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Overview

� Formal Equivalence Checking (FEC) of 
RTL and SCH memory designs today

� The challenges
� Identification of memories and decoders 
� Decoder abstraction
� Encodings in FOL
� Experimental results
� Future work
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Formal Equivalence Checking
(FEC)
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The Purpose of Equivalence 
Checking

� The same functional behavior can be 
implemented in many different ways

� The implementation must be optimized wrt:
± Timing ± to achieve better performance
± Power ± to reduce power consumption and ensure 

longer battery life
± Area ± to produce smaller computer chips

� We need to prove that hardware design 
optimization does not change the functional 
behavior
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RTL Model

� Register-Transfer Level description written 
in a hardware description language 
(Verilog, System Verilog, etc.) looks like:

always_latch begin                                                                                                
for(int portnum = 0; portnum <= (WR_PORTS-1); portnum++)                            

if(!ckwrcbout[portnum])                                                                                
for(int i = WR_LATENCY-1; i > 0; i = i-2)                                                      

LAT_Wr[portnum][i] <= LAT_Wr[portnum][i-1];                                       
end
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FEC of RTL and SCH memory 
designs today
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The challenges (1/2)

� It takes 1-2 days of user effort to get the mapping of 
memory cells right
± (DFK�SDLU�RI�³PDSSHG´�PHPRU\�FHOOV�LQ�WKH�WZR�PHPRU\�GHVLJQV�

must have the same values (in post-reboot states)
� FEC of two memories (with given mapping) may take 

hours and often runs into complexity
± Each mapped pair of memory cells must be proved equivalent; 

the read data in the two models must also be proved equivalent
± Dedicated model-checking strategies are needed, tuning the 

strategies is a non-trivial task
� The new method has a major impact on 

± memory FEC productivity -- aiming at less mapping and 
debugging effort, and 

± overall FEC effort  -- arrays constitute ~50% of the chip area and 
20% of RTL (number of Functional Unit Blocks -- FUBs)
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The challenges (2/2)

� We need to develop a more efficient 
memory FEC method with
± powerful abstraction
± modular verification
± negligible mapping effort
± minimized need for assumptions
± modular debugging
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Extraction of memories and 
decoders from SCH model







16

d
eco

d
er

6

7

4

5

0

1

2

3
address

R/W

d
ata

address
10

32

54

76X
 d

ec

R/W

d
ata

Y
 d

ec MUX

Columns (Y)

Rows (X)

Different layout in spec and imp 
memories

Schematic
optimization

The extraction tool remodels 
the SCH memory and 
unifies the decoders



17

Memory
write port read port

read portwrite port
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data
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Memory with two read and write 
ports

The relevant modeling is done in verification 
front-end and during building of the invariant formula
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Decoder Abstraction
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Decoding correctness

� The axiom is valid also in the situation where there are 
redundant (i.e., inaccessible) rows in the memory array

Defected row

Redundant row

Defected columns Redundant columns
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Checking decoding correctness 
and consistency axioms

� The decoding correctness axiom in RTL model 
is correct by construction, based on how the 
RTL compiler defines the address decoders for 
memories

� The decoding correctness axioms in SCH model 
and the read-write consistency axiom in SCH 
model are checked based on the analysis that 
the circuit extraction tool performs in order to 
identify encoded memories

� In the encoding to FOL, the decoders are 
abstracted away and are treated implicitly
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Encodings to FOL Solvers

By example





25

Encoding to FOL solvers ±
Relational Approach

� Bit-vectors are unary relations:
± bv(B) - the B-th bit of bv

� Memories are binary relations: 
± mem(A,B) - the value of B-th bit at address A

� Bit-selection/concatenation: use sub-range:
± B �� [35:0] - constrain index to be in range
± B d n - constrain index to be below/above n
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Relational Approach = 
Effectively Propositional Fragment = EPR

EPR: �y�xM(y,x) - decidable

Skolemize: �xM(c,x) - finite Herbrand universe

Clauses:

Propositional:

Recently several important problems (model checking, planning) were 
encoded into EPR, and FOL solvers are optimized for this class 
± There is a FOL TP competition category of EPR formulas
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Encoding next state functions
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Encoding next state functions
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Encoding output functions

� sread, sread¶�

� iread¶�RI�iread is defined similarly

( '( ) ( , ( , ), ( )))B sread B ite clock ren smem addr B sread B� � �

' ( , ( ), ))sread ite clock ren smem addr sread �



Bit-vectors:
Algebraic
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The Equivalence Conjecture
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Modular verification and 
debugging
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The mismatch types;
modularity of debugging

� Mismatch caused by an incorrect decoder in imp 
± this should be detected as part of decoder 
recognition in the extraction tool (pre FEC 
activity)

� Mismatch caused by inconsistent read and write 
decoding in imp ± this should be detected as 
part of decoder recognition in the extraction tool 
(pre-FEC)

� Mismatch caused by differences in the read or 
write delays ± this must be detected when 
checking the verification invariant in FOL TP

� There is no need for mapping the memory cells
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Experiments

� Toy and real-life memory equivalence instances can be 
solved in seconds in Vampire FOL solver

� For this class of problems, the relational axiomatization
is much more efficient than the algebraic one

� We have also run the Darwin solver on some real-life 
memory equivalence problems

� Currently some manual optimizations are involved in 
generating TPTP instances from equivalence checking 
problems

� 7KH�IORZ�ZLOO�EH�SURGXFWL]HG�DQG�GHSOR\HG�LQ�,QWHO¶V�
sequential equivalence  checking tool, Seqver.
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Vampire Results:
Algebraic vs Relational Encodings

Test Translation Run time Memory Generating Simplifying Result

number type (seconds) (Mbytes) inferences inferences status

1 algebraic 5.7 52.2 189,388 194,474 unsatisfiable

relational 0.1 19.4 7.896 10,507 unsatisfiable

2 algebraic 1025.5 286.9 55,663,356 49,702,181 unknown

relational 0.1 18.5 5,824 7,093 satisfiable

3 algebraic 4.4 35.4 167,702 173,345 unsatisfiable

relational 0.1 19.4 11,767 15,107 unsatisfiable

4 algebraic 938 286.9 20,861,220 22,070,968 unknown

relational 0 18.5 3,052 4,114 satisfiable
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Future Work
� The counter-examples returned by Darwin that we have 

inspected were meaningful and useful for debugging
�

� However, because our abstraction of bit-vectors is 
forgetful of their widths, meaningless counter-examples 
and false positives are also possible

� It is a challenging problem to refine the abstraction so 
that false negatives will be impossible

� We are also exploring usage SMT solvers for FEC of 
memories based on decoder abstraction, and we are 
comparing the performance of SMT and FOL solvers 
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Thank You!


