
Tuesday, 17 November 2009

Abstraction techniques for

Floating-Point Arithmetic

Angelo Brillout1, Daniel Kroening2 and Thomas Wahl2

1ETH Zurich, 2Oxford University

© Department of Computer Science | ETH Zürich

Tuesday, 17 November 2009 Department of Computer Science

Floating-Point Arithmetic (FPA)

 Used for embedded and safety critical systems

 Finite representation of real numbers

Rounding

Deviation causes unintuitive results

Deviation can change control flow

Behavior of floating-point programs hard to

predict

2

Tuesday, 17 November 2009 Department of Computer Science

Contributions

 New effective approximation techniques

 Over- and underapproximation for FPA

 Bit-precise

 Precise and sound decision procedure for FPA:

 Based on CBMC model checking engine

 SAT solver as the back-end

3

Tuesday, 17 November 2009 Department of Computer Science 4

Floating-Point Arithmetic (FPA)

 Numerical representation of a subset of the reals

 Floating-point format: IEEE-754 standard

 Triple stands for the number

 Represented by a bit-vector

 Representable numbers

 Floating-point operations

 Differ from real arithmetic. E.g.:

©ª®

(a© b)© c 6= a© (b© c)

(¡1)s ¢ f ¢ 2e(s; e; f)

s er¡1 ¢ ¢ ¢ e0 f0 ¢ ¢ ¢ fp¡1

Ã! Ã¡¡¡¡¡¡¡¡¡¡! Ã¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡!
1 r p

Fp

Tuesday, 17 November 2009 Department of Computer Science

Floating-Point Arithmetic (FPA)

 Result of FP-operation not always representable

 Approximations:

 Rounding function:

 Rounding based on least significant bits of fraction

bxcp := maxff 2 Fp : f · xg ; and

dxep := minff 2 Fp : f ¸ xg :

rdp(x) 2 fbxcp; dxepg

bxcp dxep
x

Tuesday, 17 November 2009 Department of Computer Science

Floating-Point Arithmetic (FPA)

 Floating-point operations defined as:

 Verification of FPA programs:

 Naïve method: Bit-vector model of an FPU and bit-

blasting

 BMC (Unrolling, Bit-blasting, SAT-solving)

 Does not scale for FPA

6

x}p y := rdp(x ± y)

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Add/Sub

 Align: mantissa shifted, rendering exponents equal

 Add/Sub: resulting mantissas are added/subtracted

 Round: shortening mantissa to obtain a number in

7

Fp

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Add/Sub

8

Precision Align Add/Sub Round Total

p = 5 295 168 572 1035

p = 23 687 420 1447 2554

p = 52 1404 826 2923 5153

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Mul/Div

 Add/Sub: exponents added/subtracted (Mul/Div)

 Mul/Div: mantissas multiplied/divided (Mul/Div)

9

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Mul/Div

10

Precision Mul/Div Add/Sub Round Total

p = 5 280 94 674 1048

p = 23 3898 94 2258 6550

p = 52 19268 94 5742 25104

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 Need for approximate FP-operations

Can we approximate FP-operations by reducing

the precision ?

11

p

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

 Reducing the precision

Least significant bits are lost

 Overapproximation by open rounding:

 New FP-operations

 Replace by for some precision

12

rdp;p0(X) := [bXcp0; dXep0] \ Fp

X}p;p0 Y := rdp;p0(X ± Y)

}p;p0}p p0 < p

p0 < p

Tuesday, 17 November 2009 Department of Computer Science

 Overapproximation: visualization

precision pp0 < p

Approximation techniques

13

rdp;p0(fxg) = [bxcp0; dxep0] \ Fp

x

bxcp0 dxep0

rdp;p0(fxg) = f ; ; ; ; g

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

 Reducing the precision

Least significant bits are lost

 Underapproximation by inhibiting rounding:

 New FP-operations

 Replace by for some precision

14

}
p;p0}p p0 < p

rdp;p0(X) := X \Fp0

X}
p;p0 Y := rdp;p0(X ± Y)

p0 < p

Tuesday, 17 November 2009 Department of Computer Science

 Underapproximation: visualization

precision p0 < pp

Approximation techniques

15

rdp;p0(fxg) = fxg \Fp0

rdp;p0(fxg) = fxg if x 2 Fp0 , ; otherwise

x

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

 Over-approximation

 Permits more execution traces than original program

 SAT: no conclusion, UNSAT: assertions OK

 Under-approximation

 Permits less execution traces than original program

 SAT: assertion violated, UNSAT: no conclusion

 Refinement: increase

 Alternation yields complete procedure

16

p

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

17

Generate Underapproximation

Select small precision

Á

SAT,

ass. ®

Á

yes yes

UNSAT,

proof P

Generate Overrapproximation

SAT

?

SAT

?

p

yes

(ass.)®

(increase using)Pp

(increase using)p ®

Á

Á

sat-

isfies

?

Á

®

valid for

?

P
Á

no

(proof)

no

no

P

®

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

Refinement for FPA:

 Spuriously SAT:

result of . If then increase precision

 Spuriously UNSAT:

 Recall:

 If the constraint occurs in ,

then increase precision

18

}p;p0r r 6= }p

X \ Fp0 P

rdp;p0(X) := X \Fp0

Tuesday, 17 November 2009 Department of Computer Science

Summary

 Model Checking with FPA

 Effective over- and underapproximation hard to find

 Slow (model checking)

 Fully automatic

 Provides counterexample

 Implemented in CBMC

19

Tuesday, 17 November 2009 Department of Computer Science

State of the Art

 Proof assistants

 Very powerful

 Require interaction

 No counterexample

 Interval arithmetic

 Fully automated

 Too coarse

 No counterexample

20

[1;2] + [4;6] = [5;8]

Tuesday, 17 November 2009 Department of Computer Science

Issues

 E.g. the formula is SAT

 Every overapproximation based on is SAT

 Every underapproximation based on is UNSAT

 Some formulae do not have effective over- or

underapproximations

21

(a© b)© c 6= a© (b© c)

}
}

Tuesday, 17 November 2009 Department of Computer Science

Conclusion

 New algorithm for iteratively approximating

complex FPA –formulae

 New under- and over-approximations for FP-

operations

 Ability to generate counterexamples

 Debugging

 Automated test-vector generation

 Promising experiments, future work

Thank you!

22

