ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Abstraction techniques for Floating-Point Arithmetic

Angelo Brillout¹, Daniel Kroening² and Thomas Wahl²

¹ETH Zurich, ²Oxford University

- Used for embedded and safety critical systems
- Finite representation of real numbers
 - Rounding

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Deviation causes unintuitive results
- Deviation can change control flow

→Behavior of floating-point programs hard to predict

Contributions

- \rightarrow New effective approximation techniques
 - Over- and underapproximation for FPA
 - Bit-precise
- \rightarrow Precise and sound decision procedure for FPA:
 - Based on CBMC model checking engine
 - SAT solver as the back-end

- Numerical representation of a subset of the reals
- Floating-point format: IEEE-754 standard
 - Triple (s, e, f) stands for the number $(-1)^s \cdot f \cdot 2^e$
 - Represented by a bit-vector

- Representable numbers \mathbb{F}_p
- Floating-point operations ⊕⊖ ⊘
 - Differ from real arithmetic. E.g.:

$$(a\oplus b)\oplus c
eq a\oplus (b\oplus c)$$

171:

Result of FP-operation not always representable

Informatik Computer Science

 \rightarrow Approximations:

 \rightarrow Rounding function:

 $rd_p(x) \in \{\lfloor x \rfloor_p, \lceil x \rceil_p\}$

Rounding based on least significant bits of fraction

a di

Floating-point operations defined as:

$$x \odot_p y := rd_p(x \circ y)$$

- Verification of FPA programs:
 - Naïve method: Bit-vector model of an FPU and bitblasting
 - BMC (Unrolling, Bit-blasting, SAT-solving)
- \rightarrow Does not scale for FPA

...

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FPU-Implementation of Add/Sub

- Align: mantissa shifted, rendering exponents equal
- Add/Sub: resulting mantissas are added/subtracted
- Round: shortening mantissa to obtain a number in \mathbb{F}_p

FPA Verification

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FPU-Implementation of Add/Sub

Precision	ALIGN	ADD/SUB	Round	Total
p = 5	295	168	572	1035
p = 23	687	420	1447	2554
p = 52	1404	826	2923	5153

Informatik Computer Science

FPA Verification

FPU-Implementation of Mul/Div

- Add/Sub: exponents added/subtracted (Mul/Div)
- Mul/Div: mantissas multiplied/divided (Mul/Div)

ETH

FPA Verification

FPU-Implementation of Mul/Div

Precision	Mul/Div	ADD/SUB	Round	Total
p=5	280	94	674	1048
p = 23	3898	94	2258	6550
p = 52	19268	94	5742	25104

FPA Verification

\rightarrow Need for approximate FP-operations

Can we approximate FP-operations by reducing the precision p ?

Approximation techniques

• Reducing the precision p' < p

Least significant bits are lost

Overapproximation by open rounding:

$$\overline{rd}_{p,p'}(X) := [[X]_{p'}, [X]_{p'}] \cap \mathbb{F}_p$$

New FP-operations

$$X \,\overline{\odot}_{p,p'} \, Y := \overline{rd}_{p,p'} (X \circ Y)$$

• Replace \odot_p by $\overline{\odot}_{p,p'}$ for some precision p' < p

lanti

Overapproximation: visualization

 $\overline{rd}_{p,p'}(\{x\}) = \left[\lfloor x \rfloor_{p'}, \lceil x \rceil_{p'} \right] \cap \mathbb{F}_p$

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Approximation techniques

• Reducing the precision p' < p

Least significant bits are lost

Underapproximation by inhibiting rounding:

$$\underline{rd}_{p,p'}(X) := X \cap \mathbb{F}_{p'}$$

New FP-operations

$$X \underline{\odot}_{p,p'} Y := \underline{rd}_{p,p'} (X \circ Y)$$

• Replace \odot_p by $\underline{\odot}_{p,p'}$ for some precision p' < p

Enti

Underapproximation: visualization

$$\underline{rd}_{p,p'}(\{x\}) = \{x\} \cap \mathbb{F}_{p'}$$

precision p' < p

$$\underline{rd}_{p,p'}(\{x\}) = \{x\} \text{ if } x \in \mathbb{F}_{p'}, \ \emptyset \text{ otherwise}$$

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Alternating abstractions for FPA

- Over-approximation
 - Permits more execution traces than original program
 - SAT: no conclusion, UNSAT: assertions OK
- Under-approximation
 - Permits less execution traces than original program
 - SAT: assertion violated, UNSAT: no conclusion
- Refinement: increase p

\rightarrow Alternation yields complete procedure

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Alternating abstractions for FPA

- Refinement for FPA:
- Spuriously SAT:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

r result of $\overline{\odot}_{p,p'}$. If $r
eq \odot_p$ then increase precision

- Spuriously UNSAT:
 - Recall: $\underline{rd}_{p,p'}(X) \ := \ X \cap \mathbb{F}_{p'}$
 - If the constraint $X\cap \mathbb{F}_{p'}$ occurs in P , then increase precision

Summary

Model Checking with FPA

- Effective over- and underapproximation hard to find
- Slow (model checking)
- Fully automatic
- Provides counterexample

\rightarrow Implemented in CBMC

State of the Art

171

- Proof assistants
 - Very powerful
 - Require interaction
 - No counterexample

- Interval arithmetic [1,2] + [4,6] = [5,8]
 - Fully automated
 - Too coarse
 - No counterexample

Issues

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

- E.g. the formula $(a \oplus b) \oplus c \neq a \oplus (b \oplus c)$ is SAT
 - Every overapproximation based on or is SAT
 - Every underapproximation based on <a>left is UNSAT

→ Some formulae do not have effective over- or underapproximations

Int

Conclusion

Enti

- New algorithm for iteratively approximating complex FPA –formulae
 - New under- and over-approximations for FP-operations
- Ability to generate counterexamples
 - Debugging
 - Automated test-vector generation
- Promising experiments, future work

Thank you!