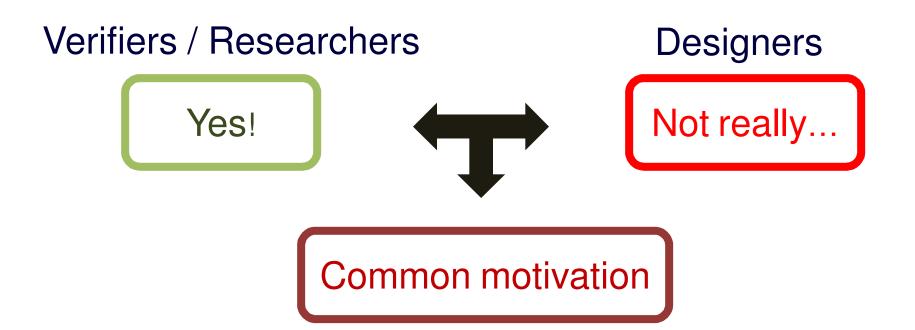
Formal Verification of Analog Designs using MetiTarski

<u>William Denman</u>, Behzad Akbarpour, Sofiène Tahar¹ Mohamed H. Zaki² Lawrence C. Paulson³

> ¹Concordia University, Montreal, Canada ²University of British Columbia, Vancouver, Canada ³University of Cambridge, United Kingdom

> > FMCAD'09 November 17th, 2009



Motivation

Should we *care* about *formal verification* for analog circuits?

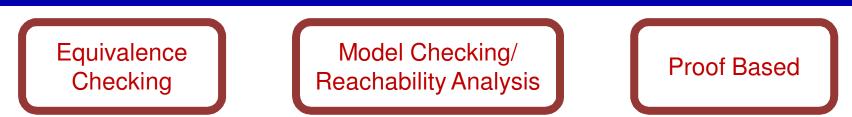
Motivation

- Some interesting statistics [IBS Corporation]
 - Analog Circuitry 2% of the transistor count
 - 20% of the IC Area
 - 40% of the design Effort

Analog verification continues to be a <u>serious bottleneck</u>

50% of the errors that require re-design are from analog circuitry

Motivation


Formal Verification for Analog Circuits?

- Challenges
 - Infinite/Continuous state space
 - Infinite time
 - PVT : Sensitivity to process variation, voltage, temperature
 - Non-linear behaviour
- We propose
 - A time unbounded verification
 - Using MetiTarski : An Automated Theorem Prover

Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans

Related Work

- Balivada [1995]
 - Discretization of a circuit's transfer function to the Z-domain
 - Apply digital based equivalence checking techniques
- Hartong, Klausen and Hedrich [2004]
 - From analog circuit transfer functions
 - Verify dynamic behaviour of the specification and implementation state spaces.

Presence of tolerance margins

FMCAD'09	William Denman	6 / 36

Related Work

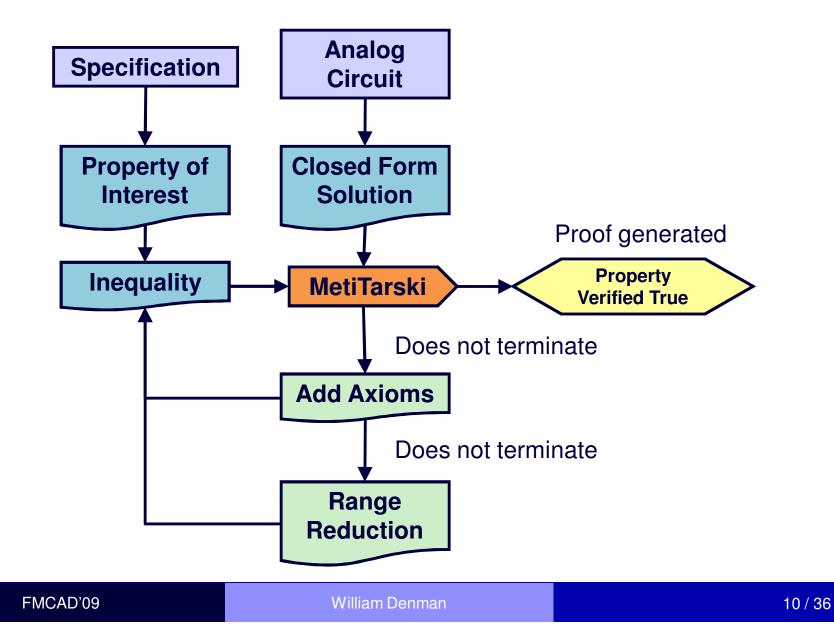
Model Checking/ Reachability Analysis

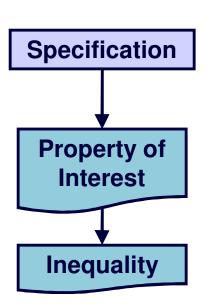
Proof Based

- Kurshan and McMillan [1991]
 - State space subdivision of transistor behaviour
 - Predict possible transitions between states
- Gupta [2004], Dang [2006], Frehse [2006], Little [2006], Greenstreet [2007]
 - Reachability relations using projection techniques
 - Over-approximation, but verification still sound

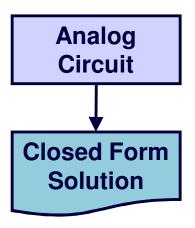
Possible Time Bounded Verification

Related Work

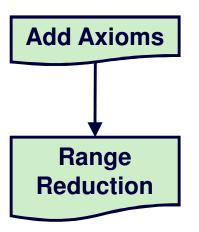

- Ghosh and Vemuri [1999]
 - PVS used to prove functional equivalence between models
 - Specification built in VHDL-AMS
 - Approximated DC models
- Hanna [2000]
 - Predicates defining voltage and current behaviour
 - Theorem Proving used
 - Conservative approximation


Manual/Heuristic steps

FMCAD'09	William Denman	8 / 36


Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans

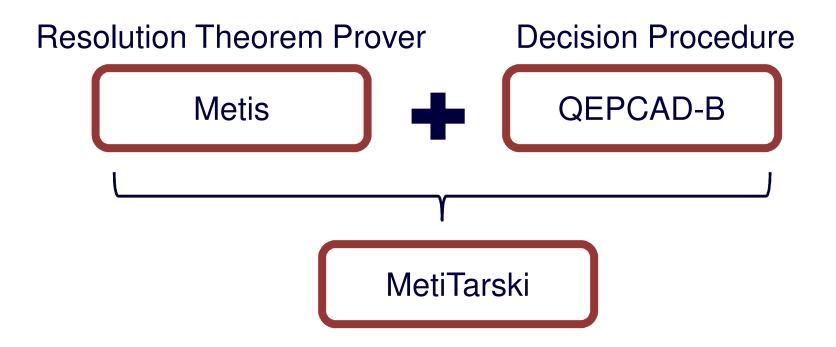


- Analog circuit specification
 - Circuit must oscillate
 - Gain for certain frequency range
- Isolate the property
 - Oscillation : Is it present?
 - Gain : 3dB Bandwidth
- Inequality
 - Voltage < Upper threshold</p>
 - Gain > Minimum Required Value

- Analog circuit
 - Differential equations
 - Kirchoff law Equations
- Closed Form Solution
 - Bounded number of analytical functions
 - No differential operators
 - Not always easy to obtain

- Automated Theorem Proving
 - The axioms are specific mathematical facts
 - Bounding properties
 - Definition of functions
 - Range Reduction
 - Functions are not defined over all ranges
 - Large bounds cause proof to never end
 - Apply basic trigonometric identities

 $\cos(x) = \cos(x + 2\pi)$ $\sin(x) = \sin(x + 2\pi)$


Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans

MetiTarski

- Developed by Akbarpour and Paulson ['07]
 - Automated Theorem Prover
 - Transcendental functions (sine, cosine, In, exp, etc.)
 - Square Root
- Theory behind the tool
 - Resolution prover combined with a decision procedure
 - Decidability of real closed fields (RCF) by Tarski
 - Function families of upper and lower bounds by Daumas and others

MetiTarski Implementation

		- I	_		
	νл	c	١D	210	1C
- FI	VΓ	CA			1.5

MetiTarski

• QEPCAD-B

- Advanced implementation of cylindrical algebraic decomposition
- Best available decision procedure for RCF
- Eliminates quantifiers from a formula

$$\exists x.ax^2 + bx + c = 0$$


reduces to

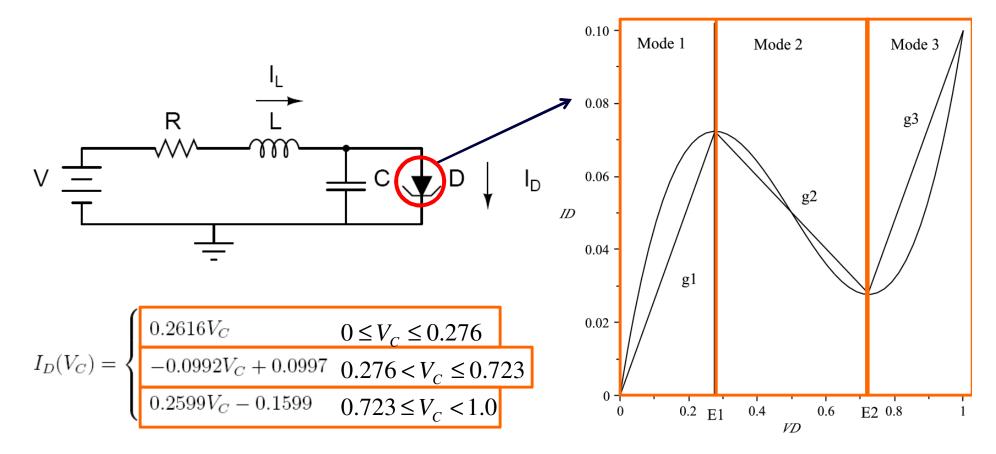
 $(a \neq 0 \land b^2 - 4ac \ge 0) \lor (a = 0 \land b \neq 0) \lor (a = b = c = 0)$

Example Axiom

- Assuming $0 \le x \le 4$
- We are given a function containing exp(x)
 - Upper bound axiom is $-(x^3+12x^2+60x+120)$

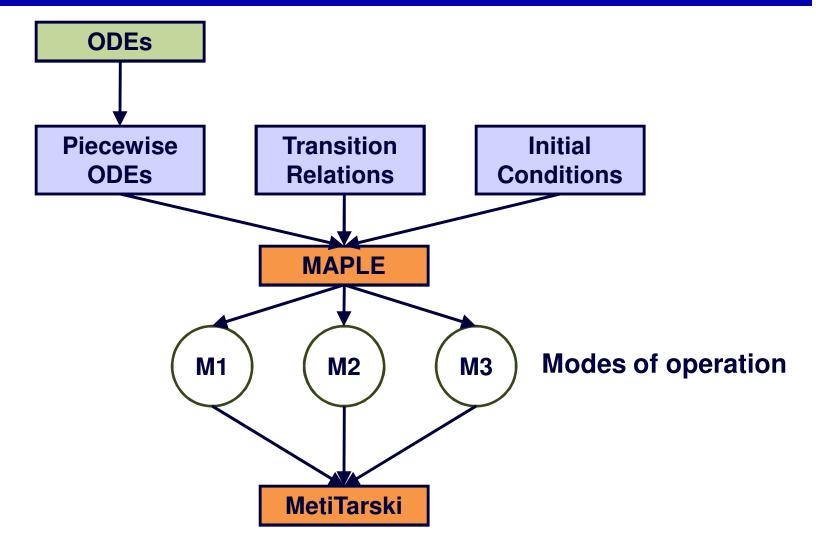
 $x^{3}-12x^{2}+60x-120$

- Will usually need more than one axiom


FMCAD'09	William Denman	18 / 36
----------	----------------	---------

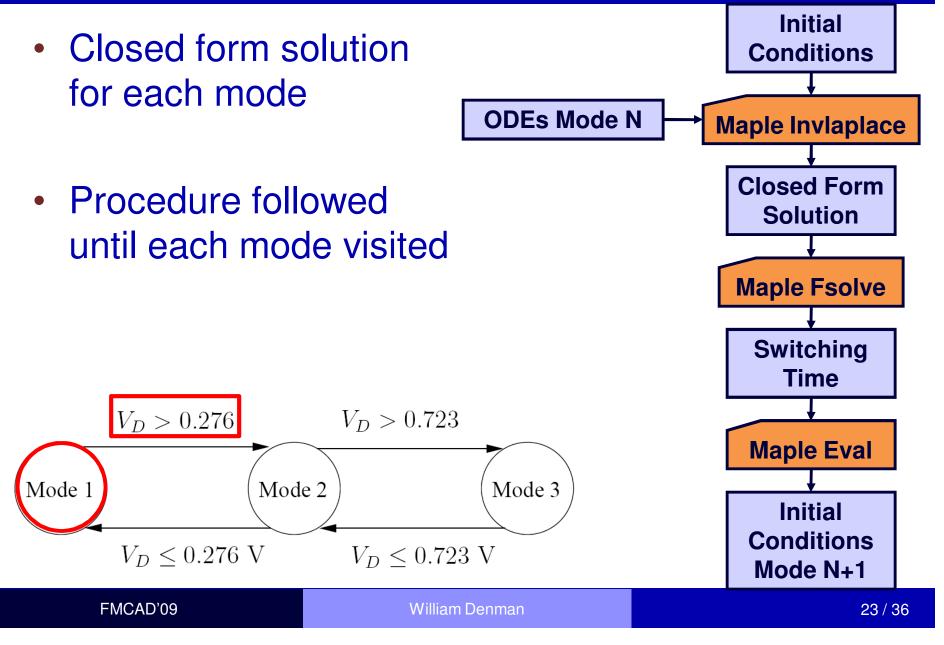
Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans


Example

- PWL: Simplest class of nonlinear circuits
- Behaviour can be reasonably approximated

FMCAD'09


William Denman

FMCAD'09

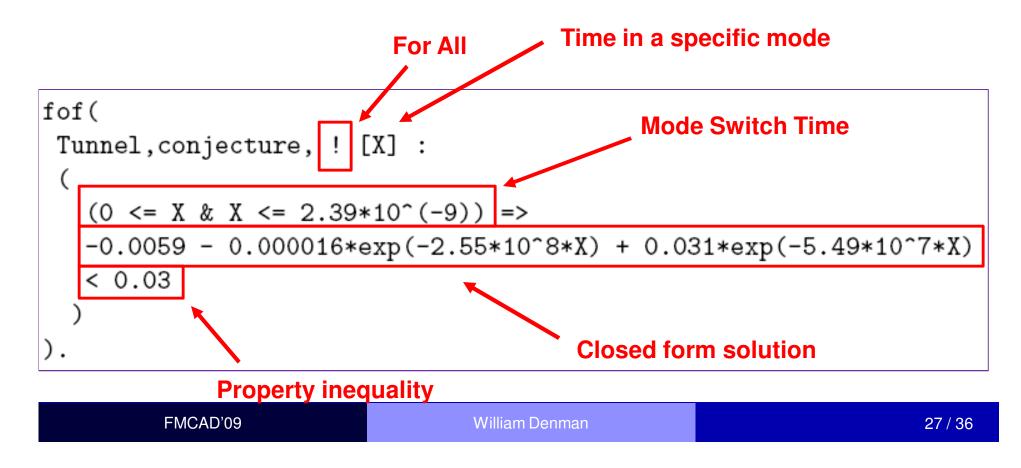
- Using a computer algebra system
- Piecewise ODEs
 - Separate behaviour of the component into modes
- Transition relations
 - Determined by the piecewise model
- Initial Conditions
 - Dependant on the system specification

• Starting with the ODEs of the system

$$\dot{V_C} = \frac{1}{C} (-I_D(V_C) + I_L)$$
$$\dot{I_L} = \frac{1}{L} (-V_C - R \times I_L + V_{in})$$

- $I_D(V_C)$ is the current through the tunnel diode
- Inverse Laplace transform taken to get closed form solutions in each mode

$$V_C(t) = 0.116e^{-2.58 \times 10^8 t} + 0.278 - 0.262e^{-4.19 \times 10^6 t}$$
$$I_L(t) = 0.448 \times 10^{-3} e^{-2.58 \times 10^8 t} + 0.0727$$
$$- 0.0677e^{-4.19 \times 10^6 t}$$


- Using the produced solution
 - Fsolve used to compute time when switches modes
 - Mode 1 -> Mode 2 : $V_D > 0.276$
- Initial conditions determined
 - Take solution from Fsolve
 - Use Eval to evaluate function values
- Continue until each mode visited

Verified Properties

- Choose the property of interest
 - Reason about oscillation
 - Reason about bounded behaviour
- Turn into an inequality
 - Non-oscillation : I_L will never pass an upper bound
 - Bounded Behaviour : I_L and V_C will remain bounded
- Input into MetiTarski

MetiTarski Input

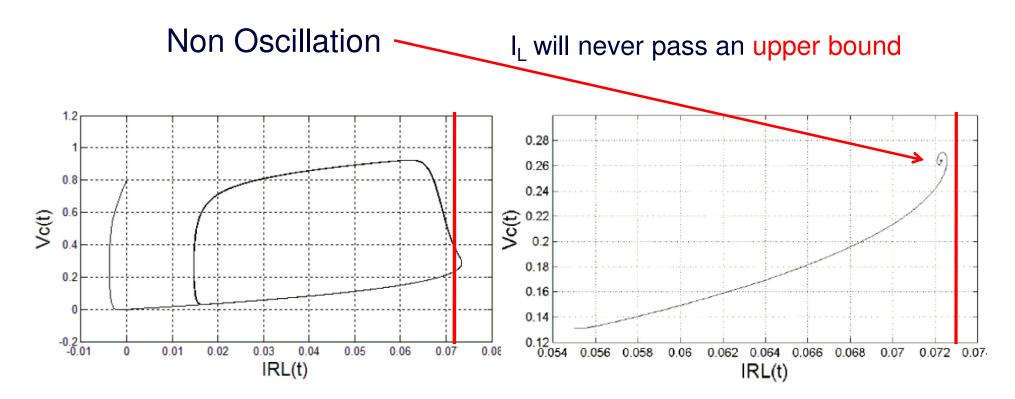
- Transform inequality into the MetiTarski syntax
- Remember: each mode must be checked

Results

- Property 1
 - Non-Oscillation
- In each mode upper threshold not passed
 - $-I_L$: Current through the inductor

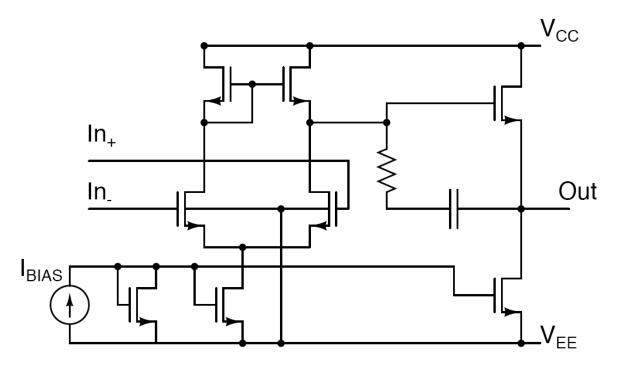
Mode	Variable	Bound	CPU Time (sec.)
1	I_L	U	0.1
2	I_L	U	4.0
3	I_L	U	0.3

Results


Property 2 – Bounded Behaviour

Mode	Variable	Bound	CPU Time (sec.)
1	V_C	U	0.2
1	V_C	L	0.4
2	V_C	U	2.7
2	V_C	L	0.6
3	V_C	U	0.3
3	V_C	L	0.5
1	I_L	U	0.5
1	I_L	L	0.3
2	I_L	U	0.6
2	I_L	L	3.9
3	I_L	U	0.3
3	I_L	L	0.6

- In each mode the current and voltage are bounded
- Necessary to add axioms in 2 cases.


Verified Results

• Recall the property

Results

Applied methodology to a basic OP-AMP

• Required additional method to obtain a closed form solution.

Outline

- Motivation
- Related Work
- Proposed Methodology
- Brief Introduction to MetiTarski
- Illustrative Example
- Conclusion
- Future Plans

Conclusion

- Developed a methodology for the automated verification of analog designs
 - Algebra system steps are <u>semi-automated</u>, but mechanical in nature
 - MetiTarski completely automated
 - Most proofs complete quickly
- Applied to several analog circuits
 - Interesting and complex behaviour
 - Two different methods for closed form solutions

Future Plans

- Computing Closed Form Solutions
 - Investigate methods for solving nonlinear ODEs
- Scale to Larger Problems
 - Efficient methods for calculating piecewise linear functions
 - Apply methodology to more precise models

