Formal Models SS 2015: Assignment 6

Institute for Formal Models and Verification, JKU Linz

Due 07.05.2015

Exercise 21

Let P = b.c.P and Q = a.b.Q. Show that action

 $((b.Q + b.a.Q) \mid\mid (b.P + b.c.P)) + (a.Q \mid\mid b.P) \xrightarrow{b} a.Q \mid\mid P$

can be executed by subsequently applying the semantical rules of PA.

Exercise 22

Given a CEN N = (C, I, E, G) with $C = \{r, s, t, u, v, w\}$, $I = \{r, v\}$, $E = \{b, c, d, e\}$, $G = \{(r, b), (b, s), (t, b), (s, c), (c, r), (d, t), (d, u), (u, e), (e, v), (v, d), (w, b), (d, w)\}$.

Draw the CEN N. How many markings are possible on N theoretically?

- a) Draw the CEN N.
- b) Given marking $\{u\}$, what is the marking obtained when event d fires?
- c) Given marking $\{s, t, u\}$, what is the marking obtained when event d fires?
- d) Given marking $\{r, u\}$, what is the marking obtained when event *e* fires?

Exercise 23

Let L be the LTS corresponding to the CEN N from the previous exercise. Draw L.

Exercise 24

Given a CEN N = (C, I, E, G) with $C = \{r, s, t, u\}, I = \{r, s\}, E = \{b, c, d, e\}, G = \{(r, b), (r, c), (s, c), (t, e), (u, d), (e, u), (c, t), (c, u), (b, s), (d, r)\}$

- a) Draw the CEN N. How many markings are possible on N theoretically?
- b) Starting from the initial marking I, can a deadlock be reached on N? Justify your answer!