
1

Verifying Equivalence of Memories
using a FOL Theorem Prover

Zurab Khasidashvili (Intel)
Mahmoud Kinanah (Intel)

Andrei Voronkov (The University of Manchester)

Presented by:
Nikolaj Bjørner (Microsoft Research)

3

Overview

� Formal Equivalence Checking (FEC) of
RTL and SCH memory designs today

� The challenges
� Identification of memories and decoders
� Decoder abstraction
� Encodings in FOL
� Experimental results
� Future work

4

Formal Equivalence Checking
(FEC)

5

The Purpose of Equivalence
Checking

� The same functional behavior can be
implemented in many different ways

� The implementation must be optimized wrt:
± Timing ± to achieve better performance
± Power ± to reduce power consumption and ensure

longer battery life
± Area ± to produce smaller computer chips

� We need to prove that hardware design
optimization does not change the functional
behavior

6

RTL Model

� Register-Transfer Level description written
in a hardware description language
(Verilog, System Verilog, etc.) looks like:

always_latch begin
for(int portnum = 0; portnum <= (WR_PORTS-1); portnum++)

if(!ckwrcbout[portnum])
for(int i = WR_LATENCY-1; i > 0; i = i-2)

LAT_Wr[portnum][i] <= LAT_Wr[portnum][i-1];
end

9

FEC of RTL and SCH memory
designs today

11

The challenges (1/2)

� It takes 1-2 days of user effort to get the mapping of
memory cells right
± (DFK�SDLU�RI�³PDSSHG´�PHPRU\�FHOOV�LQ�WKH�WZR�PHPRU\�GHVLJQV�

must have the same values (in post-reboot states)
� FEC of two memories (with given mapping) may take

hours and often runs into complexity
± Each mapped pair of memory cells must be proved equivalent;

the read data in the two models must also be proved equivalent
± Dedicated model-checking strategies are needed, tuning the

strategies is a non-trivial task
� The new method has a major impact on

± memory FEC productivity -- aiming at less mapping and
debugging effort, and

± overall FEC effort -- arrays constitute ~50% of the chip area and
20% of RTL (number of Functional Unit Blocks -- FUBs)

12

The challenges (2/2)

� We need to develop a more efficient
memory FEC method with
± powerful abstraction
± modular verification
± negligible mapping effort
± minimized need for assumptions
± modular debugging

13

Extraction of memories and
decoders from SCH model

16

d
eco

d
er

6

7

4

5

0

1

2

3
address

R/W

d
ata

address
10

32

54

76X
 d

ec

R/W

d
ata

Y
 d

ec MUX

Columns (Y)

Rows (X)

Different layout in spec and imp
memories

Schematic
optimization

The extraction tool remodels
the SCH memory and
unifies the decoders

17

Memory
write port read port

read portwrite port

address

data

write
read

Memory with two read and write
ports

The relevant modeling is done in verification
front-end and during building of the invariant formula

18

Decoder Abstraction

21

Decoding correctness

� The axiom is valid also in the situation where there are
redundant (i.e., inaccessible) rows in the memory array

Defected row

Redundant row

Defected columns Redundant columns

22

Checking decoding correctness
and consistency axioms

� The decoding correctness axiom in RTL model
is correct by construction, based on how the
RTL compiler defines the address decoders for
memories

� The decoding correctness axioms in SCH model
and the read-write consistency axiom in SCH
model are checked based on the analysis that
the circuit extraction tool performs in order to
identify encoded memories

� In the encoding to FOL, the decoders are
abstracted away and are treated implicitly

23

Encodings to FOL Solvers

By example

25

Encoding to FOL solvers ±
Relational Approach

� Bit-vectors are unary relations:
± bv(B) - the B-th bit of bv

� Memories are binary relations:
± mem(A,B) - the value of B-th bit at address A

� Bit-selection/concatenation: use sub-range:
± B �� [35:0] - constrain index to be in range
± B d n - constrain index to be below/above n

26

Relational Approach =
Effectively Propositional Fragment = EPR

EPR: �y�xM(y,x) - decidable

Skolemize: �xM(c,x) - finite Herbrand universe

Clauses:

Propositional:

Recently several important problems (model checking, planning) were
encoded into EPR, and FOL solvers are optimized for this class
± There is a FOL TP competition category of EPR formulas

1 2 3 1 2 1 3 2 2 1 2

1 2 2 1 1 2 1 2 2

, , ((, ,) (, ,))

, ((, ,))

x x x R x x c Q x x c x c

x x R x x x x c x c

� �� �

� � �

1 1 1 1 1 2 1 2

1 2 1 1 2 2 1 2

((, ,) (, ,))

((, ,) (, ,))

....

R c c c Q c c c c c

R c c c Q c c c c c

�� � �

�� �

Encoding next state functions

27

()

('(,) ())

()

('(,) (,))

wren clock A addr
A

B smem A B swrite B

wren clock A addr
A

B smem A B smem A B

� � § ·
� ¨ ¸�� �© ¹

� � � § ·
� ¨ ¸�� �© ¹

()

'())

()

'() ())

wren clock A addr
A

smem A swrite

wren clock A addr
A

smem A smem A

� � § ·
� ¨ ¸� © ¹

� � � § ·
� ¨ ¸� © ¹

Next State Functions for RTL/spec memory array

Encoding next state functions

28

1

2

1

1

2

()

([35: 0] '(,) ())

()

([35: 0] '(,) (,))

()

([71:36] '(,) ()

h

h

h

h

h

wren wren clock

wren wren clock

wren A addr
A

B B imem A B iwrite B

wren A addr
A

B B imem A B imem A B

wren A addr
A

B B imem A B iwrite B

� �

� �

� § ·
� ¨ ¸�� � � �© ¹

� � § ·
� ¨ ¸�� � � �© ¹

�
�

�� � � �

2

)

()

([71:36] '(,) (,))
hwren A addr

A
B B imem A B imem A B

§ ·
¨ ¸
© ¹

� � § ·
� ¨ ¸�� � � �© ¹

Next State Functions for RTL/implementation memory array

1

2

1

1

2

()

'()[35: 0] [35: 0]

()

'()[35: 0] ()[35: 0])

()

'()[71:36] [71:36]

(

h

h

h

h

h

wren wren clock

wren wren clock

wren A addr
A

imem A iwrite

wren A addr
A

imem A imem A

wren A addr
A

imem A iwrite

wren
A

� �

� �

� § ·
� ¨ ¸� © ¹

� � § ·
� ¨ ¸� © ¹

� § ·
� ¨ ¸� © ¹

�
� 2)

'()[71:36] ()[71:36])
h A addr

imem A imem A

� § ·
¨ ¸� © ¹

Algebraic Relational

29

Encoding output functions

� sread, sread¶�

� iread¶�RI�iread is defined similarly

('() (, (,), ()))B sread B ite clock ren smem addr B sread B� � �

' (, (),))sread ite clock ren smem addr sread �

Bit-vectors:
Algebraic

30

((71,36,), (35,0,))

(71,36, ()) ((71,36,))

(35,0, ()) ((35,0,))

concat extract X extract X X

extract neg X neg extract X

extract neg X neg extract X

[35:0] 0 .. 35

:

[35:0] 35

B B B

or

B B

� � � �

� � d

Bit-vector not using
function neg

Bit-vector not built-in

Extraction: a function

Extraction: implicit

vs. Relational

The Equivalence Conjecture

31

(, , ,)

: () ()

corr Ms Mi os oi

A Ms A Mi A os oi

�

� �

(, , ,)

(,) (,)
, :

(() ())

corr Ms Mi os oi

Ms A B Mi A B
A B

os B oi B

�

�§ ·
� ¨ ¸� �© ¹

(, , ,)

(', ', ', ')

corr Ms Mi os oi

corr Ms Mi os oi�

Algebraic Relational

Where

32

Modular verification and
debugging

33

The mismatch types;
modularity of debugging

� Mismatch caused by an incorrect decoder in imp
± this should be detected as part of decoder
recognition in the extraction tool (pre FEC
activity)

� Mismatch caused by inconsistent read and write
decoding in imp ± this should be detected as
part of decoder recognition in the extraction tool
(pre-FEC)

� Mismatch caused by differences in the read or
write delays ± this must be detected when
checking the verification invariant in FOL TP

� There is no need for mapping the memory cells

34

Experiments

� Toy and real-life memory equivalence instances can be
solved in seconds in Vampire FOL solver

� For this class of problems, the relational axiomatization
is much more efficient than the algebraic one

� We have also run the Darwin solver on some real-life
memory equivalence problems

� Currently some manual optimizations are involved in
generating TPTP instances from equivalence checking
problems

� 7KH�IORZ�ZLOO�EH�SURGXFWL]HG�DQG�GHSOR\HG�LQ�,QWHO¶V�
sequential equivalence checking tool, Seqver.

35

Vampire Results:
Algebraic vs Relational Encodings

Test Translation Run time Memory Generating Simplifying Result

number type (seconds) (Mbytes) inferences inferences status

1 algebraic 5.7 52.2 189,388 194,474 unsatisfiable

relational 0.1 19.4 7.896 10,507 unsatisfiable

2 algebraic 1025.5 286.9 55,663,356 49,702,181 unknown

relational 0.1 18.5 5,824 7,093 satisfiable

3 algebraic 4.4 35.4 167,702 173,345 unsatisfiable

relational 0.1 19.4 11,767 15,107 unsatisfiable

4 algebraic 938 286.9 20,861,220 22,070,968 unknown

relational 0 18.5 3,052 4,114 satisfiable

36

Future Work
� The counter-examples returned by Darwin that we have

inspected were meaningful and useful for debugging
�

� However, because our abstraction of bit-vectors is
forgetful of their widths, meaningless counter-examples
and false positives are also possible

� It is a challenging problem to refine the abstraction so
that false negatives will be impossible

� We are also exploring usage SMT solvers for FEC of
memories based on decoder abstraction, and we are
comparing the performance of SMT and FOL solvers

37

Thank You!

