Formal Models SS 2015: Assignment 2

Institute for Formal Models and Verification, JKU Linz

Due 19.03.2015

Exercise 5

Draw an FA A with input-alphabet $\Sigma := \{a, b\}$ having *exactly* 3 states such that...

1. $\ldots A$ is non-deterministic and incomplete.

- 2. $\ldots A$ is deterministic and incomplete.
- 3. ... *A* is non-deterministic and complete.
- 4. $\ldots A$ is deterministic and complete.

Justify each of your solutions.

Exercise 6

Let A_1 be an *arbitrary* FA and $\mathbb{P}(A_1) := (S, I, \Sigma, T, F)$ be the power automaton of A_1 . Describe in your own words the formal definition of $\mathbb{P}(A_1)$, including all of its components. What are the basic properties of a power automaton? Is the following proposition true? Justify your answer.

 $|S' \xrightarrow{a}| = 1$ for all $S' \in S$ and for all $a \in \Sigma$.

Exercise 7

Given an automation A with state $S = \{A, B, C, D\}$, alphabet $\Sigma = \{a, b\}$, initial states $I = \{A, C\}$, final state $F = \{B, D\}$, and transitions $T = \{(A, b, B), (A, b, C), (B, a, B), (C, b, C), (C, b, D), (D, b, D), (B, a, D)\}$,

Draw the power automaton $\mathbb{P}(A)$ for FA A. What is the maximum number of states $\mathbb{P}(A)$ can have in theory? Justify your answer.

Exercise 8

Draw a *deterministic* FA A with $\Sigma := \{a, b\}$ having at least 3 states such that $L(C(A)) \neq L(A)$, where C(A) denotes the complement-automaton of A. Explain your solution.