Formal Models SS 2015: Assignment 8

Institute for Formal Models and Verification, JKU Linz

Due 28.05.2015

Exercise 29

- a) Reformulate $\forall x. (\phi \leftrightarrow \psi)$ using only \exists and operators \neg and \land . Specify all intermediate steps.
- b) Explain in your own words the effects of reordering quantifiers. More precisely, explain the semantical difference between $\forall x \exists y. \phi$ and $\exists y \forall x. \phi$ in general.
- c) Define the semantics of the boolean operators \neg , \land , \lor , \rightarrow , and \leftrightarrow in Simplified HML analogously to the definitions of the modal operators and boolean constants (see slide 53).
- d) Referring to the semantical rules of Simplified HML on slide 53, explain in detail why formula [a] 1 is always true in a state *s* and why formula $\langle a \rangle$ 0 is always false.

Exercise 30

Given LTS L and Simplified HML formulae 1 to 5 as shown below.

- a) For each state s of L, determine which of formulae 1 to 5 hold in s.
- b) Given formula f := [y] [y] 0. Explain in detail how f is evaluated recursively in states 1 and 5 of LTS *L*. That is, check if $1 \models f$ and if $5 \models f$, and show recursive applications of \models .

Exercise 31

Given an LTS *L* as above with $\Sigma = \{x, y, z\}$. Calculate $[[\langle y \rangle 1 \rightarrow ([x]1 \land [y]0)]]$, i.e., the set of all states in which the formula holds.

Exercise 32

Given the LTS L shown in the figure below.

Decide for which states of L the following HML expressions hold. Each correct row is awarded one point. Put a cross into each cell of the table to indicate that the corresponding formula holds in the corresponding state. Otherwise leave the cell empty.

HML	State 0	State 1	State 2	State 3
$\langle x angle \langle z angle 1$				
$[x](\langle x \rangle 1 \land [y] 0)$				
$([x]\langle y\rangle 1)\leftrightarrow ([y]\langle x\rangle 1)$				
$([x \lor y] \langle \neg y \rangle 1) \to ([y] \langle x \rangle 1)$				

Which of the formulas hold in L? Note: A formula holds in L iff it holds in all initial states.