I ﬂ’ﬁi ° ° II . "Research

Generalized and Efficient

Array Decision Procedures
FIMICAD, Austin, 2009

Leonardo de Moura and Nikolaj Bjgrner
Microsoft Research

Symbolic Reasoning

Verification/Analysis tools
need some form of
Symbolic Reasoning

Microsoft:
Research

Symbolic Reasoning

Verification/Analysis tools
need some form of

Symbolic Reasoning
Many Flavors:

SAT Solvers
SMT Solvers
First-order Theorem Provers
Computer Algebra Systems "Bocearch

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable
modulo theory T ?

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

Is formula F satisfiable

modulo theory T ?

Arithmetic,
Bit-vectors,

Arrays,

Inductive data-types,

OOOOOOOO

Satisfiability Modulo Theories (SMT)

Example:
1>2
Satisfiable if the symbols 1,2 and > are uninterpreted.
M| ={e}
M(1) =M(2) = o
M(>) = { (e, @) }

Unsatisfiable modulo the theory arithmetic

Microso ft-

Research

Satisfiability Modulo Theories (SMT)

b+ 2 =c and f(select(store(a,b,3), c-2) # f(c-b+1)

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+ 2=c¢ and f(select(store(a,b;3), c-2) # f(c-b+1)

Arithmetic

Microsoft:
Research

Satisfiability Modulo Theories (SMT)

b+2=c and f(EeIec]]Estor?'(a,b,B), C-2) # f(c-b+1)

Array Theory

OOOOOOOO

Satisfiability Modulo Theories (SMT)

b + 2 =c and|f(select(store(a,b,3), c-2) # f(c-b+1)

Uninterpreted
Functions

OOOOOOOO

Applications

Test case generation

Predicate Abstraction

Invariant Generation

-
-
C
€
€

Type Checking

Model Based Testing

Microso ft-

Research

Some Applications @ Microsoft

Spect ~ HAVOC | L

Programming System

[Terminator T-2 J

VCC (3.4
5 OJ
NModel Vigilante
SpecExplorer @ £
[SAGE J Prefix "Bac

Research

What is a Theory?

A theory T is a set of first-order sentences.

F is satisfiable modulo T
iff
TUF is satisfiable.

Microso ft-

Research

Array Theory

Ya, i, v. select(store(a, i, v),i) = v
Ya,i, j,v: i=jv select(store(a, i, v), j) = select(a, j)

Microso ft-

Research

Array Theory

Ya, i, v. select(store(a, i, v),i) = v
Ya,i, j,v: i=jvselect(store(a, i, v), j) = select(a, j)

We say store is a
combinator.

Microso ft-

Research

Array Theory: a more familiar notation

Ya, i, v. select(store(a, i, v),i) = v
Ya,i, j,v: i=jv select(store(a, i, v), j) = select(a, j)

v

Ya, i, v. store(a, i, v)[il =v
Ya,i, j,v: i=jvstore(a,i, v)[j] =ali]

Microso ft-

Research

Why array theory is useful?

It is used to model the memory
N
Hardware/Software verification/analysis tools

Microso ft-

Research

Extentional Array Theory

Ya, b: (Vi:alil]=bli]) =>a=b

Microsoft:
Research

Arrays are actually “maps”

We have arrays from T, to T,
T, does not need to be the Integers

Microso ft-

Research

Models for arrays as “finite graphs”

a = store(b, 0, 5), b = store(c, 1, 10), c[0] = 2

M(a)={0—>5,1—> 10, else >0}
M(b)={0—>2,1—> 10, else >0}
M(c)={0—> 2, else >0}

Microso ft-

Research

A “Timeline” (Related Work)

1962 - McCarthy proposes the Basic Array Theory.
1968 - Kaplan solves the satisfiability problem.

1981 - Nelson propose a simple procedure based on (lazy)
instantiation (PhD thesis).

2001 - Stump, Barrett, Dill and Levitt propose a procedure for
extentional arrays.

2005 - Lazy instantiation is used in Yices
(it wins all array divisions in SMT-COMP from 2005 - 2007).

2005 - Kapur and Zarba propose the reduction approach
(many array-like theories are described).

2006 - Bradley, Manna and Sipma propose a procedure for a rich
decidable array fragment.

Microsoft

Research

A “Timeline” (Related Work)

2008 - Goel, Krstic and Fuchs formalize the lazy instantiation
approach.

2008 - Bofill, Nieuwenhuis, Oliveras, Rodriguez-Carbonell and Rubio
propose the store-reduction approach

“Model-Based” approaches:

2007 - Ganesh and Dill, “a decision procedure for bitvectors and
arrays”, CAV’'07

2008 - Brummayer and Biere, “lemmas on demand for the
extentional theory of arrays”, SMT'08

Microsoft

Research

A “Timeline” (Related Work)

“Rewrite-Based” approaches:
2002 - Lynch and Morawska, “Automatic Decidability”, LICS

2005 - Armando, Bonacina, Ranise and Schulz propose the rewrite
based approach.

Arrays in hardware verification:

1994 - Burch and Dill, “Automatic Verification of pipelined
microprocessor control”, CAV

2006 - Manolios, Srinivasan, Vroon, “Automatic memory reductions
for RTL model verification”, ICCAD

More relevant work can be found in our paper...

Microsoft

Research

Naive instantiation

Recipe: Given a formula F

1) Collect all array termsin F

2) Collect all indices in F

3) Instantiate array axioms using 1 and 2
F' = F U Instances

4) Execute EUF solver on F

Array theory is a local theory extension.

Microso ft-

Research

Naive instantiation: Example

a = store(b, i, v), al[jl #v, clk]=v,i=]j
array terms: a, b, store(b, i, v), c
indices: i, J, k

Research

Naive instantiation: Example

a-= StOre(b; i; V)/ a[l] * V, C[k] =V, I=‘/

array terms: a, b, store(b, i, v), c
indices: i, J, k
Instances:

store(a, i, v)[i] = v, store(a, j, V)[j] = v, ...

i =jvstorel(a, i, v)[j] = ali], ...

. : | Microsoft
Problem: Many useless instances! Basearch

Naive instantiation: Example

a = store(b, i, v), al[jl #v, clk]=v,i=]j
array terms: a, b, store(b, i, v), c
indices: i, J, k

Lazy instantiation: select a
small subset of instances.

Instances: (more later)

store(a, i, v)[i] = v, store(a, j,

i =jvstorel(a, i, v)[j] = ali],

. : | Microsoft
Problem: Many useless instances! Basearch

Our contributions

A generalization of the Array theory
CAL: Combinatory Array Logic

New filters for minimizing the number of instances

A simple architecture for non-stably infinite theories

We want arrays of bit-vectors.

Microso ft-

Research

CAL: Combinatory Array Logic

Yv,i: K(v)[i] = v
va,,.., a,i: mapf(al,..., a)il = fla,li], ..., a,li])

Microsoft:
Research

CAL: Combinatory Array Logic

Suggested by Stump, Barrett, Dill, Levitt
Their procedure works for
infinite-domain satisfiability.

Yv,i: K(v)[i] = v
va,,.., a,i: mapf(al,..., a)il = fla,li], ..., a,li])

Microso ft-

Research

CAL: Combinatory Array Logic

Yv,i: K(v)[i] = v
va,,.., a,i: mapf(al,..., a)il = fla,li], ..., a,li])

S

“Family” of combinators.
We can instantiate it with any f.

OOOOOOOO

map;is the pointwise function application

mapA

Wy w,

fAvy,w,)

fvs,ws)

Avgw,)

AAvs,ws)

Microso ft-

Research

CAL is powerful: Sets as arrays

Set of T as an Array from T to Boolean

2, = K(false)

{a} = store(O, a, true)
acs = Sl[a]

S;,uSs, = map,S,S,)
S;NS, = map,(S,S,)

Microso ft-

Research

CAL is powerful: Sets as arrays

Set of T as an Array from T to Boolean

2, = K(false)

{a} = store(O, a, true)
acs = Sl[a]

S;,uSs, = map,S,S,)
S;NS, = map,(S,S,)

Microso ft-

But not cardinality |S|, power-set, ... Research

CAL is powerful: Bags as arrays

Bag of T as an Array from T to Integer

%) = K(0)

{a} = store(, a, 1)
mult(a, B) = Bla]

B,®B, = map,B, B,)
B,I1B, = map,.. (B, B,)

OOOOOOOO

CAL is powerful: a multiplexer

map,(. 1 F T T F ,
Vi | Vo | V3 | Vg | Vs ’
W, W, Wi W, w;)
Vi | Wy V3 |V, | W

Microso ft-

Research

Core solver

Support for equality and uninterpreted functions (EUF)
Set of strongly disjoint theories (more later)

Clauses and literals

Boolean terms

a=t —alisaname for the termt
a.c —ahassorto
a~b —aandb are equal in the current context

Microsoft

Research

Array Saturation Rules

a = store(b,i,v)

idx

ali| ~v
a = store(b,i,v), w=dljl, a~d
12 jValj] ~blj]
a = store(b,i,v), w=b[jl, b~V
122 jValj] ~blj]

a:(c=71), b(oc=71)

ext
a>~bValkep % bkap
a~b —aandb are equal in the current context
a=t —a iIs a name for the term t

Microsoft

a.(o=>t)—aisanarray fromoctor Research

Bottlenecks

a:(c=71), b(oc=T1)
a>~bValkep 2 bkap

ext

Extensionality is applied to every
pair of array constants.

a = store(b,i,v), w=U[j], b~V
1~ jValj| ~blj]

Upwards propagation distributes index over
all modifications of same array.

Microsoft

Research

Bottlenecks: simple “tricks”

a:(oc=7), bi(o=r) Delay the application of

t
X a>~bValkep 2 bkap ext and .

Extensionality is applied to every Only works for
pair of array constants. unsatisfiable instances.

a = store(b,i,v), w=b[j], b~V
F= jvali] =~

Upwards propagation distributes index over
all modifications of same array.

Microsoft

Research

Bottlenecks: simple “tricks”

lgnore “congruent” axiom instances
i~ 7 Valj] ~=blj]
i~ g3 vd|j] = bj]

-/

a~a,b~b,i~1, and 7~ §

Microsoft

Research

Bottlenecks

a:(c=71), b(oc=T1)
a>~bValkep 2 bkap

ext

Extensionality is applied to every
pair of array constants.

p=ax~b, I'(p)=false
a>~bValkep £ blkap
a:(c=71), b(oc=71), {a,b} Cforeign
a>~bValkep % blkap

exty

ext,

Restrict to constants asserted to be different or foreign.
We say a is foreign if thereis b s.t. a ~b and |
b is the argument of an uninterpreted function symbol. Mﬁzgearch

Why do we need ext ?

b
a (c}':}’r), b: (J:}»’r) {a,b} C foreign
~ bV a[ka b] * b[ﬁﬂ b]

Example:
a = store(b, i, v), b[i] = v, f(a) # f(b)

Microso ft-

Research

Another optimization...

We do not need to add the extensionality axiom for (a,b)
if they are already known to be disequal.

Definition 9 (Already Disequal) Given a state I', (a.b) €
already-diseq iff there are two definitions vy = a;/i1] and
vy = asliz] in T’ such that vy % ve, a ~ ay, b ~ by, and
11 ~ 19.

Microsoft

Research

Another optimization...

We do not need to add the extensionality axiom for (a,b)
if they are already known to be disequal.

Definition 9 (Already Disequal) Given a state I', (a.b) €
already-diseq iff there are two definitions vy = a;/i1] and
vy = cﬁ&[ig] in I' such that vy % va, a ~ ay, b ~ by, and

iz \

Typo in the paper!
Should be b,

Microsoft

Research

Why is /T expensive?

a = store(b,i,v), w=0bj], b~V
T~ vab]~ 1)

Scenario from software verification
Bunch of facts about the initial state of the heap

aplio]l = vy, agli;] = vy, aplis] =v,, ...

Perform a series of updates
a,= store(a,, j,, w,), a,= store(a, j,, W,), ...

Check some property on the final heap
alk] #v

Microsoft

Research

Why do we need 11?

store(a, i, v,) = store(b, i, v,), i # k, alk] # b[k]

Definition 10 (Linearity) Given a state [, the set
non-linear of non-linear constants 1s the least set such that:
1. a; = store(by,i1,11), ay = store(by,is,v2), a; is not as
and aj ~ as implies {a;.a2} C non-linear,
2. a = store(b,i,v) and a € non-linear implies b €
non-linear,
3. a € non-linear and a ~ b implies b € non-linear.
We say a 1s linear it a & non-linear.

Microsoft

Research

Restricting 1]

a = store(b,i,v), w=b[jl, b~V
i~ vali] ~]|

N a = store(b,i,v), w="b]j], bmb"}‘bEnon—linearl
,

i jValj]~blj]

Microsoft

Research

Effect on Benchmarks

1200

%
X X
Q > XX WX
100 x [% i X
‘<: '{X X %
20 10 Y%\ %V%
o
= Y KX %
m
N
0.1 ;
b
X N
0.01 0.1 1 10 100
ZB US1Hg ﬂ?‘ Microsoft’

Research

Saturating CAL

K
¢ alj] >~
" a=map(br,....bn), w=dl[jl, a~d
map
alj] = f(ba[f],...,bnlj])
a=maps(by,....bn), w=0bp|jl.
" b ~ b}, for some ke{l,....n}
map . ;
alj] = f(bilj].....bn[j])
) v=ali]l, i:0, iisnot e, 5 a:(oc=r71)
* €o F 1 ‘ al€q| = 0q

Microsoft

Research

Saturating CAL

v=ali|l, i:0, 11isnot e,

€
” €0 1
Potentially unsound
if F only has models
M where M(o) is
finite.
a:(c=71), size(o)=1F
blast -

a.[f_:'.-'l] ~ Oﬂ,jl,_ Ces (L[G"k] i (Sa,k

Microsoft

Research

Saturating CAL

We also have a restricted version of mapfl using
linear stratification (see paper for details).

a >~ mapgy.(a,b,c) N bljl~ L A ¢clj|l =T

Default-value extension (new theory symbol 9), and
alternative for €z and €0

_a = store(b,i,v) a=K(v)
Ud - Ko —
d(a) ~0(b) d(a) ~v
a=maps(b1,....bn)
mapo

5(a) ~ F(8(by),....0(bn)) "Research

Theory combination in Z3

Efficient Core
Strongly disjoint theories + Unintepreted functions

Strongly disjoint theory = Sort disjoint
Examples: Arithmetic, Bitvectors and Booleans

f(T~xw A f(L)xw A f(v) Ew

All other theories are reduced to this core.
Not covered today: inductive datatypes.

Microso ft-

Research

Conclusion

Arrays are useful in practice.
They are used in many verification tools at Microsoft.
CAL is a useful extension of the array theory.

Simple combination architecture.
Efficient and easy to implement.

Microsoft

Research

Conclusion

Arrays are useful in practice.
They are used in many verification tools at Microsoft.
CAL is a useful extension of the array theory.

Simple combination architecture.
Efficient and easy to implement.

Thank You! vicrosoft
Research

