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Floating-Point Arithmetic (FPA)

 Used for embedded and safety critical systems

 Finite representation of real numbers

Rounding 

Deviation causes unintuitive results

Deviation can change control flow

Behavior of floating-point programs hard to 

predict
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Contributions

 New effective approximation techniques 

 Over- and underapproximation for FPA

 Bit-precise

 Precise and sound decision procedure for FPA:

 Based on CBMC model checking engine

 SAT solver as the back-end
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Floating-Point Arithmetic (FPA)

 Numerical representation of a subset of the reals

 Floating-point format: IEEE-754 standard

 Triple            stands for the number

 Represented by a bit-vector

 Representable numbers 

 Floating-point operations 

 Differ from real arithmetic. E.g.:

©ª®

(a© b)© c 6= a© (b© c)

(¡1)s ¢ f ¢ 2e(s; e; f)

s er¡1 ¢ ¢ ¢ e0 f0 ¢ ¢ ¢ fp¡1

Ã! Ã¡¡¡¡¡¡¡¡¡¡! Ã¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡!
1 r p
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Floating-Point Arithmetic (FPA)

 Result of FP-operation not always representable

 Approximations:

 Rounding function:

 Rounding based on least significant bits of fraction

bxcp := maxff 2 Fp : f · xg ; and

dxep := minff 2 Fp : f ¸ xg :

rdp(x) 2 fbxcp; dxepg

bxcp dxep
x
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Floating-Point Arithmetic (FPA)

 Floating-point operations defined as:

 Verification of FPA programs:

 Naïve method: Bit-vector model of an FPU and bit-

blasting

 BMC (Unrolling, Bit-blasting, SAT-solving)

 Does not scale for FPA
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x}p y := rdp(x ± y)
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FPA Verification

 FPU-Implementation of Add/Sub

 Align: mantissa shifted, rendering exponents equal

 Add/Sub: resulting mantissas are added/subtracted

 Round: shortening mantissa to obtain a number in 
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FPA Verification

 FPU-Implementation of Add/Sub
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Precision Align Add/Sub Round Total

p = 5 295 168 572 1035

p = 23 687 420 1447 2554

p = 52 1404 826 2923 5153
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FPA Verification

 FPU-Implementation of Mul/Div

 Add/Sub: exponents added/subtracted (Mul/Div)

 Mul/Div: mantissas multiplied/divided (Mul/Div)
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FPA Verification

 FPU-Implementation of Mul/Div
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Precision Mul/Div Add/Sub Round Total

p = 5 280 94 674 1048

p = 23 3898 94 2258 6550

p = 52 19268 94 5742 25104
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FPA Verification

 Need for approximate FP-operations

Can we approximate FP-operations by reducing 

the precision   ?
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Approximation techniques

 Reducing the precision

Least significant bits are lost

 Overapproximation by open rounding:

 New FP-operations

 Replace     by         for some precision 
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rdp;p0(X) := [ bXcp0; dXep0 ] \ Fp

X}p;p0 Y := rdp;p0(X ± Y )

}p;p0}p p0 < p

p0 < p
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 Overapproximation: visualization

precision pp0 < p

Approximation techniques
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rdp;p0(fxg) = [ bxcp0; dxep0 ] \ Fp

x

bxcp0 dxep0

rdp;p0(fxg) = f ; ; ; ; g
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Approximation techniques

 Reducing the precision

Least significant bits are lost

 Underapproximation by inhibiting rounding:

 New FP-operations

 Replace     by         for some precision 
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}
p;p0}p p0 < p

rdp;p0(X) := X \Fp0

X}
p;p0 Y := rdp;p0(X ± Y )

p0 < p
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 Underapproximation: visualization

precision p0 < pp

Approximation techniques
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rdp;p0(fxg) = fxg \Fp0

rdp;p0(fxg) = fxg if x 2 Fp0 , ; otherwise

x
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Alternating abstractions for FPA

 Over-approximation

 Permits more execution traces than original program

 SAT: no conclusion, UNSAT: assertions OK

 Under-approximation

 Permits less execution traces than original program

 SAT: assertion violated, UNSAT: no conclusion

 Refinement: increase 

 Alternation yields complete procedure
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Alternating abstractions for FPA
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Generate Underapproximation

Select small precision
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Alternating abstractions for FPA

Refinement for FPA:

 Spuriously SAT:

result of         . If              then increase precision

 Spuriously UNSAT:

 Recall:

 If the constraint               occurs in     ,

then increase precision
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}p;p0r r 6= }p

X \ Fp0 P

rdp;p0(X) := X \Fp0
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Summary

 Model Checking with FPA

 Effective over- and underapproximation hard to find

 Slow (model checking)

 Fully automatic

 Provides counterexample

 Implemented in CBMC
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State of the Art

 Proof assistants

 Very powerful

 Require interaction

 No counterexample

 Interval arithmetic

 Fully automated

 Too coarse

 No counterexample
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[1;2] + [4;6] = [5;8]
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Issues

 E.g. the formula                                     is SAT

 Every overapproximation based on       is SAT

 Every underapproximation based on      is UNSAT

 Some formulae do not have effective over- or 

underapproximations
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(a© b)© c 6= a© (b© c)

}
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Conclusion

 New algorithm for iteratively approximating 

complex FPA –formulae

 New under- and over-approximations for FP-

operations

 Ability to generate counterexamples

 Debugging

 Automated test-vector generation

 Promising experiments, future work

Thank you!
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