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Quantified Boolean Formulas (QBF)

B Extension of propositional logic

O explicit quantifiers (V, 3) over the Boolean variables
B Canonical PSPACE-complete problem

O more succinct encoding than SAT (NP-complete)

B Many application domains: synthesis, Al, verification, ...
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QBF Syntax

B QBFs in Prenex CNF (PCNF):

literals clause
L —
JrIyVuIz.(-uV2)A(yVuV-z)A(zV —uV -z)

CNF
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QBF Syntax

B QBFs in Prenex CNF (PCNF):

literals clayse
L —
JrIyVuIz.(-uV2)A(yVuV-z)A(zV —uV -z)

CNF
B QBFs in Prenex DNF (PDNF):

cube
VaVyduVz.(u A —2) V (ty A—u A z) V (mz Au A z)

DNF
Note: =,y < u < 2

JXU

2/19



QBF Semantics

B V2 Q.p satisfiable < Q.p[z] and Q.p[—z] satisfiable
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QBF Semantics

B V2 Q.p satisfiable < Q.p[z] and Q.p[—z] satisfiable
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QBF Models

Tree model of true formula:

VzIy.(z Vy) A (T Vy)
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QBF Models

Tree model of true formula:

VzIy.(z Vy) A (T Vy)

Skolem-functions of 3-variables:
Jy(x) =

JXU

Tree refutation of false formula:

IVz.(xVy) A(ZTVy)

Herbrand-functions of V-variables:
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Symbolic System Representation

Kripke Structure: Description of the System

States:
Initial state:
Transition Relation:

Propositions:
Labeling:

Translation to SAT

Initial state:
Transition Relation:

JXU

{51,82783}

{s1}

{(s1,51), (51, 82),
(52782)v (52753),
(53751)7(83752)}

z,y

{(s1,{~z, ~y}),
52, {1371/}),

(
(s3, {~z,y})}

I((z,y)) =~z A~y

T((z,y), (2",y)) =((=" ez Vy) Ay < y) vV
(' &y Ay & xV-y)

®
7
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Motivation: Bounded Model Checking (1/2)

A bounded model checking (BMC) problem for Kripke structure K and
property Gp is encoded by
I(s0) AT (s0,81) AT (s1,82) Ao o AT (Sp—1,8k) A B(sk)

where

B /(sg) is true & sg is an initial state
B 7 is the transition relation of K

B B(sy) is true & sy is a bad state, i.e., =p holds in s
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Motivation: Bounded Model Checking (2/2)

A bounded model checking (BMC) problem for Kripke structure K and
property Gp is encoded by

Js0,81,---,86Vz, 2’ (I(s0) A  B(sk) A
Vil (@ o sina’ & sipr) = T(x,2')))

1=0

where

B /(s0) is true < sp is an initial state

B 7 is the transition relation of K

B B(sy) is true < sy is a bad state, i.e., p holds in s

Advantage: only one copy of transition relation!
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Boolean splitCNF (Prefix P, matrix )

if (¢Yp==0): return true;
if (Pe): return false;

P=QXP,zeX, X' =X\{z};

if (Q==VY)
return (splitCNF (QX'P',¢') &&
splitCNF(QX'P',¢"));
else
return (splitCNF (QX'P’,v¢")
splitCNF (QX'P',¢"));
where
' : take clauses of 1, delete clauses with x, delete —x
V" : take clauses of 1, delete clauses with —x, delete x

JXU
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Some Simplifications

The following rewritings are equivalence preserving:

-T = L

-1l =T;

TAp=¢

1A=L

TVe=T

1lveo=¢

(Qz @) = ¢, Q € {V,3}, z does not occur in ¢;

N o o e b=

JXU



Unit Clauses

A clause C'is called unit in a formula ¢ iff

B C contains exactly one existential literal

B the universal literals of C' are to the right of the existential literal in the

prefix

The existential literal in the unit clause is called unit literal.

Example:
Vab3zVeIyVd{{a,b, —c, x}, {a, -b},{c,y,d},{z,y},{z,c,d}, {y}}
Unit literals: 77
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Unit Literal Elimination

Let ¢ be a QBF with unit literal [ and let ¢ be a QBF obtained from ¢ by

B removing all clauses containing [

B removing all occurrences of [

Then ¢ and 1 are equivalent.

Example:
Vab3zVeIyVd{{a, b, -c, -z}, {a, =b}, {c,y,d}, {z,y}, {z,c,d}, {y}}
After unit literal elimiation: 77

JXU
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Pure Literals

A literal [ is called pure in a formula ¢ iff

B [ occurs in ¢

B the complement of [, i.e., 1, does not occur in 1)

Example:

VabﬂxV(ﬂszd{{a, b, _‘C}a {a7 _‘6}7 {07 Y, d}, {m, y}7 {I7 ) d}}
Pure: 77
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Pure Literal Elimination

Let ¢ be a QBF with pure literal [ and let ¢ be a QBF obtained from ¢ by

B removing all clauses with [ if [ is existentially quantified

B removing all occurences of [ if [ is universally quantified
Then ¢ and v are equivalent.
Example:

Vab3zVceIyzVd{{a,b, ~c},{a, b}, {c,y,d}, {z,y},{z, c, d}}
After Pure Literal Elimination: 77

JXU
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Universal Reduction

B Let ¢ be a QBF in PCNF and C € ¢.
B Let ! € C with

O [ is universally quantified
O for all k € C that is existentially quantified: k <[, i.e., all existential
variables k of C are to the left of [ in the prefix.

B Then [ may be removed from C.
B C\{i} is called the forall reduct (also universal reduct of C).

Example: Vab3zVc3IyzVd{{a,b, —c,z}, {a, b, z}, {c,y,d},{z, vy}, {z,c,d}}}
After Universal Reduction:7?

Jzu 14/19



Boolean splitCNF2 (Prefix P, matrix )

(P, %) = simplify(P,);

if (¢p==0): return true;
if (Pe): return false;

P=QXP ,zeX, X =X\{z};

if (Q==V)
return (splitCNF2(QX'P ') &&
splitCNF2(QX' P, ¢"));
else
return (splitCNF2(QX'P’,v¢")
splitCNF2 (QX'P' ¢"));
where
V' :take clauses of 1, delete clauses with x, delete —x
V" : take clauses of 1, delete clauses with —x, delete x

JXU
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Q-Resolution: Rules

Resolution Rule

if for all z € Q: {z,z} € (C1 U Cy),
Cy U {p} CoU{p} pé&Ch, p¢&Ca, and either
CL U Oy (1) C1,C> are clauses, quant(Q,p) = 3 or

(res)

JXU 16/10



Q-Resolution: Rules

Resolution Rule

if for all z € Q: {z,z} € (C1 U Cy),
Cv U {p} CoU{p} pé&Ch, p¢&Ca, and either
CL U Oy (1) C1,C> are clauses, quant(Q,p) = 3 or
(2) C41,Cx are cubes, quant(Q,p) =V

(res)

JXU 16/19



Q-Resolution: Rules

Resolution Rule

if for all z € Q: {z,z} € (C1 U Cy),
Cv U {p} CoU{p} pé&Ch, p¢&Ca, and either
CL U Oy (1) C1,C> are clauses, quant(Q,p) = 3 or
(2) C41,Cx are cubes, quant(Q,p) =V

Universal Reduction
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C
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Q-Resolution: Rules

Resolution Rule

if for all z € Q: {z,z} € (C1 U Cy),
Cv U {p} CoU{p} pé&Ch, p¢&Ca, and either
CL U Oy (1) C1,C> are clauses, quant(Q,p) = 3 or
(2) C41,Cx are cubes, quant(Q,p) =V

Universal /Existential Reduction

if for all z € Q: {z,z} € (C U{l}) and either
(1) Cis a clause, quant(Q,1) =V,

I <glforalll € C with quant(Q,l") =3 or
(2) C is a cube, quant(Q,1) =3,

' <glforalll' € C with quant(Q,1") =V

cu{l}
C

JXU

(res)

(red)
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Q-Resolution

Clause Axiom

JXU

: Axioms

A is an assignment,
PlA] =T,
and C' = (A\,c, 1) is a cube

(cu-init)
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Q-Resolution: Axioms

Clause Axiom

A is an assignment,
PlA] =T, (cu-init)

¢ and C' = (A\,c, 1) is a cube
Cube Axiom
ifforallz € Q: {z,z} £ C, C .
I-init
C is a clause and C € ¥ (cl-init)
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Q-Resolution Example

Exclusive OR (XOR): QBF ¢ = JzVy(z Vy) A (mz V —y)
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Q-Resolution Example

Exclusive OR (XOR):

Truth Table
z |y | Y
o|0|O0
0|11
101
1|11]0

JXU
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QBF ¢ = JaVy(x V y) A (mz V —y)

unsat
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Q-Resolution Example
Exclusive OR (XOR): QBF ¢ = JzVy(z Vy) A (mz V —y)

Q-Resolution Proof

T Vy -z V oy

b
N
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Q-Resolution Example
Exclusive OR (XOR): QBF ¢ = 32Vy(z Vy) A (mz V —y)

Q-Resolution Proof

z V(y -z V(—y

S
N

JXU
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Q-Resolution Example

Exclusive OR (XOR): QBF ¢ = 32Vy(z Vy) A (mz V —y)

Q-Resolution Proof

z V(y —x V(—y <— Axioms

i |

@
\@/

Resolution —
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Q-Resolution Example

Exclusive OR (XOR): QBF ¢ = JzVy(z Vy) A (mz V —y)

Truth Table Q-Resolution Proof

" T Vy -z V oy

- 1
P NS

R RO Of8
R Olr O
= | =

o

— y=a = =0
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Q-Resolution Example

Exclusive OR (XOR): QBF ¢ = JzVy(z Vy) A (mz V —y)

Truth Table Q-Resolution Proof

" T Vy -z V oy

- 1
P NS

R RO Of8
R Olr O
= | =

o

— y=a = =0

—  fy(z) =z (counter model)

JXU
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Overview: Solving Approaches for QBF

QBF ¢ ——  solver ——— sat/unsat

JXU 19/10



Overview: Solving Approaches for QBF

QBF ¢ ——  solver ——— sat/unsat

different proof systems:

Q-Resolution

Expansion
[Kiine Buring, Karsins, Fioel 95 (Beyrsdort, Chew Jancts, 14 sinterference
! , HEER ﬂ EEER
+
- n
+ O
W QCDCL B CEGAR B QRAT

JXU

19/19



