I ﬂ’ﬁi ° ° II . "Research

Generalized and Efficient

Array Decision Procedures
FIMICAD, Austin, 2009

Leonardo de Moura and Nikolaj Bjgrner
Microsoft Research



Symbolic Reasoning

Verification/Analysis tools
need some form of
Symbolic Reasoning
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Symbolic Reasoning

Verification/Analysis tools
need some form of

Symbolic Reasoning
Many Flavors:

SAT Solvers
SMT Solvers
First-order Theorem Provers
Computer Algebra Systems "Bocearch



Satisfiability Modulo Theories (SMT)

Is formula F satisfiable
modulo theory T ?
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Satisfiability Modulo Theories (SMT)

Is formula F satisfiable

modulo theory T ?

Arithmetic,
Bit-vectors,

Arrays,

Inductive data-types,

OOOOOOOO



Satisfiability Modulo Theories (SMT)

Example:
1>2
Satisfiable if the symbols 1,2 and > are uninterpreted.
M| ={e}
M(1) =M(2) = o
M(>) = { (e, @) }

Unsatisfiable modulo the theory arithmetic
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Satisfiability Modulo Theories (SMT)

b+ 2 =c and f(select(store(a,b,3), c-2) # f(c-b+1)
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Satisfiability Modulo Theories (SMT)

b+ 2=c¢ and f(select(store(a,b;3), c-2) # f(c-b+1)

Arithmetic
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Satisfiability Modulo Theories (SMT)

b+2=c and f(EeIec]]Estor?'(a,b,B), C-2) # f(c-b+1)

Array Theory

OOOOOOOO



Satisfiability Modulo Theories (SMT)

b + 2 =c and|f(select(store(a,b,3), c-2) # f(c-b+1)

Uninterpreted
Functions

OOOOOOOO



Applications

Test case generation

Predicate Abstraction

Invariant Generation

-
-
C
€
€

Type Checking

Model Based Testing
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What is a Theory?

A theory T is a set of first-order sentences.

F is satisfiable modulo T
iff
TUF is satisfiable.
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Array Theory

Ya, i, v. select(store(a, i, v),i) = v
Ya,i, j,v: i=jv select(store(a, i, v), j) = select(a, j)
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Array Theory

Ya, i, v. select(store(a, i, v),i) = v
Ya,i, j,v: i=jvselect(store(a, i, v), j) = select(a, j)

We say store is a
combinator.

Microso ft-
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Array Theory: a more familiar notation

Ya, i, v. select(store(a, i, v),i) = v
Ya,i, j,v: i=jv select(store(a, i, v), j) = select(a, j)

v

Ya, i, v. store(a, i, v)[il =v
Ya,i, j,v: i=jvstore(a,i, v)[j] =ali]
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Why array theory is useful?

It is used to model the memory
N
Hardware/Software verification/analysis tools
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Extentional Array Theory

Ya, b: (Vi:alil]=bli]) =>a=b
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Arrays are actually “maps”

We have arrays from T, to T,
T, does not need to be the Integers
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Models for arrays as “finite graphs”

a = store(b, 0, 5), b = store(c, 1, 10), c[0] = 2

M(a)={0—>5,1—> 10, else >0}
M(b)={0—>2,1—> 10, else >0}
M(c)={0—> 2, else >0}

Microso ft-
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A “Timeline” (Related Work)

1962 - McCarthy proposes the Basic Array Theory.
1968 - Kaplan solves the satisfiability problem.

1981 - Nelson propose a simple procedure based on (lazy)
instantiation (PhD thesis).

2001 - Stump, Barrett, Dill and Levitt propose a procedure for
extentional arrays.

2005 - Lazy instantiation is used in Yices
(it wins all array divisions in SMT-COMP from 2005 - 2007).

2005 - Kapur and Zarba propose the reduction approach
(many array-like theories are described).

2006 - Bradley, Manna and Sipma propose a procedure for a rich
decidable array fragment.
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A “Timeline” (Related Work)

2008 - Goel, Krstic and Fuchs formalize the lazy instantiation
approach.

2008 - Bofill, Nieuwenhuis, Oliveras, Rodriguez-Carbonell and Rubio
propose the store-reduction approach

“Model-Based” approaches:

2007 - Ganesh and Dill, “a decision procedure for bitvectors and
arrays”, CAV’'07

2008 - Brummayer and Biere, “lemmas on demand for the
extentional theory of arrays”, SMT'08
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A “Timeline” (Related Work)

“Rewrite-Based” approaches:
2002 - Lynch and Morawska, “Automatic Decidability”, LICS

2005 - Armando, Bonacina, Ranise and Schulz propose the rewrite
based approach.

Arrays in hardware verification:

1994 - Burch and Dill, “Automatic Verification of pipelined
microprocessor control”, CAV

2006 - Manolios, Srinivasan, Vroon, “Automatic memory reductions
for RTL model verification”, ICCAD

More relevant work can be found in our paper...
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Naive instantiation

Recipe: Given a formula F

1) Collect all array termsin F

2) Collect all indices in F

3) Instantiate array axioms using 1 and 2
F' = F U Instances

4) Execute EUF solver on F

Array theory is a local theory extension.

Microso ft-
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Naive instantiation: Example

a = store(b, i, v), al[jl #v, clk]=v,i=]j
array terms: a, b, store(b, i, v), c
indices: i, J, k

Research



Naive instantiation: Example

a-= StOre(b; i; V)/ a[l] * V, C[k] =V, I=‘/

array terms: a, b, store(b, i, v), c
indices: i, J, k
Instances:

store(a, i, v)[i] = v, store(a, j, V)[j] = v, ...

i =jvstorel(a, i, v)[j] = ali], ...

. : | Microsoft
Problem: Many useless instances! Basearch



Naive instantiation: Example

a = store(b, i, v), al[jl #v, clk]=v,i=]j
array terms: a, b, store(b, i, v), c
indices: i, J, k

Lazy instantiation: select a
small subset of instances.

Instances: (more later)

store(a, i, v)[i] = v, store(a, j,

i =jvstorel(a, i, v)[j] = ali],

. : | Microsoft
Problem: Many useless instances! Basearch



Our contributions

A generalization of the Array theory
CAL: Combinatory Array Logic

New filters for minimizing the number of instances

A simple architecture for non-stably infinite theories

We want arrays of bit-vectors.
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CAL: Combinatory Array Logic

Yv,i: K(v)[i] = v
va,,.., a,i: mapf(al,..., a )il = fla,li], ..., a,li])
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CAL: Combinatory Array Logic

Suggested by Stump, Barrett, Dill, Levitt
Their procedure works for
infinite-domain satisfiability.

Yv,i: K(v)[i] = v
va,,.., a,i: mapf(al,..., a )il = fla,li], ..., a,li])
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CAL: Combinatory Array Logic

Yv,i: K(v)[i] = v
va,,.., a,i: mapf(al,..., a )il = fla,li], ..., a,li])

S

“Family” of combinators.
We can instantiate it with any f.

OOOOOOOO



map;is the pointwise function application

mapA

Wy w,

fAvy,w,)

fvs,ws)

Avgw,)

AAvs,ws)
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CAL is powerful: Sets as arrays

Set of T as an Array from T to Boolean

2, =  K(false)

{a} =  store(O, a, true)
acs = Sl[a]

S;,uSs, = map,S,S,)
S;NS, = map,(S,S,)

Microso ft-
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CAL is powerful: Sets as arrays

Set of T as an Array from T to Boolean

2, =  K(false)

{a} =  store(O, a, true)
acs = Sl[a]

S;,uSs, = map,S,S,)
S;NS, = map,(S,S,)

Microso ft-

But not cardinality |S|, power-set, ... Research



CAL is powerful: Bags as arrays

Bag of T as an Array from T to Integer

%) =  K(0)

{a} =  store(, a, 1)
mult(a, B) = Bla]

B,®B, = map,B, B,)
B,I1B, = map,.. (B, B,)

OOOOOOOO



CAL is powerful: a multiplexer

map,( . 1 F T T F ,
Vi | Vo | V3 | Vg | Vs ’
W, W, Wi W, w; )
Vi | Wy V3 |V, | W
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Core solver

Support for equality and uninterpreted functions (EUF)
Set of strongly disjoint theories (more later)

Clauses and literals

Boolean terms

a=t —alisaname for the termt
a.c —ahassorto
a~b —aandb are equal in the current context

Microsoft
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Array Saturation Rules

a = store(b,i,v)

idx

ali| ~v
a = store(b,i,v), w=dljl, a~d
12 jValj] ~blj]
a = store(b,i,v), w=b[jl, b~V
122 jValj] ~blj]

a:(c=71), b(oc=71)

ext
a>~bValkep % bkap
a~b —aandb are equal in the current context
a=t —a iIs a name for the term t

Microsoft

a.(o=>t)—aisanarray fromoctor Research



Bottlenecks

a:(c=71), b(oc=T1)
a>~bValkep 2 bkap

ext

Extensionality is applied to every
pair of array constants.

a = store(b,i,v), w=U[j], b~V
1~ jValj| ~blj]

Upwards propagation distributes index over
all modifications of same array.

Microsoft
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Bottlenecks: simple “tricks”

a:(oc=7), bi(o=r) Delay the application of

t
X a>~bValkep 2 bkap ext and .

Extensionality is applied to every Only works for
pair of array constants. unsatisfiable instances.

a = store(b,i,v), w=b[j], b~V
F= jvali] =~

Upwards propagation distributes index over
all modifications of same array.

Microsoft
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Bottlenecks: simple “tricks”

lgnore “congruent” axiom instances
i~ 7 Valj] ~=blj]
i~ g3 vd|j] = bj]

-/

a~a,b~b,i~1, and 7~ §
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Bottlenecks

a:(c=71), b(oc=T1)
a>~bValkep 2 bkap

ext

Extensionality is applied to every
pair of array constants.

p=ax~b, I'(p)=false
a>~bValkep £ blkap
a:(c=71), b(oc=71), {a,b} Cforeign
a>~bValkep % blkap

exty

ext,

Restrict to constants asserted to be different or foreign.
We say a is foreign if thereis b s.t. a ~b and |
b is the argument of an uninterpreted function symbol. Mﬁzgearch



Why do we need ext ?

b
a (c}':}’r), b: (J:}»’r) {a,b} C foreign
~ bV a[ka b] * b[ﬁﬂ b]

Example:
a = store(b, i, v), b[i] = v, f(a) # f(b)

Microso ft-
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Another optimization...

We do not need to add the extensionality axiom for (a,b)
if they are already known to be disequal.

Definition 9 (Already Disequal) Given a state I', (a.b) €
already-diseq iff there are two definitions vy = a;/i1] and
vy = asliz] in T’ such that vy % ve, a ~ ay, b ~ by, and
11 ~ 19.
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Another optimization...

We do not need to add the extensionality axiom for (a,b)
if they are already known to be disequal.

Definition 9 (Already Disequal) Given a state I', (a.b) €
already-diseq iff there are two definitions vy = a;/i1] and
vy = cﬁ&[ig] in I' such that vy % va, a ~ ay, b ~ by, and

iz \

Typo in the paper!
Should be b,
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Why is /T expensive?

a = store(b,i,v), w=0bj], b~V
T~ vab]~ 1)

Scenario from software verification
Bunch of facts about the initial state of the heap

aplio]l = vy, agli;] = vy, aplis] =v,, ...

Perform a series of updates
a,= store(a,, j,, w,), a,= store(a, j,, W,), ...

Check some property on the final heap
alk] #v

Microsoft
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Why do we need 11?

store(a, i, v,) = store(b, i, v,), i # k, alk] # b[k]

Definition 10 (Linearity) Given a state [, the set
non-linear of non-linear constants 1s the least set such that:
1. a; = store(by,i1,11), ay = store(by,is,v2), a; is not as
and aj ~ as implies {a;.a2} C non-linear,
2. a = store(b,i,v) and a € non-linear implies b €
non-linear,
3. a € non-linear and a ~ b implies b € non-linear.
We say a 1s linear it a & non-linear.
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Restricting 1]

a = store(b,i,v), w=b[jl, b~V
i~ vali] ~ ]|

N a = store(b,i,v), w="b]j], bmb"}‘bEnon—linearl
,

i jValj]~blj]

Microsoft
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Effect on Benchmarks

1200

%
X X
Q > XX WX
100 x [ % i X
‘<: '{X X %
20 10 Y%\ %V%
o
= Y KX %
m
N
0.1 ;
b
X N
0.01 0.1 1 10 100
ZB US1Hg ﬂ?‘ Microsoft’

Research



Saturating CAL

K
¢ alj] >~
" a=map(br,....bn), w=dl[jl, a~d
map
alj] = f(ba[f],...,bnlj])
a=maps(by,....bn), w=0bp|jl.
" b ~ b}, for some ke{l,....n}
map . ;
alj] = f(bilj].....bn[j])
) v=ali]l, i:0, iisnot e, 5 a:(oc=r71)
* €o F 1 ‘ al€q| = 0q

Microsoft
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Saturating CAL

v=ali|l, i:0, 11isnot e,

€
” €0 1
Potentially unsound
if F only has models
M where M(o) is
finite.
a:(c=71), size(o)=1F
blast -

a.[f_:'.-'l] ~ Oﬂ,jl,_ Ces (L[G"k] i (Sa,k

Microsoft
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Saturating CAL

We also have a restricted version of mapfl using
linear stratification (see paper for details).

a >~ mapgy.(a,b,c) N bljl~ L A ¢clj|l =T

Default-value extension (new theory symbol 9), and
alternative for €z and €0

_a = store(b,i,v) a=K(v)
Ud - Ko —
d(a) ~0(b) d(a) ~v
a=maps(b1,....bn)
mapo

5(a) ~ F(8(by),....0(bn)) "Research



Theory combination in Z3

Efficient Core
Strongly disjoint theories + Unintepreted functions

Strongly disjoint theory = Sort disjoint
Examples: Arithmetic, Bitvectors and Booleans

f(T~xw A f(L)xw A f(v) Ew

All other theories are reduced to this core.
Not covered today: inductive datatypes.
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Conclusion

Arrays are useful in practice.
They are used in many verification tools at Microsoft.
CAL is a useful extension of the array theory.

Simple combination architecture.
Efficient and easy to implement.
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Conclusion

Arrays are useful in practice.
They are used in many verification tools at Microsoft.
CAL is a useful extension of the array theory.

Simple combination architecture.
Efficient and easy to implement.

Thank You! vicrosoft
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