
Structure-aware computation
of predicate abstraction

A. Cimatti, J. Dubrovin, T. Junttila, M. Roveri
Fondazione Bruno Kessler, Trento, Italy
Helsinki Institute of Technology, Finland

3 Structure-aware abstraction FMCAD'09, Austin, TX

Predicate abstraction: symbolic view

� Concrete state as assignment to X variables
± booleans, bit vectors, reals��LQWHJHUV��«

� Concrete program as SMT formula CR(X, X')
� Abstract state as assignment to boolean variables Pi
� Predicates as SMT formulae �i(X)

� Abstraction function Abstr(X X' P P') as �i Pi |��i(X)

� Computing predicate abstraction:
± Obtain a boolean representation for AR(P,P')
± Amenable to symbolic model checking

� AR(P,P') = Ö X X'.(CR(X, X') ���i Pi |��i(X)
���i Pi' |��i(X'))

From Q-SMT to Boolean

xx
xx
xxxx
xxxxxx

ÌX X'

-(X X' P P')

-B(P P')

Abstract

� Predicate Abstraction
± at the core of many verification approaches
± often a bottleneck

4 Structure-aware abstraction FMCAD'09, Austin, TX

Avoid Monolithic Computation

xxxx
xx

xx
xx
xx
xx

ÌX X'

-(X X' P P')

-B(P P')

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxx

ÌV3

ÌV2

ÌV1

5 Structure-aware abstraction FMCAD'09, Austin, TX

Reduce

Structure-aware predicate abstraction

� New procedure for predicate abstraction

� Exploits the available problem structure

� At the high level
± structure of system being abstracted
± modules, scope of variables, nature of transitions

� At the low level
± structure of quantified formula
± reduce scope of quantification

6 Structure-aware abstraction FMCAD'09, Austin, TX

High level framework
� System structured in several

components
� Asynchronously composed via

interleaving
� Transitions:

± local transitions
± synchronizing transitions
± timed transitions

� Variables
± local
± write-one / read-many
± write-many / read-many

� Some features common also to
± software programs
± concurrent systems

7 Structure-aware abstraction FMCAD'09, Austin, TX

Invariants: x in [10, 20]
607�������[�[�����

Flow condition: der(x) in [1.1, 1.3]
SMT: x + 1.1Â/���[
�	�[
���[������Â/

Global: the same / for all components!

Predicate abstraction procedure

� Ingredients
± disjunctively partitioning the concrete program
± inlining
± clustering
± blocking and restricting models
± value sampling

8 Structure-aware abstraction FMCAD'09, Austin, TX

Abstracting one transition

� During transitions, several components may
not change

� In local transitions
± only active process is modified
± ORF
� �ORF��[
� �[��«

� synchronizing transitions
± similarly, only active processes change

� timed transitions
± discrete locations do not change

� Lots of potential for inlining

10 Structure-aware abstraction FMCAD'09, Austin, TX

Rules for inlining

� ÌX.(� � (u=.)) rewrites to ÌX.(�[u / .])
± where u in X, and not in .

� ÌX.(� � �T�<�.)) rewrites to
�T�<�.) � ÌX.(�[q / .])
± where . propositional, and q not in .

� ÌX.(� � (�<�.)) rewrites to
ÌX.(�[� / .]) � (�<�.))
± where . propositional but � has vars in X

11 Structure-aware abstraction FMCAD'09, Austin, TX

Practical Limitations

� Variable in one component may be
referred to in flow conditions of other
components
± this indirectly influences its behaviour.

� Predicates can introduce correlations that
are not directly present in the original
system
± e.g. (x + y < 10) connects x and y

12 Structure-aware abstraction FMCAD'09, Austin, TX

Clustering

� ÌX.(-1(X1 P) � -2(X2 P) �«�� -n(Xn P))
� Each variable in X occurs in at most one of the

clusters Xi

� Each cluster can be dealt with independently
� Trade one big quantification for many (hopefully

smaller) quantifications
(ÌX1.-1(X1 P)) � (ÌX2.-2(X2 P)) �«�� (ÌXn.-n(Xn P))

13 Structure-aware abstraction FMCAD'09, Austin, TX

Blocking and Restricting Models
� When computing -B(P) V ÌX.-(X P)
� Replace ÌX.- (X P) with ÌX.(¬-B(P) � -(X P))
� Rationale

± boolean reasoning cheaper than SMT reasoning
± models in -B have already been visited
± force exploration to other models within ¬-B

� When computing
± -B0(P) � ÌX1.-1(X1 P) � ÌX2.-2(X2 P) �«�� ÌXn. -n(Xn P)

� We can use previously computed conjuncts to prune quantification
± ÌX1.(-1(X1 P) � ¬-B0(P))
± ÌX2.(-2(X2 P) � ¬-B01(P))
± ÌX3.(-3(X3 P) � ¬-B012(P))

� Restrict to models still worth exploration

14 Structure-aware abstraction FMCAD'09, Austin, TX

Variable Sampling

� "Quasi clustering": a single w prevents clustering
± Ì X.(-1(w X1 P) � -2(w X2 P) �«�� -n(w Xn P))

� Pick one value c for w, replace, and cluster
± Ì X\w.(-1,w/c(X1 P) � -2,w/c(X2 P) �«�� -n,w/c(Xn P)

� Result: underapproximation -w/c(P)
± computed one cofactor with respect to w = c
± we have to cover the case Z�F
± Ì X.(w � c � -1(w X1 P) � -2(w X2 P) �«�� -n(w Xn P))

� The process can be iterated
± need to block already covered models
± need to find a suitable sequence of instantiations

15 Structure-aware abstraction FMCAD'09, Austin, TX

Sampling-driven quantification

SamplingAllSMT(Phi, X, W) {

res := False;

(sat, mu) := SMTSolve(Phi);

while sat do

c := PickValue(mu, W);

new := AllSMT(not res and Phi[W / c]);

res := res or new;

(sat, mu) := SMTSolve(Phi and not res);

end while

return res;

}

16 Structure-aware abstraction FMCAD'09, Austin, TX

Implementation

� Extended NuSMV
± empowered with SMT functionalities
± types: reals, integers, bit-YHFWRUV��«

� MathSAT SMT solver used as backend
� High level simplifications

± network of automata
± python script to generate disjunctive partitioned

representation
� Low level simplifications as rewriter over quantified

formulae
� Abstraction based on AllSMT version of MathSAT

17 Structure-aware abstraction FMCAD'09, Austin, TX

Experimental Set up

� Two classes of problems
± from HyTech distribution
± randomly generated networks of automata

� Compared Algorithms
± mono
± + partitioning
± + clustering
± + v-sampling

18 Structure-aware abstraction FMCAD'09, Austin, TX

Results on Hytech models

19 Structure-aware abstraction FMCAD'09, Austin, TX

Results on Random LHA's

20 Structure-aware abstraction FMCAD'09, Austin, TX

Related Work
� Imprecise techniques

± Cartesian Abstraction
� Boolean Quantification

± BDD-based
± SAT-based

� Monolithic SMT-based predicate abstraction
± AllSMT [CAV06]
± BDD + SMT [FMCAD07]

� Software model checking: BLAST, SATABS
± Partitioning transition by transition in CFG
± Forward image computations by inlining unmodified variables

� Avoid abstraction computation
± Directly compute abstract violations [FM09]
± No need for AllSMT functionality

21 Structure-aware abstraction FMCAD'09, Austin, TX

Conclusions

� A structure-aware procedure for the exact
computation of predicate abstraction

� Exploit high level structure
± transition partitioning
± variable scope

� Exploit low level structure
± formula quantification, clustering
± value sampling

� Significant speed-ups

22 Structure-aware abstraction FMCAD'09, Austin, TX

Future Work

� Comprehensive comparison with other
methods
± Experiment with BDD-based abstraction

� Measure impact on CEGAR loop
� Application to post-image computation

± Reachability in abstract space

� Full incrementality

23 Structure-aware abstraction FMCAD'09, Austin, TX

24 Structure-aware abstraction FMCAD'09, Austin, TX

