
Leonardo de Moura and Nikolaj Bjørner
Microsoft Research

Verification/Analysis tools
need some form of

Symbolic Reasoning

Verification/Analysis tools
need some form of

Symbolic Reasoning
Many Flavors:

SAT Solvers

SMT Solvers

First-order Theorem Provers

Computer Algebra Systems

Is formula F satisfiable
modulo theory T ?

Is formula F satisfiable
modulo theory T ?

Arithmetic,

Bit-vectors,

Arrays,

Inductive data-types,

….

Example:

1>2
Satisfiable if the symbols 1,2 and > are uninterpreted.

|M| = {  }

M(1) = M(2) = 

M(>) = { (, ) }

Unsatisfiable modulo the theory arithmetic

b + 2 = c and f(select(store(a,b,3), c-2) ≠ f(c-b+1)

b + 2 = c and f(select(store(a,b,3), c-2) ≠ f(c-b+1)

Array Theory

b + 2 = c and f(select(store(a,b,3), c-2) ≠ f(c-b+1)

b + 2 = c and f(select(store(a,b,3), c-2) ≠ f(c-b+1)

Test case generation

Verifying Compilers

Predicate Abstraction

Invariant Generation

Type Checking

Model Based Testing

VCC

Hyper-V
Terminator T-2

NModel

HAVOC

F7
SAGE

Vigilante

SpecExplorer

Prefix

A theory T is a set of first-order sentences.

F is satisfiable modulo T

iff

TF is satisfiable.

a, i, v. select(store(a, i, v),i) = v

a, i, j, v: i = j  select(store(a, i, v), j) = select(a, j)

a, i, v. select(store(a, i, v),i) = v

a, i, j, v: i = j  select(store(a, i, v), j) = select(a, j)

We say store is a
combinator.

a, i, v. select(store(a, i, v),i) = v

a, i, j, v: i = j  select(store(a, i, v), j) = select(a, j)

a, i, v. store(a, i, v)[i] = v

a, i, j, v: i = j  store(a, i, v)[j] = a[i]

It is used to model the memory

in

Hardware/Software verification/analysis tools

a, b: (i: a[i] = b[i])  a = b

We have arrays from T1 to T2

T1 does not need to be the Integers

a = store(b, 0, 5), b = store(c, 1, 10), c[0] = 2

M(a) = { 0  5, 1  10, else  0 }

M(b) = { 0  2, 1  10, else  0 }

M(c) = { 0  2, else  0 }

1962 - McCarthy proposes the Basic Array Theory.

1968 - Kaplan solves the satisfiability problem.

1981 - Nelson propose a simple procedure based on (lazy)
instantiation (PhD thesis).

2001 - Stump, Barrett, Dill and Levitt propose a procedure for
extentional arrays.

2005 - Lazy instantiation is used in Yices
(it wins all array divisions in SMT-COMP from 2005 - 2007).

2005 - Kapur and Zarba propose the reduction approach
(many array-like theories are described).

2006 - Bradley, Manna and Sipma propose a procedure for a rich
decidable array fragment.

2008 - Goel, Krstic and Fuchs formalize the lazy instantiation
approach.

2008 - Bofill, Nieuwenhuis, Oliveras, Rodriguez-Carbonell and Rubio
propose the store-reduction approach

“Model-Based” approaches:

2007 - Ganesh and Dill, “a decision procedure for bitvectors and
arrays”, CAV’07

2008 - Brummayer and Biere, “lemmas on demand for the
extentional theory of arrays”, SMT’08

“Rewrite-Based” approaches:

2002 - Lynch and Morawska, “Automatic Decidability”, LICS

2005 - Armando, Bonacina, Ranise and Schulz propose the rewrite
based approach.

Arrays in hardware verification:

1994 - Burch and Dill, “Automatic Verification of pipelined
microprocessor control”, CAV

2006 - Manolios, Srinivasan, Vroon, “Automatic memory reductions
for RTL model verification”, ICCAD

More relevant work can be found in our paper…

Recipe: Given a formula F

1) Collect all array terms in F

2) Collect all indices in F

3) Instantiate array axioms using 1 and 2

F’ = F  Instances

4) Execute EUF solver on F’

Array theory is a local theory extension.

a = store(b, i, v), a[j]  v, c[k] = v, i = j

array terms: a, b, store(b, i, v), c

indices: i, j, k

a = store(b, i, v), a[j]  v, c[k] = v, i = j

array terms: a, b, store(b, i, v), c

indices: i, j, k

Instances:

store(a, i, v)[i] = v, store(a, j, v)[j] = v, …

i = j  store(a, i, v)[j] = a[i], …

Problem: Many useless instances!

a = store(b, i, v), a[j]  v, c[k] = v, i = j

array terms: a, b, store(b, i, v), c

indices: i, j, k

Instances:

store(a, i, v)[i] = v, store(a, j, v)[j] = v, …

i = j  store(a, i, v)[j] = a[i], …

Problem: Many useless instances!

Lazy instantiation: select a
small subset of instances.

(more later)

A generalization of the Array theory

CAL: Combinatory Array Logic

New filters for minimizing the number of instances

A simple architecture for non-stably infinite theories

We want arrays of bit-vectors.

v,i: K(v)[i] = v

a1,…, an, i: mapf(a1,…, an)[i] = f(a1[i], …, an[i])

v,i: K(v)[i] = v

a1,…, an, i: mapf(a1,…, an)[i] = f(a1[i], …, an[i])

Suggested by Stump, Barrett, Dill, Levitt
Their procedure works for

infinite-domain satisfiability.

v,i: K(v)[i] = v

a1,…, an, i: mapf(a1,…, an)[i] = f(a1[i], …, an[i])

“Family” of combinators.
We can instantiate it with any f.

mapf(,)
=

… …v1 v2 v3 v4 v5 … …w1 w2 w3 w4 w5

… …f(v1,w1) f(v2,w2) f(v3,w3) f(v4,w4) f(v5,w5)

Set of T as an Array from T to Boolean

  K(false)

{a}  store(, a, true)

a  S  S[a]

S1  S2  map(S1, S2)

S1  S2  map(S1, S2)

Set of T as an Array from T to Boolean

  K(false)

{a}  store(, a, true)

a  S  S[a]

S1  S2  map(S1, S2)

S1  S2  map(S1, S2)

But not cardinality |S|, power-set, …

Bag of T as an Array from T to Integer

  K(0)

{a}  store(, a, 1)

mult(a, B)  B[a]

B1  B2  map+(B1, B2)

B1  B2  mapmin(B1, B2)

mapite(, … …T F T T F

… …w1 w2 w3 w4 w5

… …v1 v2 v3 v4 v5
,

)

=

… …v1 w2 v3 v4 w5

Support for equality and uninterpreted functions (EUF)
Set of strongly disjoint theories (more later)
Clauses and literals
Boolean terms

a  t – a is a name for the term t

a:  – a has sort 

a  b – a and b are equal in the current context

a  b – a and b are equal in the current context

a  t – a is a name for the term t

a:() – a is an array from  to 

Extensionality is applied to every
pair of array constants.

Upwards propagation distributes index over
all modifications of same array.

Extensionality is applied to every
pair of array constants.

Upwards propagation distributes index over
all modifications of same array.

Delay the application of
ext and .

Only works for
unsatisfiable instances.

Ignore “congruent” axiom instances

Extensionality is applied to every
pair of array constants.

Restrict to constants asserted to be different or foreign.
We say a is foreign if there is b s.t. a  b and
b is the argument of an uninterpreted function symbol.

Example:
a = store(b, i, v), b[i] = v, f(a)  f(b)

We do not need to add the extensionality axiom for (a,b)
if they are already known to be disequal.

We do not need to add the extensionality axiom for (a,b)
if they are already known to be disequal.

b1
Typo in the paper!

Should be b1

Scenario from software verification
Bunch of facts about the initial state of the heap
a0[i0] = v0, a0[i1] = v1, a0[i2] = v2, …

Perform a series of updates
a1= store(a0, j1, w1), a2= store(a1, j2, w2), …

Check some property on the final heap
an[k]  v

store(a, i, v1) = store(b, i, v2), i  k, a[k]  b[k]

Potentially unsound
if F only has models

M where M() is
finite.

We also have a restricted version of map using

linear stratification (see paper for details).

Default-value extension (new theory symbol ), and
alternative for and

Efficient Core

Strongly disjoint theories + Unintepreted functions

Strongly disjoint theory  Sort disjoint

Examples: Arithmetic, Bitvectors and Booleans

All other theories are reduced to this core.

Not covered today: inductive datatypes.

Arrays are useful in practice.

They are used in many verification tools at Microsoft.

CAL is a useful extension of the array theory.

Simple combination architecture.

Efficient and easy to implement.

Arrays are useful in practice.

They are used in many verification tools at Microsoft.

CAL is a useful extension of the array theory.

Simple combination architecture.

Efficient and easy to implement.

Thank You!

