

•NO WARRANTY

•THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

•Use of any trademarks in this presentation is not intended in any way to infringe on the rights of
the trademark holder.

•This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

•This work was created in the performance of Federal Government Contract Number FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center. The Government of the United States has a
royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in
part and in any manner, and to have or permit others to do so, for government purposes
pursuant to the copyright license under the clause at 252.227-7013.

2

mailto:permission@sei.cmu.edu

Linear Decision Diagrams (LDDs)
… are Binary Decision Diagrams with nodes labeled by linear inequalities

v

1 0

u

x<10

1 0

y < 5

BDD
LDD

Our contributions:
• implementation on top of CUDD, including

• support for propositional operations (AND, OR, NOT, ITE)
• support for projection (i.e., existential quantification, QELIM) of numeric variables
•dynamic variable ordering (DVO)

• benchmark and experiments
3

Motivation(1): Predicate + Numeric Abstractions

4

3

Combining PA and NA for Soft MC

Gurfinkel and Chaki

© 2008 Carnegie Mellon University

Predicate and Numeric Abstractions

Predicate Abstraction (PA) (e.g., SDV)

• Typical property: no lock is acquired twice

• Program verification reduced to propositional reasoning with model checker

• Works well for control-driven programs

• Works poorly for data-driven programs

Numeric Abstraction (NA) (e.g, ASTREE)

• Typical property: no arithmetic overflow

• Program verification reduced to arithmetic reasoning

• Works well for data-driven programs

• Works poorly for control-driven programs

How to combine PA and NA to get the best of both?

P
re

c
is

io
n

Scalability

NA

PA Unrealistic

Gurfinkel & Chaki. Combining Predicate and Numeric Abstraction for Software Model Checking. In FMCAD 2008

Motivation (2): Numeric Decision Diagrams

5

27

Combining PA and NA for Soft MC

Gurfinkel and Chaki

© 2008 Carnegie Mellon University

Numeric Decision Diagrams

(p1&&p2) ||

(x<0 && y=z)

(x>=0 && z>0) ||

(!(x>=0) && y=z)

p1: x>=0, p2: z>0

b1:x>=0, b2:z>0, b3:y=z

b1

b2 b3

1

1-edges are black, 0-edges are red

edges to 0 node are not shown

normalize

NDD elements are

BDDs over Predicate and Numeric Terms

2P → 2N

Gurfinkel & Chaki. Combining Predicate and Numeric Abstraction for Software Model Checking. In FMCAD 2008

Motivation (2): Numeric Decision Diagrams

6

27

Combining PA and NA for Soft MC

Gurfinkel and Chaki

© 2008 Carnegie Mellon University

Numeric Decision Diagrams

(p1&&p2) ||

(x<0 && y=z)

(x>=0 && z>0) ||

(!(x>=0) && y=z)

p1: x>=0, p2: z>0

b1:x>=0, b2:z>0, b3:y=z

b1

b2 b3

1

1-edges are black, 0-edges are red

edges to 0 node are not shown

normalize

NDD elements are

BDDs over Predicate and Numeric Terms

2P → 2N

Gurfinkel & Chaki. Combining Predicate and Numeric Abstraction for Software Model Checking. In FMCAD 2008

Problems with NDDs are:
• No reduction w.r.t. the types of constraints
• All numeric operations are done path-at-a-time
(i.e., exponential in the diagram!!!)

Lesson learned: need diagrams for linear arithmetic
with efficient (not path-at-a-time) existential

quantification

Some Other Applications of LDDs

• Represent and manipulate Boolean formulas over
linear arithmetic …
– to compute predicate abstraction

– to summarize loop-free code

– for program analysis with disjunctive abstract domain

– to combine predicate and numeric abstractions

– for timed automata verification

– …

• LDDs are NOT good for SATISFIABILITY checking
– not a substitute for an SMT solver

7

Talk Outline

• The basics
– variable ordering, reduction rules, propositional

operations

• Dynamic Variable Ordering

• Quantifier Elimination
– existential quantification of a single variable

– heuristics for quantifying multiple variables

• Implementation, Benchmarks, Results

• Conclusion and Future Work

8

Canonizing Linear Inequalities

Linear Inequality: a1 x1 + … + an xn · k

x < 10
x + y = 10
x + y ¸ 10
-x-y · -10

x · 9
x + y · 10 Æ x + y ¸ 10
-x – y · -10
: (x + y · 9)

coefficient variable constant

term

9

´

´

´

´

LDD Node Ordering

{x · 0} {x · 5} {x · 10} {y · 3} {y · 5} {z · 6}

{x · 0} {x · 10} {y · 5} {x · 5} {z · 6} {y · 3} Random:

{x · 0} {x · 10} {x · 5} {y · 5} {y · 3} {z · 6}Term-sorted:

Ordered:

Ordered: {y · 3} {y · 5} {z · 6} {x · 0} {x · 5} {x · 10}

10

Reduction: Different Children

t· 5

Reduces to

Same as BDD

11

Reduction: Imply High

t· 5

Reduces to

t· 9

t· 5

12

Reduction: Imply Low

t· 5

Reduces to
t· 9 t· 9

13

Propositional Operations: APPLY

t· 5 t· 9
OP

ROLDD ROLDD
commutative binary

operator that distributes
over ITE

14

Propositional Operations: APPLY

t· 5

t· 9
OP

OP

15

Rudell’s DVO Algorithm for BDDs

0

1

2

3

Level Nodes

a a a

b b

c c c

d d

16
*Edges to 0 and 1 are not shown

Example: Changing levels

u

Before

v v

f00 f01 f10 f11

v

After

u u

f00 f10 f01 f11

(u, (v, f11, f10), (v, f01, f00)) is overwritten in place by (v, (u, f11, f01), (u, f10, f00))
Trivial new cofactors are reduced, i.e., when f00=f10 or f01=f11
Only the diagram rooted at u is changed (both the label and the children are new)

Complexity: linear in the number of nodes labeled with u in the unique table

17

SwapInPlace

Example: Changing levels in ROLDD

u

10

t<= 5 t<= 10

10

ROLDD with order: u, t<=5, t<=10
(shown as a tree)

Before Reordering

1

0

1

0

u u

t<= 5

t<= 10 t<= 10

New order: t<=5, t<=10,u
Not reduced!

After Reordering

Cannot use BDD reordering for LDD!
18

SwapInPlace

Problems extending DVO to LDDs

• Broken ordering constraints

• Broken Imply-high and Imply-low rules

• LDDs are not canonical

19

20

x · 0

x · 1

x · 2

y · 3

y · 4

y · 5

x · 0

x · 1

y · 3

x · 2

y · 4

y · 5

x · 0

x · 1

y · 3

y · 4

x · 2

y · 5

x · 0

x · 1

y · 3

y · 4

y · 5

x · 2

L
E
V
E
L
S

Pairwise Swaps

Two techniques for QELIM

• Black Box: use QELIM for conjunctions as a
black box. Apply it to all paths of a diagram
– linear in the number of paths == exponential in

the size of the diagram!

– many examples in the literature. (e.g., we used it
in NDDs)

• White Box: Extend Fourier-Motzkin QELIM to
the DAG of LDD
– in the best case, same complexity as BDD

quantification

21

Fourier-Motzkin QELIM

9 y . x-y·5 Æ x-z¸8 Æ y-z·10

x-z¸ 8 Æ x-z ·15

22

FM2(Var y, Formula )
while exists constraint c with y in  do

remove c from 
resolve c with remaining constraints in 

end while

FM1(Var y, Conjunction )
let S be all constraints with y
remove S from 
add all pairwise resolutions of S to 

WB_EXISTS1: Example

x-y· 9

23

 y 

WB_EXISTS1: Example (Cont)

24

x-y>9,

DAG_RESOLVE

x-y· 9,

DAG_RESOLVE

OR

 y 
DAG_RESOLVE (Constraint c, ROLDD f) : ROLDD
Recursively resolves c with all constraints in f
Each node in f is visited only once

Quantifying out multiple variables

1: EXISTS(LDD f, Vars V)
2: res = f;
3: while (V != empty)
4: V’ = FIND_DROP_VARS (V, res);
5: if (V’ != empty)
6: res = DC(CONS_OF(V’), res);
7: V = V \ V’;
8: continue;
9:
10: u = PICK_VAR (V, res);
11: res = WB_EXISTS1(u, res);
12: V = V \ {u};
13: end while
14: return res;

EXISTS1 -- any quantification procedure that can eliminate a
single variable. In our implementation, it is the optimized
WB_EXISTS1 from previous slides

DC short for DROP_CONS

FIND_DROP_VARS(V, res) – finds all variables in V that
have trivial resolutions on
all 1-paths of res

PICK_VAR (V, res) -- picks a variable from V to be quantified
out next

In our implementation, FIND_DROP_VARS and PICK_VAR
are based on looking at the set of all constraints that are
in support of res.

25

The Implementation

26

LDD Engine

CUDD
Linear Arith

Theories

TVPI(Q),
UTVPI(Q),
UTVPI(Z)

adapted to
support DVO

with LDDs

Benchmark: Image Computation

• Each test case is constructed
– from open source software: CUDD, mplayer, bzip2,...
– extracted using LLVM into SSA with optimizations,

aggressive loop-unrolling, and inlining
– approximated using UTVPI constraints

• Stats: 850 test cases
4KB – 700KB (in SMT-LIB format),
30 – 7,956 variables

27

 V  R(V, V’)
transition relation of a

loop-free program
fragment

Test case:

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 1000000 10000000 100000000

BDD vs. LDD sizes

SVO

DVO

LDD=BDD

LDD=10*BDD

BDD=10*LDD

LDD
Sizes

B
D

D
Si

ze
s

With SVO
BDD = LDD : 407 BDD > LDD : 190

LDD > BDD : 253 LDD > 10*BDD : 18
Memory Outs : LDD=99 BDD=97

Timeouts : LDD=13 BDD=12

With DVO
BDD = LDD : 114 BDD > LDD : 596

LDD > BDD : 140 BDD > 10*LDD : 39
Timeouts : LDD=5 BDD=28

28

Overall Results for QELIM

Hard (154 cases) Easy (696 cases)

Alg.
Total
(sec)

QE
(sec)

TO MO
Total
(sec)

QE
(sec)

TO

BB -- -- 141 0 -- -- 670

WB+SVO 38,739 36,511 21 99 395 80 0

WB+DVO 10,953 3,329 9 0 784 219 0

29

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900

Total Time: WB+DVO and WB+SVO

WB+DVO

WB+SVO

Test
Cases

N
o

rm
al

iz
ed

 T
o

ta
lT

im
e

 S
o

rt
e

d
 b

y
W

B
+S

V
O

Easy Hard

Easy Hard
WB+DVO > WB+SVO : 27 1
WB+DVO = WB+SVO : 659 9
WB+DVO < WB+SVO : 10 144

30

Predicate Abstraction with LDDs

31

 V  R(V) i (bi  pi(V))
transition relation of a

loop-free program
fragment

predicateBoolean variable

Predicate Abstraction with LDDs

32

 V  R(V) i (bi  pi(V))

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

R
u

n
n

in
g

ti
m

e
 in

 s
e

co
n

d
s

Test
Cases

Running Time: MSAT and LDD

MSAT

LDD

Related Work

Decision Diagrams (over linear constraints)
– Strehl. Interval Diagram Techniques… 1999
– Moller et al. Difference Decision Diagrams. 1999
– Larsen et al. Clock Difference Diagrams. 1999

Quantifier Elimination in Large Boolean Formulas
– Clarke et al. SATABS: A SAT-Based PA for ANSI-C. 2005
– Lahiri et al. SMT Techniques for Fast PA. 2006
– Cavada et al. Computing PA by Integrating BDDs and SMT

Solver. 2007
– D. Monniaux. A QELIM Algorithm for Linear Real Arith.

2008

33

Future Work

• Predicate Abstractions with LDDs

• An LDD-based Abstract Domain
– first step is a disjoint-box domain for variable

range analysis

– designing a widening is the main challenge

• Public release of the library
– send email to arie@cmu.edu for more info

34

mailto:arie@cmu.edu

THE END

