REASONING ON QUANTIFIED BOOLEAN FORMULAS

Martina Seidl Institute for Formal Models and Verification

- Extension of propositional logic
 - \square explicit quantifiers (\forall, \exists) over the Boolean variables
- Canonical PSPACE-complete problem
 - ☐ more succinct encoding than SAT (NP-complete)
- Many application domains: synthesis, AI, verification, ...

- Extension of propositional logic
 - \square explicit quantifiers (\forall, \exists) over the Boolean variables
- Canonical PSPACE-complete problem
 - ☐ more succinct encoding than SAT (NP-complete)
- Many application domains: synthesis, AI, verification, ...

closed QBF in prenex form

$$\exists x\exists y \forall u \exists z. (u \rightarrow z) \land (y \lor u \lor \neg z) \land (x \lor \neg u \lor \neg z) \land (x \leftrightarrow \neg y)$$

- Extension of propositional logic
 - \square explicit quantifiers (\forall, \exists) over the Boolean variables
- Canonical PSPACE-complete problem
 - ☐ more succinct encoding than SAT (NP-complete)
- Many application domains: synthesis, AI, verification, ...

closed QBF in prenex form

$$\exists x \exists y \forall u \exists z. (u \to z) \land (y \lor u \lor \neg z) \land (x \lor \neg u \lor \neg z) \land (x \leftrightarrow \neg y)$$
prefix

- Extension of propositional logic
 - \square explicit quantifiers (\forall, \exists) over the Boolean variables
- Canonical PSPACE-complete problem
 - ☐ more succinct encoding than SAT (NP-complete)
- Many application domains: synthesis, AI, verification, ...

closed QBF in prenex form

$$\exists x \exists y \forall u \exists z. (u \to z) \land (y \lor u \lor \neg z) \land (x \lor \neg u \lor \neg z) \land (x \leftrightarrow \neg y)$$
 prefix
$$\qquad \qquad \text{matrix}$$

QBF Syntax

■ QBFs in Prenex CNF (PCNF):

QBF Syntax

■ QBFs in Prenex CNF (PCNF):

$$\exists x \exists y \forall u \exists z. \underbrace{(\neg u \lor z)}^{\text{literals}} \land \underbrace{(y \lor u \lor \neg z)}_{\text{CNF}} \land (x \lor \neg u \lor \neg z)$$

■ QBFs in Prenex DNF (PDNF):

$$\forall x \forall y \exists u \forall z. \underbrace{(u \land \neg z)}_{\text{CU}} \lor (\neg y \land \neg u \land z) \lor (\neg x \land u \land z)}_{\text{DNF}}$$

QBF Syntax

■ QBFs in Prenex CNF (PCNF):

$$\exists x \exists y \forall u \exists z. \underbrace{(\neg u \lor z) \land (y \lor u \lor \neg z)}_{\text{CNF}} \land (x \lor \neg u \lor \neg z)$$

■ QBFs in Prenex DNF (PDNF):

$$\forall x \forall y \exists u \forall z. \underbrace{(u \land \neg z)}_{\text{CUNF}} \lor (\neg y \land \neg u \land z) \lor (\neg x \land u \land z)$$

Note: x, y < u < z

 $\blacksquare \ \forall x \mathcal{Q}. \varphi \ \text{satisfiable} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \text{and} \ \mathcal{Q}. \varphi[\neg x] \ \text{satisfiable}$

- $\blacksquare \ \forall x \mathcal{Q}. \varphi \ \text{satisfiable} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \text{and} \ \mathcal{Q}. \varphi[\neg x] \ \text{satisfiable}$
- $\blacksquare \ \exists x \mathcal{Q}. \varphi \ \text{satisfiable} \ \Leftrightarrow \mathcal{Q}. \varphi[x] \ \text{or} \ \mathcal{Q}. \varphi[\neg x] \ \text{satisfiable}$

- $\blacksquare \ \forall x \mathcal{Q}. \varphi \text{ satisfiable } \Leftrightarrow \mathcal{Q}. \varphi[x] \text{ and } \mathcal{Q}. \varphi[\neg x] \text{ satisfiable }$
- \blacksquare $\exists x \mathcal{Q}. \varphi$ satisfiable $\Leftrightarrow \mathcal{Q}. \varphi[x]$ or $\mathcal{Q}. \varphi[\neg x]$ satisfiable
- Example:

- $\blacksquare \ \forall x \mathcal{Q}. \varphi$ satisfiable $\Leftrightarrow \mathcal{Q}. \varphi[x]$ and $\mathcal{Q}. \varphi[\neg x]$ satisfiable
- \blacksquare $\exists x \mathcal{Q}. \varphi$ satisfiable $\Leftrightarrow \mathcal{Q}. \varphi[x]$ or $\mathcal{Q}. \varphi[\neg x]$ satisfiable
- Example:

Tree model of true formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Tree model of true formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Tree refutation of **false** formula:

$$\exists y \forall x. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Tree model of true formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Skolem-functions of \exists -variables: $f_y(x) = x$

Tree refutation of false formula:

$$\exists y \forall x. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Tree model of true formula:

$$\forall x \exists y. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Skolem-functions of \exists -variables: $f_u(x) = x$

Tree refutation of false formula:

$$\exists y \forall x. (x \vee \bar{y}) \wedge (\bar{x} \vee y)$$

Herbrand-functions of \forall -variables: $f_x(y) = \bar{y}$

Symbolic System Representation

Kripke Structure: Description of the System

States:
$$\{s_1, s_2, s_3\}$$

Initial state:
$$\{s_1\}$$

Transition Relation:
$$\{(s_1, s_1), (s_1, s_2), (s_2, s_2), (s_2, s_3), (s_2, s_3), (s_2, s_3), (s_3, s_3), (s_4, s_3), (s_4, s_4), (s_4, s_4), (s_5, s_5), (s_5,$$

$$(s_2, s_2), (s_2, s_3), (s_3, s_1), (s_3, s_2)$$

Propositions:
$$x, y$$

Labeling:
$$\{(s_1, \{\neg x, \neg y\}),$$

$$(s_2, \{x, y\}),$$

 $(s_3, \{\neg x, y\})$

$$(s_3, \{\neg x, y\})\}$$
,

Translation to SAT

Initial state:
$$I((x,y)) = \neg x \land \neg y$$

Transition Relation:
$$T((x,y),(x',y')) = ((x' \Leftrightarrow x \lor y) \land (y' \Leftrightarrow y)) \lor ((x' \Leftrightarrow \neg y) \land (y' \Leftrightarrow x \lor \neg y))$$

Motivation: Bounded Model Checking (1/2)

A bounded model checking (BMC) problem for Kripke structure ${\cal K}$ and property Gp is encoded by

$$I(s_0) \wedge \mathcal{T}(s_0, s_1) \wedge \mathcal{T}(s_1, s_2) \wedge \ldots \wedge \mathcal{T}(s_{k-1}, s_k) \wedge \underline{B(s_k)}$$

where

- \blacksquare $I(s_0)$ is true $\Leftrightarrow s_0$ is an initial state
- \blacksquare \mathcal{T} is the transition relation of K
- \blacksquare $B(s_k)$ is true $\Leftrightarrow s_k$ is a bad state, i.e., $\neg p$ holds in s_k

Motivation: Bounded Model Checking (2/2)

A bounded model checking (BMC) problem for Kripke structure K and property Gp is encoded by

$$\exists s_0, s_1, \dots, s_k \forall x, x'. \quad (I(s_0) \land \underbrace{B(s_k)} \land (\bigvee_{i=0}^{k-1} (x \leftrightarrow s_i \land x' \leftrightarrow s_{i+1}) \to \mathcal{T}(x, x')))$$

where

- \blacksquare $I(s_0)$ is true $\Leftrightarrow s_0$ is an initial state
- \blacksquare \mathcal{T} is the transition relation of K
- \blacksquare $B(s_k)$ is true $\Leftrightarrow s_k$ is a bad state, i.e., p holds in s_k

Advantage: only one copy of transition relation!


```
Boolean splitCNF (Prefix P, matrix \psi)
2
   if (\psi == \emptyset): return true;
   if (\emptyset \in \psi): return false;
5
   P = QXP', x \in X, X' = X \setminus \{x\};
7
   if (Q == \forall)
         return (splitCNF(QX'P', \psi') &&
                     \mathtt{splitCNF}(QX'P', \psi''));
10
    else
11
         return (splitCNF(QX'P', \psi')
12
                     splitCNF(QX'P', \psi''));
13
   where
   \psi': take clauses of \psi, delete clauses with x, delete \neg x
   \psi'': take clauses of \psi, delete clauses with \neg x, delete x
```


Some Simplifications

The following rewritings are equivalence preserving:

- 1. $\neg \top \Rightarrow \bot$
- 2. $\neg \bot \Rightarrow \top$;
- 3. $\top \land \phi \Rightarrow \phi$
- 4. $\bot \land \phi \Rightarrow \bot$
- 5. $\top \lor \phi \Rightarrow \top$
- 6. $\bot \lor \phi \Rightarrow \phi$
- 7. $(Qx \phi) \Rightarrow \phi, Q \in \{\forall, \exists\}, x \text{ does not occur in } \phi;$

Unit Clauses

Definition of Unit Literal Elimination

A clause C is called **unit** in a formula ϕ iff

- lacksquare C contains exactly one existential literal
- \blacksquare the universal literals of C are to the right of the existential literal in the prefix

The existential literal in the unit clause is called unit literal.

Example:

 $\forall ab \exists x \forall c \exists y \forall d \{\{a,b,\neg c,\neg x\},\{a,\neg b\},\{c,y,d\},\{x,y\},\{x,c,d\},\{y\}\}\}$ Unit literals: ??

Unit Literal Elimination

▶ Definition of Unit Literal

Let ϕ be a QBF with unit literal l and let ψ be a QBF obtained from ϕ by

- \blacksquare removing all clauses containing l
- lacktriangle removing all occurrences of $ar{l}$

Then ϕ and ψ are equivalent.

Example:

 $\forall ab \exists x \forall c \exists y \forall d \{\{a, b, \neg c, \neg x\}, \{a, \neg b\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}, \{y\}\}\}$ After unit literal elimination: ??

Pure Literals

▶ Definition of Pure Literal Elimination

A literal l is called **pure** in a formula ϕ iff

- \blacksquare l occurs in ϕ
- \blacksquare the complement of l, i.e., \bar{l} , does not occur in ϕ

Example:

 $\forall ab\exists x \forall c \exists yz \forall d\{\{a,b,\neg c\},\{a,\neg b\},\{c,y,d\},\{x,y\},\{x,c,d\}\}\}$

Pure: ??

Pure Literal Elimination

▶ Definition of Pure Literal

Let ϕ be a QBF with pure literal l and let ψ be a QBF obtained from ϕ by

- \blacksquare removing all clauses with l if l is existentially quantified
- \blacksquare removing all occurrences of l if l is universally quantified

Then ϕ and ψ are equivalent.

Example:

 $\forall ab\exists x \forall c \exists yz \forall d\{\{a,b,\neg c\},\{a,\neg b\},\{c,y,d\},\{x,y\},\{x,c,d\}\}\}$ After Pure Literal Elimination: ??

Universal Reduction

- Let ϕ be a QBF in PCNF and $C \in \phi$.
- Let $l \in C$ with
 - $\ \square \ l$ is universally quantified
 - \square for all $k \in C$ that is existentially quantified: k < l, i.e., all existential variables k of C are to the left of l in the prefix.
- Then l may be removed from C.
- $C \setminus \{l\}$ is called the **forall reduct** (also universal reduct of C).

Example: $\forall ab \exists x \forall c \exists yz \forall d \{\{a,b,\neg c,x\},\{a,\neg b,x\},\{c,y,d\},\{x,y\},\{x,c,d\}\}\}$ After Universal Reduction:??


```
Boolean splitCNF2 (Prefix P, matrix \psi)
2
   (P, \psi) = simplify(P, \psi);
4
   if (\psi == \emptyset): return true;
   if (\emptyset \in \psi): return false;
7
   P = QXP', x \in X, X' = X \setminus \{x\};
9
   if (Q == \forall)
10
         return (splitCNF2(QX'P', \psi') &&
11
                     splitCNF2(QX'P', \psi''));
12
    else
13
         return (splitCNF2(QX'P', \psi')
14
                     splitCNF2(QX'P', \psi''));
15
    where
16
   \psi': take clauses of \psi, delete clauses with x, delete \neg x
   \psi'': take clauses of \psi, delete clauses with \neg x, delete x
```

Resolution Rule

$$\begin{array}{c|c} & \text{if for all } x \in \mathcal{Q} \colon \{x,\bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \hline C_1 \cup \{p\} & C_2 \cup \{\bar{p}\} & \bar{p} \not\in C_1, \ p \not\in C_2, \ \text{and either} \\ \hline C_1 \cup C_2 & \text{(T_1,T_2)} & \text{(T_2,T_3)} & \text{(T_3)} \\ \hline \end{array}$$

Resolution Rule

$$\begin{array}{c|c} & \text{if for all } x \in \mathcal{Q} \colon \{x,\bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \hline C_1 \cup \{p\} & C_2 \cup \{\bar{p}\} \\ \hline \hline C_1 \cup C_2 & \text{$\bar{p} \not\in C_1$, $p \not\in C_2$, and either} \\ \hline (1) \ C_1,C_2 \text{ are clauses, quant}(\mathcal{Q},p) = \exists \text{ or} \\ \hline (2) \ C_1,C_2 \text{ are cubes, quant}(\mathcal{Q},p) = \forall \\ \end{array}$$

Resolution Rule

$$\begin{array}{c|c} \text{if for all } x \in \mathcal{Q} \colon \{x,\bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \hline C_1 \cup \{p\} & C_2 \cup \{\bar{p}\} \\ \hline C_1 \cup C_2 & \bar{p} \notin C_1, \ p \notin C_2, \ \text{and either} \\ \hline (1) \ C_1,C_2 \ \text{are clauses, quant}(\mathcal{Q},p) = \exists \ \text{or} \\ \hline (2) \ C_1,C_2 \ \text{are cubes, quant}(\mathcal{Q},p) = \forall \end{array}$$

Universal/Existential Reduction

$$\begin{array}{c} C \cup \{l\} \\ \hline C \end{array} \begin{tabular}{ll} \begin{tabular}{ll} if for all $x \in \mathcal{Q}\colon \{x,\bar{x}\} \not\subseteq (C \cup \{l\})$ and either \\ \begin{tabular}{ll} (1) C is a clause, $\operatorname{quant}(\mathcal{Q},l) = \forall$, \\ l' <_{\mathcal{Q}} l for all $l' \in C$ with $\operatorname{quant}(\mathcal{Q},l') = \exists$ or \\ \begin{tabular}{ll} (2) l' is a cube, $\operatorname{quant}(\mathcal{Q},l) = \exists$, \\ l' <_{\mathcal{Q}} l for all $l' \in C$ with $\operatorname{quant}(\mathcal{Q},l') = \forall$. \\ \end{tabular}$$

Resolution Rule

$$\begin{array}{c|c} \text{if for all } x \in \mathcal{Q} \colon \{x,\bar{x}\} \not\subseteq (C_1 \cup C_2), \\ \hline C_1 \cup \{p\} & C_2 \cup \{\bar{p}\} \\ \hline C_1 \cup C_2 & \bar{p} \notin C_1, \ p \notin C_2, \ \text{and either} \\ \hline (1) \ C_1,C_2 \ \text{are clauses, quant}(\mathcal{Q},p) = \exists \ \text{or} \\ \hline (2) \ C_1,C_2 \ \text{are cubes, quant}(\mathcal{Q},p) = \forall \end{array}$$

Universal/Existential Reduction

$$\frac{C \cup \{l\}}{\mathsf{C}} \qquad \qquad \text{if for all } x \in \mathcal{Q} \colon \{x, \bar{x}\} \not\subseteq (C \cup \{l\}) \text{ and either}$$

$$(1) \ C \text{ is a clause, quant}(\mathcal{Q}, l) = \forall,$$

$$l' <_{\mathcal{Q}} \ l \text{ for all } l' \in C \text{ with quant}(\mathcal{Q}, l') = \exists \text{ or}$$

$$(red)$$

$$(2) \ C \text{ is a cube, quant}(\mathcal{Q}, l) = \exists,$$

$$l' <_{\mathcal{Q}} \ l \text{ for all } l' \in C \text{ with quant}(\mathcal{Q}, l') = \forall$$

Q-Resolution: Axioms

Clause Axiom

$$\frac{A \text{ is an assignment,}}{\mathsf{C}} \qquad \qquad \phi[A] = \top, \qquad \qquad \text{(cu-init)}$$
 and $C = (\bigwedge_{l \in A} l)$ is a cube

Q-Resolution: Axioms

Clause Axiom

$$\frac{A \text{ is an assignment,}}{\mathsf{C}} \qquad \qquad \phi[A] = \top, \qquad \qquad \text{(cu-init)}$$
 and $C = (\bigwedge_{l \in A} l)$ is a cube

Cube Axiom

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

x	y	ψ	
0	0	0	
0	1	1	unsat
1	0	1	ulisat
1	1	0	

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Q-Resolution Proof

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

\boldsymbol{x}	y	ψ	
0	0	0	
0	1	1	unsat
1	0	1	unsat
1	1	0	

Q-Resolution Proof

$$\longrightarrow y = x \Rightarrow \psi = 0$$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

\boldsymbol{x}	y	ψ	
0	0	0	
0	1	1	unsat
1	0	1	unsat.
1	1	0	

Q-Resolution Proof

$$\longrightarrow \quad y = x \ \Rightarrow \ \psi = 0$$

$$\longrightarrow \ f_y(x) = x \quad \text{(counter model)}$$

Overview: Solving Approaches for QBF

Overview: Solving Approaches for QBF

