Formal Models SS 2015: Assignment 7

Institute for Formal Models and Verification, JKU Linz

Due 21.05.2015

Exercise 25

Let $N=(C, I, E, G)$ be the following CEN:
$C=\{r, s, u, v, w, x\}, I=\{r, u, w\}, E=\{b, c, d, e\}$,
$G=\{(r, b),(b, s),(s, c),(c, r),(c, u),(u, b),(b, v),(v, d),(d, x),(x, e),(e, w),(w, d)\}$

- Draw N. How many markings for N are possible theoretically?
- Let M be a marking of N with $M=\{r, s, u\}$. Which are the events that can fire in M ? What are the possible new markings obtained from this?
- Let M be a marking of N with $M=\{r, u, v, w\}$. Which are the events that can fire in M ? What are the possible new markings obtained from this?
- Let M be a marking of N with $M=\{s, u, x\}$. Which are the events that can fire in M ? What are the possible new markings obtained from this?
- Draw the LTS corresponding to N.

Exercise 26 Let N be the PTN shown below.

- Specify N formally as a 5-tuple $N=(P, I, T, G, C)$. How many markings for N are possible theoretically?
- Now let M be a marking of N with $M(r)=0, M(s)=1, M(t)=2$. Which are the transitions that can fire in M ? What are the possible new markings obtained from this?
- Is there a marking for N so that all transitions are enabled? Justify your answer!

Exercise 27

Given PTN N as shown above. Justify your answers to the following questions.
a) How many different markings are possible in N theoretically?
b) Given markings $M_{1}=\{(r, 1),(s, 3),(t, 1)\}, M_{2}=\{(r, 1),(s, 2),(t, 1)\}, M_{3}=\{(r, 2),(s, 2),(t, 1)\}$ and $M_{4}=\{(r, 2),(s, 1),(t, 1)\}$. Determine the set of all transitions which are enabled in M_{1}, M_{2}, M_{3} and M_{4}, respectively.
c) Given marking $M=\{(r, 2),(s, 1),(t, 2)\}$. For all transitions t enabled in M, determine marking M^{\prime} obtained from firing t in M.

Exercise 28

Let $N=(P, I, T, G, C)$ be a PTN specified by the following sets:
$P=\{r, s\}, I=\{(r, 1),(s, 2)\}, T=\{a, b, c\}$,
$G=\{(r, a),(r, b),(a, s),(b, s),(s, c),(c, r)\}$,
$C=\{(r, 3),(s, 2)\} \cup\{(r, a, 1),(r, b, 1),(a, s, 2),(b, s, 1),(s, c, 2),(c, r, 1)\}$

- Draw N. How many different markings are possible on N theoretically?
- Draw the LTS corresponding to N.

