=\mathbb{P}\left(S_{1}\right) & (\mathbb{P}=\text { power set }) & I=\left\{I_{1}\right\} \\
\Sigma=\Sigma_{1} & & F=\left\{F^{\prime} \subseteq S_{1} \mid F^{\prime} \cap F_{1} \neq \emptyset\right\} \\
& T\left(S^{\prime}, a, S^{\prime \prime}\right) \quad \text { iff } \quad S^{\prime \prime}=\bigcup_{s \in S^{\prime}} \xrightarrow{a}
\end{array}
$$

Theorem let A, A_{1} as above, then $L(A)=L\left(A_{1}\right)$ and A is deterministic and complete.

Example: spam-filter based on the white-list "abb", "abba", and "abacus"! (regular expression: "abb" |"abba" | "abacus")

Definition the complement-automaton $A=C\left(A_{1}\right)$ of an FA A_{1} has the same components as A_{1}, except for the set of final states, which is $F=S \backslash F_{1}$.

Theorem the complement-automaton $A=C\left(A_{1}\right)$ of a deterministic and complete FA A_{1} accepts the complement language $L(A)=\overline{L\left(A_{1}\right)}=\Sigma^{*} \backslash L\left(A_{1}\right)$.

Example: spam-filter based on the black-list "abb", "abba", and "abacus"! (regular expression: "abb" |"abba" | "abacus")

Idea: replace non-determinism with oracle

Definition the oracle-automaton $A=\operatorname{Oracle}\left(A_{1}\right)$ of FA A_{1} has the following components:

- $S=S_{1}$
- $I=I_{1}$
- $\Sigma=\Sigma_{1} \times S_{1}$
- $T\left(s,(a, t), s^{\prime}\right)$ iff $s^{\prime}=t$ and $T_{1}(s, a, t)$
- $F=F_{1}$

Proposition $\quad \pi_{1}\left(L\left(\operatorname{Oracle}\left(A_{1}\right)\right)\right)=L\left(A_{1}\right) \quad\left(\pi_{1}\right.$ projection on first component)

Proposition $\quad \operatorname{Oracle}\left(A_{1}\right)$ is deterministic iff $\left|I_{1}\right| \leq 1$.

Proposition $\operatorname{Oracle}\left(A_{1}\right)$ is almost always incomplete (e.g. $T_{1} \neq S_{1} \times \Sigma_{1} \times S_{1}$ and $\left|S_{1}\right|>1$).

Note completeness can be achieved, if A_{1} is complete, and if $\{0, \ldots, n-1\}$ is added to Σ_{1} instead of S_{1}, where n is the maximum number of successors: $n=\max _{s \in S, a \in \Sigma}|s \xrightarrow{a}|$.

$$
T\left(s,(a, i), s^{\prime}\right) \quad \text { iff } \quad s^{\prime}=s_{j}, \quad s \xrightarrow{a}=\left\{s_{0}, \ldots, s_{m-1}\right\}, \quad j \equiv i \bmod m
$$

Exercise construct the oracle automaton for $a \cdot b \cdot \mathbf{1}^{*} \cap \mathbf{1}^{*} \cdot b \cdot a$

implementations of automata have to be deterministic

Definition $\quad I / O$-automaton $A=(S, i, \Sigma, T, \Theta, O)$ consists of:

- a (finite) set of states S,
- exactly one initial state i,
- an input alphabet Σ,
- a transition function $T: S \times \Sigma \rightarrow S$
- an output alphabet Θ, with
- output function $O: S \times \Sigma \rightarrow \Theta$ (Moore machine: $O: S \rightarrow \Theta$)

Let $w \in \Sigma^{*}$ and $a \in \Sigma$.

Definition interpret T as extended transition function $T: S \times \Sigma^{*} \rightarrow S$ as follows:
$s=T(s, \varepsilon) \quad$ and $\quad s^{\prime}=T(s, a \cdot w) \Leftrightarrow \exists s^{\prime \prime}\left[s^{\prime \prime}=T(s, a) \wedge s^{\prime}=T\left(s^{\prime \prime}, w\right)\right]$.

Definition interpret O as extended output function $O: S \times \Sigma^{*} \rightarrow \Theta^{*}$ as follows:
$O(s, \varepsilon)=\varepsilon \quad$ and $\quad O(s, a \cdot w)=b \cdot w^{\prime}, \quad$ with $\quad b=O(s, a), s^{\prime}=T(s, a) \quad$ and $\quad w^{\prime}=O\left(s^{\prime}, w\right)$.

Definition the behavior $B: \Sigma^{*} \rightarrow \Theta^{*}$ of an I/O-automaton is defined as $B(w)=O(i, w)$.

Example $S=\{0,1\}, \Sigma=\{a\}, \Theta=\{e, o\}$,

$T\left(0, a^{2 n}\right)=0, \quad T\left(0, a^{2 n+1}\right)=1, \quad T\left(1, a^{2 n}\right)=1, \quad T\left(1, a^{2 n+1}\right)=0$
$B\left(a^{2 n}\right)=(o e)^{n}, \quad B\left(a^{2 n+1}\right)=(o e)^{n} O$
given an I/O-automaton $A=(S, i, \Sigma, T, \Theta, O)$.

Definition the FA for A is defined as $A^{\prime}=\left(S,\{i\}, \Sigma \times \Theta, T^{\prime}, S\right)$ with

$$
T^{\prime}\left(s,(a, b), s^{\prime}\right) \text { iff } s^{\prime}=T(s, a) \text { and } b=O(s, a)
$$

Proposition $\quad B(w)=w^{\prime}$ iff $\left(w, w^{\prime}\right) \in L\left(A^{\prime}\right)$

Example continued:

(graphically almost no difference)
let $A=(S, I, \Sigma, T, F)$ be an FA

Definition the I/O-automaton for A is defined as $A^{\prime}=\left(\mathbb{P}(S), I, \Sigma, T^{\prime},\{0,1\}, O\right)$ with T^{\prime} the transition relation of $\mathbb{P}(A)$ and $O\left(S^{\prime}, a\right)=1$ iff $S^{\prime} \cap F \neq \emptyset$.

Proposition $\quad w \in L(A) \quad$ iff $\quad B(w \cdot x) \in \mathbf{1}^{|w|} \cdot 1 \quad$ for one $x \in \Sigma$

Conclusion of the comparison of I/O-automata with FA:
in substance both are the same mathematical structure
we concentrate on the more compact and more elegant FA version
in particular non-determinism is easier to use with FA

- modeling of distributed systems
- Calculus of Communicating Systems (CCS) [Milner80]
- Communicating Sequential Processes (CSP) [Hoare85]
- more specifically: asynchronously communicating processes (protocols / SW)
- synthesis: process algebra (PA) as programming language (e.g. Occam, Lotos)
- verification of (abstract) PA models is simpler
- theory: mathematical properties of distributed systems
- how to compare distributed systems?
- simulation, bisimulation, observability, divergence
(\Rightarrow model checking course)
- right linear grammar $=$ regular language $=$ Chomsky 3 language
grammar $G: \quad N=\varepsilon|a M| b M \quad M=c N \mid d N \quad$ start symbol N
$\Rightarrow \quad$ language $L(G)=((a \mid b)(c \mid d))^{*} \quad$ (as regular expression)
- syntax in PA:
- same idea: equations of non-terminals = processes
- concatenation not with juxtaposition but with '.' operator
- choice represented with ' + ' operator (not with '|')
- semantics
- we are only interested in potential sequences = event streams
graphical representation

$$
P=a . P
$$

$$
R . \quad \overline{a . P \xrightarrow{a} P}
$$

equation
operational semantics rule (here P is only a meta variable)
'.' operator means sequential composition
graphical representation
equation

$$
R_{+}^{1} \quad \frac{P \xrightarrow{a} P^{\prime}}{(P+Q) \xrightarrow{a} P^{\prime}}
$$

$$
P=a \cdot P+b . P
$$

operational semantics rule (here again P, Q are meta variables)
'+' operator means non-deterministic choice

$$
\begin{aligned}
P & =\text { 5Euro.Paid } 5+\text { 10Euro.Paid10 } \\
\text { Paid5 } & =\text { button.childTicket.P }+5 \text { Euro.Paid10 } \\
\text { Paid10 } & =\text { button.adultTicket.P }
\end{aligned}
$$

- LTS as operational semantics of PAE
- almost the same as an automaton, but ...
- no final states: in some sense all states are final
- only possible event streams matter
- LTS $A=(S, I, \Sigma, T)$ with
- state set S
- actions Σ
- transition relation $T \subseteq S \times \Sigma \times S$ defined through operational semantics
- initial states $I \subseteq S$
- divergent self-cycles
- $P=a \cdot P+P \quad$ is an invalid PAE
- there are no ε-transitions in contrast to FAs (actions "need time", ε has connotation of not really taking time)
- avoid self-cycles
- term T is guarded if T only occurs in the form a.T
(where a can be different for all occurrences of T of course)
- simplest restriction:
process variables on the right hand side (RHS) of an PAE are all guarded
- or more complex: each "cycle" contains at least one action
- actions and states can be parameterized
- which also gives rise to parameterized equations
- previous example with $x \in\{5,10\}$:

$$
\begin{aligned}
P & =\text { euro }(x) \cdot \operatorname{Paid}(x) \\
\text { Paid }(5) & =\text { button.print }(\text { childTicket }) \cdot P+\text { euro(5).Paid }(10) \\
\text { Paid }(10) & =\text { button.print }(\text { adultTicket }) \cdot P
\end{aligned}
$$

- it is possible to operate on data as well:

$$
\operatorname{Paid}(x)=\operatorname{euro}(y) \cdot \operatorname{Paid}(x+y)+\text { button.ticket }(x) \cdot P
$$

- actually allows modeling of infinite systems
- and turns PA into a real programming language

$$
\begin{aligned}
& R_{\text {then }} \quad \frac{P \xrightarrow{a} P^{\prime}}{\text { if } B \text { then } P \text { else } Q \xrightarrow{a} P^{\prime}} B \\
& R_{\text {else }} \\
& \frac{Q \xrightarrow{a} Q^{\prime}}{\text { if } B \text { then } P \text { else } Q \xrightarrow{a} Q^{\prime}} \neg B
\end{aligned}
$$

(and similar rules for if-then alone)

$$
\begin{aligned}
\operatorname{Paid}(X) & =\operatorname{euro}(Y) \cdot \operatorname{Paid}(X+Y)+\text { button.Print }(X) \\
\operatorname{Print}(X) & =\text { if }(X=5) \text { then } \text { childTicket. } P+\text { if }(X=10) \text { then } \text { adultTicket. } . P
\end{aligned}
$$

synchronization through rendezvous in CSP

$$
\text { interleaving }
$$

rendezvous does not distinguish sender and receiver

$$
R_{\|} \frac{P\left\|_{\Theta} Q \xrightarrow{a} P^{\prime}\right\|_{\Theta} Q^{\prime}}{P\left\|Q \xrightarrow{a} P^{\prime}\right\| Q^{\prime}} \quad \Theta=\Sigma(P) \cap \Sigma(Q)
$$

$\Sigma(P)$ is the subset of actions of Σ which occur in P syntactically

Proposition \|| is commutative: $\quad P\left\|Q \xrightarrow{a} P^{\prime}\right\| Q^{\prime}$ iff $Q\left\|P \xrightarrow{a} Q^{\prime}\right\| P^{\prime}$
proof follows directly from the rules

Proposition || is associative
proof: Let $P=P_{1}\left\|\left(P_{2} \| P_{3}\right), P^{\prime}=P_{1}^{\prime}\right\|\left(P_{2}^{\prime} \| P_{3}^{\prime}\right), Q=\left(P_{1} \| P_{2}\right)\left\|P_{3}, Q^{\prime}=\left(P_{1}^{\prime} \| P_{2}^{\prime}\right)\right\| P_{3}^{\prime}$
To show: $\quad P \xrightarrow{a} P^{\prime} \quad \Leftrightarrow \quad Q \xrightarrow{a} Q^{\prime}$

8 cases of $a \in \Sigma\left(P_{i}\right)$ resp. $a \notin \Sigma\left(P_{i}\right)$ for each direction
intuition:

1. $a \in \Sigma\left(P_{i}\right) \Rightarrow P_{i} \xrightarrow{a} P_{i}^{\prime}$
2. P_{i} with $a \notin \Sigma\left(P_{i}\right)$ does not change ($P_{i}^{\prime}=P_{i}$)
3. the sames applies for every "parallel composition" of the P_{i}

- "parenthesis" around || can be omitted:

$$
P \|(Q \| R) \quad \text { behaves like } \quad(P \| Q) \| R \quad \text { behaves like } \quad P\|Q\| R
$$

- order is irrelevant:

$$
P\|Q\| R \text { behaves like } P\|R\| Q \text { behaves like } Q\|P\| R \text { etc. }
$$

- parallel composition $\|_{i \in J} P_{i}$ of arbitrary processes P_{i} over an index set J :

$$
R_{\|} \frac{\forall P_{i}, a \in \Sigma\left(P_{i}\right) \quad P_{i} \xrightarrow{a} P_{i}^{\prime}}{\left\|P_{i} \xrightarrow{a}\right\| P_{i}^{\prime}} \quad \exists P_{i}, a \notin \Sigma\left(P_{i}\right) \quad P_{i}^{\prime}=P_{i} \quad \xrightarrow{a} P_{i}^{\prime}
$$

- hiding resp. abstraction of internal, unobservable actions
- abstracted to "silent" action τ
- assumption: $\tau \notin \Sigma$
* formally consider only $\Sigma \dot{\cup}\{\tau\}$ as actions
* it is not possible to synchronize on τ
$-\tau \quad$ still needs time

$$
R_{\backslash}^{\notin} \frac{P \xrightarrow{a} Q}{P \backslash \Theta \xrightarrow{a} Q \backslash \Theta} \quad a \notin \Theta \quad R_{\backslash}^{\in} \frac{P \xrightarrow{a} Q}{P \backslash \Theta \xrightarrow{\tau} Q \backslash \Theta} \quad a \in \Theta
$$

- typical usage of internal synchronization $\quad R=\left(\|_{i=1}^{n} Q_{i}\right) \backslash\left\{x_{1}, \ldots, x_{n}\right\}$
[BradfieldStirling]

$$
\begin{aligned}
\text { Road } & =\text { car.up.ccross.down.Road } \\
\text { Rail } & =\text { train.green.tcross.red.Rail } \\
\text { Signal } & =\text { green.red.Signal }+ \text { up.down.Signal } \\
\text { Crossing } & =(\text { Road } \| \text { Rail } \| \text { Signal }) \backslash\{\text { green,red,up,down }\}
\end{aligned}
$$

Linking as substitution of actions

$$
R_{[]} \frac{P \xrightarrow{a} Q}{P[b / a] \xrightarrow{b} Q[b / a]}
$$

Example: $\quad(a . P)[b / a] \xrightarrow{b} P[b / a]$
needed to "link" processes or instantiate templates:

$$
P=a . b . c . P
$$

$$
\|_{i=1}^{3} P\left[b_{i} / b\right]
$$

- classical example of process algebra
- modeling of a round robin scheduler
- scheduling of n processes $\quad \| P_{i} \quad$ with $\quad P=a . z . b . P \quad$ and $\quad P_{i}=P\left[a_{i} / a, z_{i} / z, b_{i} / b\right]$
$-a \quad$ start one run of a process
$-z$ internal action(s)
- b end of one run of a process
- Restrictions:
- processes are started round robin in the order P_{1}, P_{2}, \ldots
- no restriction on the execution order of the b_{i}
- idea: proxy for each process
- divide scheduler R^{\prime} in token ring of n parallel cyclic processes Q^{\prime}
- each Q_{i}^{\prime} controls start $\left(a_{i}\right)$ and end $\left(b_{i}\right)$ of P_{i}, \ldots
- ... hands over x_{i} control to next $Q_{i+1}^{\prime} \ldots$
- and then waits to get control x_{i-1} from previous Q_{i-1}^{\prime} in ring

$$
\begin{aligned}
Q^{\prime} & =a \cdot x \cdot b \cdot y \cdot Q^{\prime} \\
Q_{1}^{\prime} & =Q^{\prime}\left[a_{1} / a, x_{1} / x, b_{1} / b, x_{n} / y\right] \\
Q_{i}^{\prime} & =\left(y \cdot Q^{\prime}\right)\left[a_{i} / a, x_{i} / x, b_{i} / b, x_{i-1} / y\right] \quad i \in\{2, \ldots, n\} \\
R^{\prime} & =\prod_{i=1}^{n} Q_{i}^{\prime}
\end{aligned}
$$

- incorrect solution does not accept the legal sequence:
- ending P_{2} before $P_{1}: \quad a_{1} a_{2} b_{2} b_{1} \ldots$
- decouple ending (b) and accepting control (y)

$$
\begin{aligned}
Q & =a \cdot x \cdot(b \cdot y+y \cdot b) \cdot Q \\
Q_{1} & =Q\left[a_{1} / a, x_{1} / x, b_{1} / b, x_{n} / y\right] \\
Q_{i} & =(y \cdot Q)\left[a_{i} / a, x_{i} / x, b_{i} / b, x_{i-1} / y\right] \quad i \in\{2, \ldots, n\} \\
R & =\prod_{i=1}^{n} Q_{i}
\end{aligned}
$$

- implemented by non blocking waiting on two different messages
- in programming languages: try-locking, multiple threads, select (java.nio), ...
- slightly sloppy alternative notation $\quad b . y+y . b=b \| y \quad$ (we do not have a nil process)
- actions: $\quad \Sigma \dot{\cup} \bar{\Sigma} \dot{\cup}\{\tau\}$ overlined actions are outputs, otherwise inputs
- different hiding principle (new syntax: double instead of single backslash)

$$
R_{\backslash} \frac{P \xrightarrow{a} Q}{P \backslash \backslash \Theta \xrightarrow{a} Q \backslash \backslash \Theta} \quad a \notin \Theta \cup \bar{\Theta}
$$

- pairwise explicit synchronization

$$
\begin{gathered}
R_{\| \|} \frac{P \xrightarrow{a} P^{\prime} Q \stackrel{\bar{a}}{\rightarrow} Q^{\prime}}{P\| \| Q \xrightarrow{\tau} P^{\prime}\| \| Q^{\prime}} \quad a \in \Sigma \dot{\cup} \bar{\Sigma} \\
R_{\| \|}^{1} \frac{P \xrightarrow{a} P^{\prime}}{P\| \| Q \xrightarrow{a} P^{\prime} \| \mid Q} \quad R_{\| \|}^{2} \frac{Q \xrightarrow{a} Q^{\prime}}{P\| \| \xrightarrow{a} P \| Q^{\prime}}
\end{gathered}
$$

$$
\begin{aligned}
\text { Road } & =\text { car.up.ccross.down.Road } \\
\text { Rail } & =\text { train.green.tcross.red.Rail } \\
\text { Signal } & =\text { green.red.Signal }+ \text { up.down.Signal } \\
\text { Crossing } & =(\text { Road } \| \text { Rail } \| \text { Signal }) \backslash\{\text { green,red,up,down }\}
\end{aligned}
$$

resp. in CCS

$$
\begin{aligned}
\text { Road } & =\text { car.up. } \overline{\text { ccross. }} \overline{\text { down.Road }} \\
\text { Rail } & =\text { train.green.tcross.red.Rail } \\
\text { Signal } & =\overline{\text { green.red.Signal }+\overline{u p} . d o w n . S i g n a l ~} \\
\text { Crossing } & =(\text { Road } \mid \| \text { Rail } \| \mid \text { Signal }) \backslash \backslash\{\text { green,red,up,down }\}
\end{aligned}
$$

- originally CSP had channels with data
- inputs: channel ? datain, outputs: channel !dataout
- π-calculus after [MilnerParrowWalker]
- (references to) channels / connections can be used as data as well
- example: \quad TimeAnnounce $=$ ring $($ caller $) . \overline{\text { caller }}($ CurrentTime $) . \overline{\text { hangup }}$.TimeAnnounce
- probabilistic behavior
- transitions have a "transition probability"
- timed process algebra
- transitions need (explicitly specified) time
- beside process algebra the most common modeling language for distributed systems
- investigated since 60s, now also known as activity diagrams in UML
- again: asynchronously communicating processes (protocols / SW)
- modeling and verification tools available
- theory: many interesting results, vast literature
- finiteness, deadlock, ...
- extension motivated by practice
- data, coloring, hierarchy, and again quantitative aspects etc.

Definition

A CEN $N=(C, I, E, G)$ is made of conditions C, an initial marking $I \subseteq C$, events E and a dependence graph $G \subseteq(C \times E) \dot{\cup}(E \times C)$

- we also use \rightarrow instead of G

- can be interpreted as bipartite graph or ...
- ... hyper graph with multiple source resp. target edges E

two events / transitions can fire

target condition of deliver occupied

again choice of two possible events

Definition Let CEN $N=(C, I, E, G)$. The LTS $L=(S,\{I\}, \Sigma, T)$ for N is defined as

$$
S=\mathbb{P}(C) \quad \Sigma=E
$$

$$
\begin{array}{lll}
T\left(C_{1}, e, C_{2}\right) \text { iff } & G^{-1}(e) \subseteq C_{1} & \text { pre-conditions satisfied } \\
& G(e) \cap C_{1}=\emptyset & \text { post-conditions satisfied } \\
& C_{2}=\left(C_{1} \backslash G^{-1}(e)\right) \cup G(e) & \text { state update }
\end{array}
$$

$$
G(e)=\text { post -conditions of event } e \quad(\text { or } e \rightarrow)
$$

$$
G^{-1}(e)=\text { pre-conditions of event } e \quad(\text { or } \rightarrow e)
$$

- states $M \in \mathbb{P}(C)$ of the LTS are also called markings of the CEN
- event e is enabled in M iff $M \xrightarrow{e} \neq 0$
- marking $M \in \mathbb{P}(C)$ is a deadlock iff
- M is is "dead end" in the reachability graph of the LTS iff
- no event in M is enabled iff
- all events are disabled iff
$-\forall e \in E[M \xrightarrow{e}=\emptyset]$
- a CEN has a deadlock iff a deadlock is reachable
n philosophers, n forks, n plates

philosophers alternate in thinking and eating they need to pick up and use two forks to eat forks can not be picked up at the same time (atomically)

Definition A PTN $N=(P, I, T, G, C)$ consists of places P, initial marking $I: P \rightarrow \mathbb{N}$, transitions T, connection graph $G \subseteq(P \times T) \dot{\cup}(T \times P)$, and capacities $C: P \dot{\cup} G \rightarrow \mathbb{N}_{\infty}$.

- capacity of a connection is finite and is one if not specified explicitly
- capacity of a place can be ∞ and is ∞ if not specified explicitly
- CEN can be interpreted as PTN with constant capacity $C \equiv 1$

Filling Station

from [W. Reisig, A Primer in Petri Net Design, 1992]

given a PTN $N=(P, I, T, G, C)$

Definition transition $t \in T$ can fire in a state / marking $M: P \rightarrow \mathbb{N}$ iff

$$
\begin{array}{ll}
C((p, t)) \leq M(p) & \text { for all } p \in G^{-1}(t) \text { and } \\
C((t, q))+M(q) \leq C(q) & \text { for all } q \in G(t)
\end{array}
$$

Definition transition $t \in T \quad$ leads from $M_{1}: P \rightarrow \mathbb{N}$ to $M_{2}: P \rightarrow \mathbb{N} \quad$ iff
t can fire in M_{1}, and $M_{2}=M_{1}-M_{-}+M_{+}$with

$$
M_{-}(p)=\left\{\begin{array}{ll}
C((p, t)) & p \in G^{-1}(t) \\
0 & \text { otherwise }
\end{array} \quad M_{+}(p)= \begin{cases}C((t, p)) & p \in G(t) \\
0 & \text { otherwise }\end{cases}\right.
$$

Definition the LTS $L=\left(S,\{I\}, \Sigma, T_{L}\right)$ of N is defined through

$$
S=\mathbb{N}^{P} \quad \Sigma=T \quad \text { and } \quad T_{L}\left(M_{1}, t, M_{2}\right) \quad \text { iff } \quad t \text { leads from } M_{1} \text { to } M_{2}
$$

- often used to specify concurrent and reactive systems
- allows to relate properties at different time points
- "tomorrow the weather is nice"
- "reactor is not going to overheat"
- "central locking of a car opens immediately after a crash"
_ "airbag only inflates if a car crash happens"
- "acknowledge (ack) has to be preceded by a request (req)"
- "if the elevator is called it will show up eventually"
- granularity of time steps has to be defined

HML is an example for temporal logic over LTS
let Σ be the alphabet of actions

Definition syntax consists of the usual boolean constants $\{0,1\}$, boolean operators $\{\wedge, \neg, \rightarrow, \ldots\}$ and unary modal operators $[a]$ and $\langle a\rangle$ with $a \in \Sigma$.
read $[a] f$ as for all a-successors of the current state f holds
read $\langle a\rangle f$ as for one a-successor of the current state f holds
abbreviations $\quad\langle\Theta\rangle f$ denotes $\underset{a \in \Theta}{\bigvee}\langle a\rangle f$ resp. $[\Theta] f$ for $\bigwedge_{a \in \Theta}[a] f$
Θ can also be written as a boolean expression over Σ

$$
\text { e.g. } \quad[a \vee b] f \equiv[\{a, b\}] f \quad \text { oder } \quad\langle\neg a \wedge \neg b\rangle f \equiv\langle\Sigma \backslash\{a, b\}\rangle f
$$

1. $[a] 1$
2. $[a] 0$
3.

$\langle a\rangle 1$
$\langle a\rangle 0$
5. $\langle a\rangle 1 \wedge[b] 0$
6. $\langle a\rangle 1 \wedge[\neg a] 0$
7. $[a \vee b]\langle a \vee b\rangle 1$
8.
$\langle a\rangle[b][b] 0$
$[a](\langle a\rangle 1 \rightarrow[a]\langle a\rangle 1)$ if a is possible after a again, then also a second time

Given LTS $L=(S, I, \Sigma, T)$.

Definition semantics are defined recursively as $s \models f$ (read " f holds in s "), with $s \in S$ and f a simplified HML formula.

$$
\begin{aligned}
s & \models 1 \\
s & \not \models 0 \\
s & \models[\Theta] g \quad \text { iff } \quad \forall a \in \Theta \forall t \in S: \quad \text { if } s \xrightarrow{a} t \text { then } t \models g \\
s & \models\langle\Theta\rangle g \quad \text { iff } \quad \exists a \in \Theta \exists t \in S: \quad s \xrightarrow{a} t \text { and } t \models g
\end{aligned}
$$

Definition $\quad L \models f$ holds (read " f holds in L ") iff $s \models f$ for all $s \in I$

Definition expansion of f is the set of states $[[f]]$ in which f holds.

$$
[[f]]=\{s \in S \mid s \models f\}
$$

Let $L=(S, I, \Sigma, T)$ be an LTS.

Definitions A Trace π of L is a finite or infinite sequence of states

$$
\pi=\left(s_{0}, s_{1}, \ldots\right)
$$

For each pair $\left(s_{i}, s_{i+1}\right)$ in π there is an $a \in \Sigma$ with $s_{i} \xrightarrow{a} s_{i+1}$. Therefore there exist a_{0}, a_{1}, \ldots with

$$
s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} s_{2} \xrightarrow{a_{2}} \ldots
$$

$|\pi|$ is the length of π, e.g. $|\pi|=2$ for $\pi=\left(s_{0}, s_{1}, s_{2}\right)$, and $|\pi|=\infty$ for infinite traces.
$\pi(i)$ is the i 'th state s_{i} of π for $i \leq|\pi|$
$\pi^{i}=\left(s_{i}, s_{i+1}, \ldots\right)$ denotes the suffix of π starting with the i^{\prime} th state s_{i} for $i \leq|\pi|$

Note: \quad if $|\pi|=\infty$ then $\left|\pi^{i}\right|=\infty$ for all $i \in \mathbb{N}$ first only in combination with HML

Definition CTL/HML syntax based on the syntax of HML and additionally unary temporal path operators $\mathbf{X}, \mathbf{F}, \mathbf{G}$ and one binary temporal path operator \mathbf{U}.

Path operators have to be prefixed with a path-quantifier \mathbf{E} or \mathbf{A}.

$\mathbf{E X} f$	in one (immediate) successor state f holds	$\equiv\langle\Sigma\rangle f$
$\mathbf{A X} f$	in all successor states f holds	$\equiv[\Sigma] f$
$\mathbf{E F} f$	in one future f holds eventually	exists finally
$\mathbf{A F} f$	in all possible orders of events f holds eventually	always finally
$\mathbf{E G} f$	in one future f holds all the time	exists globally
$\mathbf{A G} f$	f holds always	always globally
$\mathbf{E}[f \mathbf{U} g]$	potentially f holds until finally g gilt (note g has to hold on this trace eventually)	exists until
$\mathbf{A}[f \mathbf{U} g]$	f always holds until finally g occurs (note g has to hold on all traces eventually)	always until

$$
\neg \mathbf{E X} f \equiv \mathbf{A} \mathbf{X} \neg f \quad \neg\langle\Theta\rangle f \equiv[\Theta] \neg f \quad \neg \mathbf{E F} f \equiv \mathbf{A} \mathbf{G} \neg f \quad \neg \mathbf{E G} f \equiv \mathbf{A} \mathbf{F} \neg f
$$

(De'Morgan for $\mathbf{E}[\cdot \mathbf{U} \cdot]$ requires additional temporal path operator)
$\mathbf{A G}[\neg$ safe $] 0 \quad$ it is never possible to execute unsafe actions
$\mathbf{E F}\langle\neg$ safe $\rangle 1 \quad$ potentially an unsafe action can be executed
$\mathbf{E}[\neg\langle r e q\rangle 1 \mathbf{U}\langle a c k\rangle 1]$ there is an order of events in which ack becomes possible and req was not possible before
$\mathbf{A G}[r e q] \mathbf{A F}[\neg a c k] 0 \quad$ always after req a point is reached, from no other action than ack is possible

CTL/HML allows to combine requirements about states and actions which is required to express useful facts and unfortunately not very elegant

Let f be a CTL/HML formula, L an LTS, π a trace of L, and $i, j \in \mathbb{N}$.

Definition semantics are defined recursively: $\quad s \models f \quad$ (read " f holds in s ")

$$
\begin{array}{ll}
s \models \mathbf{E X} f & \text { iff } \quad \exists \pi[\pi(0)=s \wedge \pi(1) \models f] \\
s \models \mathbf{A X} f & \text { iff } \quad \forall \pi[\pi(0)=s \Rightarrow \pi(1) \models f] \\
s \models \mathbf{E F} f & \text { iff } \quad \exists \pi[\pi(0)=s \wedge \exists i[i \leq|\pi| \wedge \pi(i) \models f]] \\
s \models \mathbf{A F} f & \text { iff } \quad \forall \pi[\pi(0)=s \Rightarrow \exists i[i \leq|\pi| \wedge \pi(i) \models f]] \\
s \models \mathbf{E G} f & \text { iff } \quad \exists \pi[\pi(0)=s \wedge \forall i[i \leq|\pi| \Rightarrow \pi(i) \models f]] \\
s \models \mathbf{A G} f & \text { iff } \quad \forall \pi[\pi(0)=s \Rightarrow \forall i[i \leq|\pi| \Rightarrow \pi(i) \models f]] \\
s \models \mathbf{E}[f \mathbf{U} g] & \text { iff } \quad \exists \pi[\pi(0)=s \wedge \exists i[i \leq|\pi| \wedge \pi(i) \models g \wedge \forall j[j<i \Rightarrow \pi(j) \models f]]] \\
s \models \mathbf{A}[f \mathbf{U} g] & \text { iff } \quad \forall \pi[\pi(0)=s \Rightarrow \exists i[i \leq|\pi| \wedge \pi(i) \models g \wedge \forall j[j<i \Rightarrow \pi(j) \models f]]]
\end{array}
$$

- classical semantic model for temporal logic
- only states, no actions
- LTS with exactly one action $\quad(|\Sigma|=1)$
- additionally annotation of states with atomic propositions
- has its roots in modal logics:
- different "worlds" from S are connected through \rightarrow resp. T
- [] f iff for all immediate successor worlds f holds
$-\langle \rangle f$ iff there is an immediate successor world in which f holds

Let \mathcal{A} be the set of atomic propositions (boolean predicates).

Definition a Kripke structure $K=(S, I, T, \mathcal{L})$ consists of the following components:

- set of states S.
- initial states $I \subseteq S$ with $I \neq \emptyset$
- a total transition relation $T \subseteq S \times S \quad(T$ total iff $\forall s[\exists t[T(s, t)]])$
- labelling/marking/annotation $\quad \mathcal{L}: S \rightarrow \mathbb{P}(\mathcal{A})$.

Labelling maps a state s on to the set of atomic propositions that hold in s :

$$
\mathcal{L}(s)=\{\text { gray }, \text { warm }, d r y\}
$$

Definition the Kripke structure $K=\left(S_{K}, I_{K}, T_{K}, \mathcal{L}\right)$ for a complete LTS $L=\left(S_{L}, I_{L}, \Sigma, T_{L}\right)$ is defined with the following components

$$
\begin{gathered}
\mathcal{A}=\Sigma \quad S_{K}=S_{L} \times \Sigma \quad I_{K}=I_{L} \times \Sigma \quad \mathcal{L}:(s, a) \mapsto a \\
T_{K}\left((s, a),\left(s^{\prime}, a^{\prime}\right)\right) \quad \text { iff } \\
T_{L}\left(s, a, s^{\prime}\right) \text { and } a^{\prime} \text { arbitrary }
\end{gathered}
$$

similar construction as the oracle automaton

Proposition

$$
s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{a_{1}} \cdots \xrightarrow{a_{n-1}} s_{n} \quad \text { in } L
$$

iff

$$
\left(s_{0}, a_{0}\right) \rightarrow\left(s_{1}, a_{1}\right) \cdots \rightarrow\left(s_{n}, a_{n}\right) \quad \text { in } K
$$

Note often $S \subseteq \mathbb{B}^{n}, \Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$, and $\mathcal{L}\left(\left(s_{1}, \ldots, s_{n}\right)\right)=\left\{a_{i} \mid s_{i}=1\right\}$

$$
\begin{aligned}
S= & \mathbb{B}^{2} \\
I= & \mathbb{B}^{2} \\
T= & \{((0,0),(0,1)), \\
& ((0,1),(1,0)), \ldots\}
\end{aligned}
$$

$$
a \in L(s) \text { iff } s \in\{(0,1),(1,1)\}
$$

$$
b \in L(s) \text { iff } s \in\{(1,0),(1,1)\}
$$

$$
\begin{aligned}
S & =\mathbb{B}^{3} \\
I & =\mathbb{B}^{3} \\
T & =\ldots
\end{aligned}
$$

$$
a \in L(s) \text { iff } s \in\{(-,-, 1)\}
$$

$$
b \in L(s) \text { iff } s \in\{(-, 1,-)\}
$$

$$
r \in L(s) \text { iff } s \in\{(1,-,-)\}
$$

we assume that circuits abstracted to netlists do not have an initial state
classical version of CTL on Kripke structures

Definition CTL syntax contains all $p \in \mathcal{A}$, all boolean operators $\wedge, \neg, \vee, \rightarrow, \ldots$ and the temporal operators $\mathbf{E X}, \mathbf{A X}, \mathbf{E F}, \mathbf{A F}, \mathbf{E G}, \mathbf{A G}, \mathbf{E}[\cdot \mathbf{U} \cdot]$ and $\mathbf{A}[\cdot \mathbf{U} \cdot]$.

Definition CTL semantics over a Kripke structure $K=(S, I, T, \mathcal{L})$ are defined recursively as for CTL/HML, except for the base case in which $s \models p$ iff $p \in \mathcal{L}(s)$.

Examples for

$$
\begin{array}{ll}
\mathbf{A G}(\bar{r} \rightarrow \mathbf{A X}(\bar{a} \wedge \bar{b})) \\
\mathbf{A G} \mathbf{E X}(\bar{a} \wedge \bar{b}) & \\
\mathbf{A G} \mathbf{E F}(\bar{a} \wedge \bar{b}) & \\
\mathbf{A G} \mathbf{A F}(\bar{a} \wedge \bar{b}) & \text { infinitely often } \quad \bar{a} \wedge \bar{b} \\
\mathbf{A G}(\bar{a} \wedge \bar{b} \wedge r \rightarrow \mathbf{A X} \mathbf{A}[(a \vee b) \mathbf{U}(\bar{a} \wedge \bar{b})]) & \\
(\mathbf{A G} r) \rightarrow \mathbf{A F}(a \wedge b) &
\end{array}
$$

Definition $\quad f$ holds in K written $K \models f$ iff $s \models f$ for all $s \in I$
generic definition

all possible orders of events are represented in one (infinite) computation tree
CTL describes the branching behavior of this computation tree and has a local state view
every state is the starting point of new branching paths

Definition LTL syntax similar to CTL syntax, except that temporal operators do not have path quantifiers: LTL only has $\mathbf{X}, \mathbf{F}, \mathbf{G}$ and \mathbf{U}.

Definition LTL semantics defined recursively along infinite paths π in K :

$$
\begin{array}{lll}
\pi & \models p & \text { iff } \\
\pi \models \neg g & & p \in \mathcal{L}(\pi(0)) \\
\pi & \text { iff } & \pi \not \models g \\
\pi & \models g \wedge h & \text { iff } \\
\pi \models g \text { and } \pi \models h \\
\pi \models \mathbf{X} g & \text { iff } & \pi^{1} \models g \\
\pi \models \mathbf{F} g & \text { iff } & \pi^{i} \models g \text { for one } i \\
\pi \models \mathbf{G g} & \text { iff } & \pi^{i} \models g \text { for all } i \\
\pi \models g \mathbf{U} h & \text { iff } & \text { exists } i \text { with } \pi^{i} \models h \text { and } \pi^{j} \models g \text { for all } j<i
\end{array}
$$

Definition $\quad K \models f$ iff $\pi \models f$ for all infinite paths π in K with $\pi(0) \in I$

- LTL only considers one single linear order of events
- then $\quad(\mathbf{G} r) \rightarrow \mathbf{F}(a \wedge b) \quad$ suddenly makes sense (premise is a restriction/assumption)
- LTL is compositional (w.r.t. sync. product of Kripke structures):

$$
\begin{aligned}
& \text { - } \quad K_{1} \models f_{1}, K_{2} \models f_{2} \quad \Rightarrow \quad K_{1} \times K_{2} \models f_{1} \wedge f_{2} \\
& \text { - } \quad K_{1} \models f \rightarrow g, K_{2} \models f \quad \Rightarrow \quad K_{1} \times K_{2} \models g
\end{aligned}
$$

Proposition CTL and LTL have different expressibility:
AXEX p can not be specified in LTL, AFAG p does not have corresponding LTL formula

ACTL Formulas as LTL Formulas

[Clarke and Draghicescu'88]
ACTL is the sub logic of CTL formulas without \mathbf{E} path quantifiers in NNF
NNF: negations only occur in front of atomic propositions $p \in \mathcal{A}$

Definition for an ACTL formula f define $f \backslash \mathbf{A}$ as the LTL formula obtained from f by deleting all path quantifiers, e.g. $(\mathbf{A G A F} p) \backslash \mathbf{A}=\mathbf{G F} p$.

Definition f and g are equivalent iff $K \models f \Leftrightarrow K \models g$ for all Kripke structures K.
(f and g can be formulas in different logics)

Theorem if an ACTL formula f is equivalent to an LTL formula g, then also to $f \backslash \mathbf{A}$.

$$
\text { Proof } \quad K \models f \stackrel{\text { assumption }}{\Leftrightarrow} \forall \pi[\pi \models g] \underset{\text { +see below }}{\text { assumption }} \forall \pi[\pi \models f] \Leftrightarrow \forall \pi[\pi \models f \backslash \mathbf{A}] \stackrel{\text { def. }}{\Rightarrow} K \models f \backslash \mathbf{A}
$$

$$
\text { (assume } \pi \text { to be initialized and in } \pi \models f \text { interpreted as Kripke structure) }
$$

[M. Maidl'00]
Let f and g be CTL resp. LTL formulas and $p \in \mathcal{A}$.
Definition every sub formula of an CTL ${ }^{\text {det }}$ formula is of the following form:

$$
p, \quad f \wedge g, \quad \mathbf{A X} f, \quad \mathbf{A G} f, \quad(\neg p \wedge f) \vee(p \wedge g) \quad \text { or } \quad \mathbf{A}[(\neg p \wedge f) \mathbf{U}(p \wedge g)]
$$

Definition every sub formula of an LTLdet formula is of the following form:

$$
p, \quad f \wedge g, \quad \mathbf{X} f, \quad \mathbf{G} f, \quad(\neg p \wedge f) \vee(p \wedge g) \quad \text { or } \quad(\neg p \wedge f) \mathbf{U}(p \wedge g)
$$

Theorem the intersection of LTL and ACTL is equivalent to LTL ${ }^{\text {det }}$ resp. CTL ${ }^{\text {det }}$
Intuition CTL semantics for CTL ${ }^{\text {det }}$ are restricted to one path

Hint $\quad \mathbf{A}[f \mathbf{U} p] \equiv \mathbf{A}[(\neg p \wedge f) \mathbf{U}(p \wedge 1)] \quad \mathbf{A F} p \equiv \mathbf{A}[1 \mathbf{U} p]$
\Rightarrow non deterministic specifications can be misinterpreted

Specification "after m-th step p " holds (at least)
Proposition for all $m>1$ there is no CTL nor LTL formula f with
$K \models f \quad$ iff $\quad \pi(i) \models p$ for all initialized paths π of K and all $i=0 \bmod m$.
Problem $\quad p \wedge \mathbf{G}(p \leftrightarrow \neg \mathbf{X} p)$ denotes "exactly every 2nd step p holds"

Solutions

- add modulo m counter to model (problems with compositionality)
- logic extensions
- ETL with additional temporal operators defined through automata ...
- ... resp. quantifiers over atomic propositions (embed automata into the logic)
- regular expressions: $\neg((\underbrace{1 ; \ldots ; 1}_{m-1} ; p)^{*} ; \underbrace{1 ; \ldots ; 1}_{m-1} ; \neg p) \quad$ resp. $(\underbrace{1 ; \ldots ; 1 ; p}_{m-1})^{\omega}$
- specifications often need additional fairness assumptions
- e.g. abstraction of scheduler: "each process gets it's turn"
- e.g. one component must be enabled infinitely often
- e.g. infinitely often a transmission channel does not produce an error
- no problem in LTL: $\quad(\mathbf{G F} f) \rightarrow \mathbf{G}(r \rightarrow \mathbf{F} a)$
- fair Kripke structures for CTL:
- additional component F of fair states
- path π fair iff $|\{i \mid \pi(i) \in F\}|=\infty$
- only consider fair paths
- restricted class of quantifiers over sets of states
- quantified variables $\quad V=\{X, Y, \ldots\}$
- in general also over sets and thus gives a second order logic
- fix point logic: least fix points specified with μ and largest with v
- modal μ-calculus as extension of HML resp. CTL

$$
\vee X[p \wedge[] X] \equiv \mathbf{A G} p \quad \mu X[q \vee(p \wedge\rangle X)] \equiv \mathbf{E}[p \mathbf{U} q]
$$

$$
v X[p \wedge[][] X] \quad \text { corresponds to "every 2nd step } p \text { holds" }
$$

$\vee X[p \wedge\rangle \mu Y[(f \wedge X) \vee(p \wedge\rangle Y)]] \equiv \vee X[p \wedge \mathbf{E X E}[p \mathbf{U} f \wedge X]] \equiv \mathbf{E G} p$ under fairness f
again over Kripke structures $K=(S, I, T, \mathcal{L})$.

Definition an assignment ρ of variables V is a mapping $\rho: V \rightarrow \mathbb{P}(S)$

Definition semantics $[[f]]_{\rho}$ of a μ-calculus formula f is defined recursively as expansion, i.e. as set of states in which f holds for a given assignment ρ :

$$
\begin{aligned}
{[[p]]_{\rho} } & =\{s \mid p \in \mathcal{L}(s)\} & {[[X]]_{\rho} } & =\rho(X) \\
{[[\neg f]]_{\rho} } & =S \backslash[[f]]_{\rho} & {[[f \wedge g]]_{\rho} } & =[[f]]_{\rho} \cap[[g]]_{\rho} \\
\mu X[f] & =\bigcap\left\{A \subseteq S \mid[[f]]_{\rho[X \mapsto A]}=A\right\} & v X[f] & =\bigcup\left\{A \subseteq S \mid[[f]]_{\rho[X \mapsto A]}=A\right\}
\end{aligned}
$$

with $\rho[A \mapsto X](Y)=\left\{\begin{array}{ll}A & X=Y \\ \rho(Y) & X \neq Y\end{array}\right.$.

Definition $K \models f$ iff $I \subseteq[[f]] \rho$ for all assignments ρ

Proposition $\quad \mu$-calculus subsumes CTL and at least theoretically also LTL.

- Property Specification Language (PSL)
- subsumes CTL, LTL and also regular expressions
- Verilog and VHDL flavor
- System Verilog Assertions (SVA)
- less general than PSL
- closer to Hardware
- part of System Verilog (extension of Verilog)
- verification tools (testing / formal) often come with their own temporal logic

