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Linear Decision Diagrams (LDDs)
… are Binary Decision Diagrams with nodes labeled by linear inequalities
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Our contributions:
• implementation on top of CUDD, including

• support for propositional operations (AND, OR, NOT, ITE)
• support for projection (i.e., existential quantification, QELIM) of numeric variables
•dynamic variable ordering (DVO)

• benchmark and experiments
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Motivation(1): Predicate + Numeric Abstractions
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Predicate and Numeric Abstractions

Predicate Abstraction (PA) (e.g., SDV)

• Typical property: no lock is acquired twice

• Program verification reduced to propositional reasoning with model checker

• Works well for control-driven programs

• Works poorly for data-driven programs

Numeric Abstraction (NA) (e.g, ASTREE)

• Typical property: no arithmetic overflow

• Program verification reduced to arithmetic reasoning

• Works well for data-driven programs

• Works poorly for control-driven programs

How to combine PA and NA to get the best of both?
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Motivation (2): Numeric Decision Diagrams
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Numeric Decision Diagrams

(p1&&p2) || 

(x<0 && y=z)

(x>=0 && z>0) || 

(!(x>=0) && y=z)

p1: x>=0, p2: z>0

b1:x>=0, b2:z>0, b3:y=z

b1

b2 b3

1

1-edges are black, 0-edges are red

edges to 0 node are not shown

normalize

NDD elements are

BDDs over Predicate and Numeric Terms

2P → 2N
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Numeric Decision Diagrams
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Problems with NDDs are:
• No reduction w.r.t. the types of constraints
• All numeric operations are done path-at-a-time  
(i.e., exponential in the diagram!!!)

Lesson learned: need diagrams for linear arithmetic 
with efficient (not path-at-a-time) existential 

quantification



Some Other Applications of LDDs

• Represent and manipulate Boolean formulas over 
linear arithmetic …
– to compute predicate abstraction

– to summarize loop-free code

– for program analysis with disjunctive abstract domain

– to combine predicate and numeric abstractions

– for timed automata verification

– …

• LDDs are NOT good for SATISFIABILITY checking
– not a substitute for an SMT solver
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Talk Outline

• The basics
– variable ordering, reduction rules, propositional 

operations

• Dynamic Variable Ordering

• Quantifier Elimination
– existential quantification of a single variable

– heuristics for quantifying multiple variables

• Implementation, Benchmarks, Results

• Conclusion and Future Work
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Canonizing Linear Inequalities

Linear Inequality: a1 x1 + … + an xn · k

x < 10
x + y = 10
x + y ¸ 10
-x-y · -10

x · 9
x + y · 10 Æ x + y ¸ 10
-x – y · -10
: (x + y · 9)

coefficient variable constant

term

9

´

´

´

´



LDD Node Ordering

{x · 0}  {x · 5}  {x · 10}  {y · 3}  {y · 5}  {z · 6} 

{x · 0}  {x · 10}  {y · 5}  {x · 5}  {z · 6}  {y · 3} Random:

{x · 0}  {x · 10}  {x · 5}  {y · 5}  {y · 3}  {z · 6}Term-sorted:

Ordered:

Ordered: {y · 3}  {y · 5}  {z · 6}  {x · 0}  {x · 5}  {x · 10}
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Reduction: Different Children

t· 5

Reduces to

Same as BDD
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Reduction: Imply High

t· 5

Reduces to 

t· 9

t· 5
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Reduction: Imply Low

t· 5

Reduces to
t· 9 t· 9
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Propositional Operations: APPLY

t· 5 t· 9
OP

ROLDD ROLDD
commutative binary 

operator that distributes 
over ITE
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Propositional Operations: APPLY

t· 5

t· 9
OP

OP
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Rudell’s DVO Algorithm for BDDs
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d d
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Example: Changing levels 

u

Before

v v

f00 f01 f10 f11

v

After

u u

f00 f10 f01 f11

(u, (v, f11, f10), (v, f01, f00)) is overwritten in place by (v, (u, f11, f01), (u, f10, f00))
Trivial new cofactors are reduced, i.e., when f00=f10 or f01=f11
Only the diagram rooted at u is changed (both the label and the children are new)

Complexity: linear in the number of nodes labeled with u in the unique table
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Example: Changing levels in ROLDD

u

10

t<= 5 t<= 10

10

ROLDD with order: u, t<=5, t<=10
(shown as a tree)

Before Reordering

1

0

1

0

u u

t<= 5

t<= 10 t<= 10

New order: t<=5, t<=10,u
Not reduced!

After Reordering

Cannot use BDD reordering for LDD!
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Problems extending DVO to LDDs

• Broken ordering constraints

• Broken Imply-high and Imply-low rules 

• LDDs are not canonical
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Two techniques for QELIM

• Black Box: use QELIM for conjunctions as a 
black box. Apply it to all paths of a diagram
– linear in the number of paths == exponential in 

the size of the diagram!

– many examples in the literature. (e.g., we used it 
in NDDs)

• White Box: Extend Fourier-Motzkin QELIM to 
the DAG of LDD
– in the best case, same complexity as BDD 

quantification
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Fourier-Motzkin QELIM

9 y . x-y·5   Æ x-z¸8   Æ y-z·10

x-z¸ 8 Æ x-z ·15
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FM2(Var y, Formula )
while exists constraint c with y in  do

remove c from 
resolve c with remaining constraints in 

end while

FM1(Var y, Conjunction )
let S be all constraints with y
remove S from 
add all pairwise resolutions of S to 



WB_EXISTS1: Example

x-y· 9
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 y 



WB_EXISTS1: Example (Cont)
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x-y>9,

DAG_RESOLVE

x-y· 9,

DAG_RESOLVE

OR

 y 
DAG_RESOLVE  (Constraint c, ROLDD f) : ROLDD
Recursively resolves c with all constraints in f
Each node in f is visited only once



Quantifying out multiple variables

1: EXISTS(LDD f, Vars V)
2:   res = f;
3:   while (V != empty) 
4: V’ = FIND_DROP_VARS (V, res);
5:     if (V’ != empty) 
6:       res = DC(CONS_OF(V’), res);
7:      V = V \ V’;
8:      continue;
9:    
10:     u = PICK_VAR (V, res);
11:     res = WB_EXISTS1(u, res);
12:     V = V \ {u};
13:   end while
14:   return res;

EXISTS1  -- any quantification procedure that can eliminate a 
single variable. In our implementation, it is the optimized 
WB_EXISTS1 from previous slides 

DC short for DROP_CONS

FIND_DROP_VARS(V, res) – finds all variables in V that 
have trivial resolutions on 
all 1-paths of res

PICK_VAR (V, res)  -- picks a variable from V to be quantified
out next

In our implementation, FIND_DROP_VARS and PICK_VAR
are based on looking at the set of all constraints that are 
in support of res. 
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The Implementation
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LDD Engine

CUDD
Linear Arith

Theories

TVPI(Q),
UTVPI(Q),
UTVPI(Z)

adapted to 
support DVO 

with LDDs



Benchmark: Image Computation

• Each test case is constructed
– from open source software:  CUDD, mplayer, bzip2,...
– extracted using LLVM into SSA with optimizations, 

aggressive loop-unrolling, and inlining
– approximated using UTVPI constraints

• Stats:  850 test cases
4KB – 700KB (in SMT-LIB format),   
30 – 7,956 variables
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 V  R(V, V’)
transition relation of a 

loop-free program 
fragment

Test case:
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BDD vs. LDD sizes

SVO

DVO

LDD=BDD

LDD=10*BDD

BDD=10*LDD

LDD
Sizes

B
D

D
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s

With SVO
BDD = LDD : 407  BDD > LDD : 190

LDD > BDD : 253 LDD > 10*BDD : 18
Memory Outs : LDD=99 BDD=97

Timeouts : LDD=13 BDD=12

With DVO
BDD = LDD : 114  BDD > LDD : 596

LDD > BDD : 140 BDD > 10*LDD : 39
Timeouts : LDD=5 BDD=28
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Overall Results for QELIM

Hard (154 cases) Easy (696 cases)

Alg.
Total
(sec)

QE
(sec)

TO MO
Total
(sec)

QE
(sec)

TO

BB -- -- 141 0 -- -- 670

WB+SVO 38,739 36,511 21 99 395 80 0

WB+DVO 10,953 3,329 9 0 784 219 0
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WB+DVO > WB+SVO :   27        1
WB+DVO = WB+SVO :   659      9
WB+DVO < WB+SVO : 10 144
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Predicate Abstraction with LDDs
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 V  R(V) i (bi  pi(V))
transition relation of a 

loop-free program 
fragment

predicateBoolean variable



Predicate Abstraction with LDDs
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 V  R(V) i (bi  pi(V))
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Related Work
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2008
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Future Work

• Predicate Abstractions with LDDs

• An LDD-based Abstract Domain
– first step is a  disjoint-box domain for variable 

range analysis

– designing a widening is the main challenge

• Public release of the library 
– send email to arie@cmu.edu for more info
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THE END


