Formal Models SS 2015: Assignment 6

Institute for Formal Models and Verification, JKU Linz

Due 07.05.2015

Exercise 21

Let $P=b . c . P$ and $Q=a . b . Q$. Show that action

$$
((b \cdot Q+b \cdot a \cdot Q) \|(b . P+b \cdot c \cdot P))+(a \cdot Q \| b \cdot P) \xrightarrow{b} a \cdot Q \| P
$$

can be executed by subsequently applying the semantical rules of PA.

Exercise 22

Given a CEN $N=(C, I, E, G)$ with $C=\{r, s, t, u, v, w\}, I=\{r, v\}, E=\{b, c, d, e\}$, $G=\{(r, b),(b, s),(t, b),(s, c),(c, r),(d, t),(d, u),(u, e),(e, v),(v, d),(w, b),(d, w)\}$.

Draw the CEN N. How many markings are possible on N theoretically?
a) Draw the CEN N.
b) Given marking $\{u\}$, what is the marking obtained when event d fires?
c) Given marking $\{s, t, u\}$, what is the marking obtained when event d fires?
d) Given marking $\{r, u\}$, what is the marking obtained when event e fires?

Exercise 23

Let L be the LTS corresponding to the CEN N from the previous exercise. Draw L.

Exercise 24

Given a CEN $N=(C, I, E, G)$ with $C=\{r, s, t, u\}, I=\{r, s\}, E=\{b, c, d, e\}$, $G=\{(r, b),(r, c),(s, c),(t, e),(u, d),(e, u),(c, t),(c, u),(b, s),(d, r)\}$
a) Draw the CEN N. How many markings are possible on N theoretically?
b) Starting from the initial marking I, can a deadlock be reached on N ? Justify your answer!

