
 1

Industrial Strength Refinement Checking

Jesse Bingham, John Erickson,
Gaurav Singh, and Flemming Andersen
Intel IAG
FMCAD 2009

 2

Introduction

 Standard approach to FV of HW protocols
 Develop high level model (HLM) in guarded-command-

like language (eg Murphi, TLA, Spin etc)
 Write invariants, e.g. cache coherence
 Model check as big as you can

 So the HLM is golden, but what about the
implementation (RTL)?
 Ideal: prove that RTL implements HLM… hard!
 Our solution: test that RTL implements HLM during

dynamic simulation
 check == test in this talk/paper

 3

Key point #1

The ingredients needed for
equivalence testing are also

needed to prove implementation.

⇒ might as well start with testing

 4

What should Implements Mean?

What does it mean for RTL to implement HLM? They
have different
 execution semantics
 state variables/representations
 rule atomicity (HLM has more)
 rule concurrency (RTL has more)

Not always clear [Vardi FMCAD09]
For our domain, we found a notion we call behavioral

refinement appropriate…
 Similar to notion of Bluespec and also super-scalar

processor verification literature

 5

RTL Behavior
(i.e. simulation)

…

one RTL clock cyclereset state

Behavioral Refinement

 6

Murphi Behavior

RTL Behavior …

one RTL clock cycle

…

reset state

initial state a rule fires

RTL Behavior
(i.e. simulation)

Murphi Behavior
(witness)

Behavioral Refinement

 7

Murphi Behavior

RTL Behavior …

one RTL clock cycle

…

reset state

initial state

Refinement
map

a rule fires

RTL Behavior
(i.e. simulation)

Murphi Behavior
(witness)

Behavioral Refinement

 8

Murphi Behavior
(witness)

RTL Behavior …

one RTL clock cycle

…

reset state

initial state

Refinement
map

Each RTL clock cycle corresponds to
zero or more rules firing

a rule fires

RTL Behavior
(i.e. simulation)

Behavioral Refinement

 9

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

RTL simulation r…

 10

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

Murphi

RTL simulation r

RM(r)…

…

 11

How Refinement Checker Works

Idea: at each RTL cycle, select what sequence of
rules are about to fire

Murphi

RTL simulation

…

r

RM(r) Next…

…

Rule selection

 12

Murphi

RTL simulation

How Refinement Checker Works

…

r

RM(r)

r′

RM(r′) =?

Next…

…

Rule selection

Idea: at each RTL cycle, select what sequence of
rules are about to fire

 13

Cache
Controller

Main Memory

CPU

Example: Toy Cache Controller

 14

… … …
State

CacheArray

Cpu2Cache

Cache2Mem

Invalid

Dirty

Clean

0xC54

0x6D7 0x01

0x823E

Addr Data

Toy Cache in Murphi

 15

Ruleset i : CacheIndex “Evict"
 CacheArray[i].State != Invalid
==>
 if (CacheArray[i].State == Dirty) begin
 Cache2Mem.opcode := WriteBack;
 Cache2Mem.Addr = CacheArray[i].Addr;
 Cache2Mem.Data = CacheArray[i].Data;
 end;
 CacheArray[i].State := Invalid;
end

Eviction

 16

Ruleset i : CacheIndex “Recv_Store"
 Cpu2Cache.opcode = Store &
 ((CacheArray[i].State != Invalid &
 CacheArray[i].Addr = Cpu2Cache.Addr) |
 (addr_misses_in_cache(Cpu2Cache.Addr) &
 CacheArray[i].State = Invalid)))
==>
 CacheArray[i].Data := Cpu2Cache.Data;
 CacheArray[i].State := Dirty;
 Absorb(Cpu2Cache);
end

Receiving a Store Request

 17

Cache Controller RTL

Cache State
& Addr Array

Eviction
Logic

Hit?
Pipe stage 1

Pipe stage 2

Cache Data
Array

Cpu2Cache

Cpu2Mem

 18

Cache State
& Addr Array

Eviction
Logic

Hit?
Pipe stage 1

Pipe stage 2

Store(A0,D0)

Cache Data
Array

Dirty,A1
Store(A0,D0)

Store(A0,D0)WriteBack(A1,D1)

D1Dirty,A0 D0

WriteBack(A1,D1)

Store

Evict
Example RTL Behavior

 19

Pipelining causes rules that are
atomic in Murphi to be non-atomic in

the RTL…

This non-atomicity is resolved by the
refinement map & history variables

Key point #2

 20

Murphi semantics fire one rule at a time,
while RTL has true rule concurrency.

This is resolved by rule selection,
which picks a sequence of Murphi rules

to fire @ each RTL clock cycle

Key point #3

 21

Example with Refinement Checker

Cache State
& Addr ArrayPipe stage 1

Pipe stage 2

Store(A0,D0)

Cache
Data Array

Dirty,A1
Store(A0,D0)

Store(A0,D0)WriteBack(A1,D1)

D1Dirty,A0 D0

WriteBack(A1,D1)

HLM

RTL

Evict RecvStore

 22

BTW: Everything’s System Verilog

RTL design under verification
Test stimulus
Refinement Map
Rule Selection
High Level Model

 in consultation with Architects
compiled into SV by a tool mu2sv

HW designers

HW validators

Us (FV team)

Paper gives disciplined
approach to writing SV
code for these buggers

⇒ any off-the-shelf SV simulator works

 23

mu2sv

 Translates a Murphi model into SV
 Typedefs, procedures, functions, procedures,

invariants
 State variables get wrapped in a record type called
MURPHI_STATE

 Murphi rule R becomes SV function

 function MURPHI_STATE R_sv(MURPHI_STATE ms,...);

 Errors if invoked when R’s guard is false in ms
 Rule coverage logging

 Valuable feedback for test-writers

 24

Inspiration

• S. Tasiran, Y. Yu, and B. Batson, Linking
simulation with formal verification at a higher
level. IEEE DToC, 2004.
• Used TLA+ & linked TLC model checker to simulation

engine
• Done as research after the project was complete
• Showed that subtle bug would have been caught

 25

Application: Hierarchical Cache Protocol

Core
cache

Core
cache

Core
cache

Level1
Protocol
Manager

QPI
Home
Agent

Core
cache

Core
cache

Core
cache

• 3 person months to
develop

• Caught 8 bugs during
just 1 month of
deployment!

• Was not deployed due
to chip cancellation ;-(

• Could allow up to 8
murphi rules to fire per
RTL clock

Level1
Protocol
Manager

	Industrial Strength Refinement Checking
	Introduction
	Key point #1
	What should Implements Mean?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	How Refinement Checker Works
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	BTW: Everything’s System Verilog
	mu2sv
	Inspiration
	Application: Hierarchical Cache Protocol

