

Synthesizing Robust Systems

Roderick Bloem and Karin Greimel (TU-Graz) Thomas Henzinger (EPFL and IST-Austria) Barbara Jobstmann (CNRS/Verimag)

FMCAD 2009 in Austin, Texas

When designing systems:

- environment might not be known, or cannot be precisely modeled, e.g., physical environment
- behaves differently from expected
 - program in libraries, might be used in other than the intended way
 - transmission and other errors
- environment model necessary

Motivation

A system should not only be

- correct, it should also
- behave 'reasonably,' even in circumstances that were not anticipated in the requirements specification[...]

["Fundamentals of software engineering" by GJM]

In short, it should also be robust.

Simple Example

- Resource controller for two clients
 - Clients send requests using signals r_1 , r_2
 - Controller grant resource using signals g_1 , g_2

Assumption A on clients

-never($r_1 \wedge r_2$)

- Guarantee G of controller
 - $-always(r_1 \rightarrow next(g_1))$
 - $-always(r_2 \rightarrow next(g_2))$
 - -never($g_1 \land g_2$)
- Specification $A{\rightarrow}G$

Two Correct Controllers

Specification: $A \rightarrow G$

Input trace: $(r_1r_2)(\overline{r}_1r_2)^{\omega}$ Output trace: $(\overline{g}_1g_2)(\overline{g}_1\overline{g}_2)^{\omega}$

 $(r_1r_2)(\overline{r}_1r_2)^{\omega}$ $(\overline{g}_1g_2)(\overline{g}_1g_2)^{\omega}$

Outline

- Definition
 - Error specifications
 - Robustness (our proposal)
- Verify Robustness
- Synthesize Robust Systems
- Conclusion

Setting

- Reactive finite-state system M (signals I/O)
 - Alphabet $\Sigma = 2^{I \cup O}$ (evaluations of $I \cup O$)
 - Behavior of M is a sequence $\sigma\in\,\Sigma^\omega$
 - Set of all behavior: L(M)
- Specification $\phi = A \rightarrow G$
 - A is assumption on environment
 - G is guarantee of system
 - A and G are safety specifications over $\boldsymbol{\Sigma}$
 - σ satisfies or does not satisfy ϕ

Error Specification (1)

- Error function d: $\Sigma^{\omega} \cup \Sigma^* \to N \cup \{\infty\}$
 - maps all behaviors/prefixes to number or ∞
 - Idea: count errors (violations of specification),
 higher value means more errors
 - Quantitative specification

Error Specification (2)

- Error function d: $\Sigma^{\omega} \cup \Sigma^* \to N \cup \{\infty\}$
- Det. Automaton A with weight function w mapping edges to weights d(σ) = sum of weights of run over σ
- Error specification is pair (d_e, d_s)
 - $-d_e$...error function for environment
 - d_s…error function for systems

From Spec to Error Function

- In general, "a design choice"
- We show: one way of going from spec to error function

Safe region= $\{q_0, q_1\}$

Good properties of this error function:

- If behavior σ is error-free, then $d(\sigma)=0$
- If behavior σ has errors $d(\sigma)>0$ **Bad properties**:
 - Does not distinguish between single and multiple errors (it's a trap)

Example

What to do with traps?

- (a) Reset \rightarrow go to initial states (restart property)
- (b) Skip \rightarrow self loop (ignore input)
- (c) Follow closest correct letter in alphabet

Barbara Jobstmann

Robustness

• System M is **robust** wrt error spec (d_e, d_s) if forall $\sigma \in L(M)$:

 $d_e(\sigma) \neq \infty \text{ implies } d_s(\sigma) \neq \infty$

- System M is **k-robust** wrt (d_e,d_s) if exists $c \in N$ s.t. forall $\sigma \in prefix(L(M))$ $d_s(\sigma) \le k \cdot d_e(\sigma) + c$
- k-robustness classifies robust systems wrt infinite behavior

1.1

Verifying Robustness (1)

- Given system M and automata A_e and A_s for d_e and d_s, resp., check if M is robust
 - Compute product $M \times A_e \times A_s$ with two weight functions w_s and w_e
 - Then, M is robust if forall $\sigma \in L(M \times A_e \times A_s)$ sum of w_e over $\sigma \neq \infty$ implies sum of w_s $\neq \infty$.
 - Equivalently, if infinitely often w_s> 0, then infinitely often w_e>0 (Streett)

- Two sets E_s , E_e of edges: one with $w_s > 0$ and on with $w_e > 0$
- Streett cond. with pair (E_s, E_e) , linear in #edges

1.1

Example

Verifying K-Robustness (1)

- Recall, exists $c \in N$, forall $\sigma \in prefix(L(M))$ $d_s(\sigma) \le k \cdot d_e(\sigma) + c$
- **0-Robust** = finitely many errors $d_s(\sigma) \le c$
- k-Robust = average ratio between #system errors and #environment errors is ≤ k

Verifying K-Robustness (2)

- Given robust system M, automata A_e and A_s, check if M is k-robust.
 - Compute product $M \times A_e \times A_s$ with two weight functions w_s and w_e
 - M is k-Robust if forall runs $q_0q_1q_2...$

$$\underset{m \to \infty}{\text{lim}_{i=m..l}(w_s(q_i, q_{i+1}))} \leq k$$

 True if maximum simple cycle ratio ≤ k, computable in O(#states²·#edges)

1. A. A.

Example $M \times A_e \times A_s$ $\overline{r}_{1}(0,0)$ r₁r₂(1,1) \overline{g}_1g_2 $\overline{r}_{1}(0,0)$ $r_{1}r_{2}(1,1)$ $r_1\overline{r}_2(0,0)$ $g_1\overline{g}_2$ $r_1 \overline{r}_2 (0,0)$ 1-robust

maximum simple cycle ratio=1

Synthesizing Systems

- Two players
- Alternately, pick signal assignments
- Add weights accordingly
- Winning objective?

Synthesizing Systems

Synthesizing Robust Systems

- Play is winning: if infinitely many edges with $w_s>0$, then infinitely many edges with $w_e>0$
- Two sets E_s , E_e of edges: one with $w_s > 0$ and on with $w_e > 0$
- Winning objective: Streett with 1-pair (E_s,E_e)

Synthesizing Systems

- A novel game type
- Formally, value of a play $\rho = q_0 q_1 q_2 \dots$ is

$$v(\rho) = \lim_{m \to \infty} \text{liminf}_{I \to \infty} \frac{\text{sum}_{i=m..l}(w_s(q_i, q_{i+1}))}{1 + \text{sum}_{i=m..l}(w_e(q_i, q_{i+1}))}$$

- Objective of Player System: minimize v(ρ)
- In paper, we show that in ratio games
 - both players have memoryless winning strategies and
 - reduction to mean-payoff game (decision)

1. A . A

Conclusion

- A notion of robustness based on error functions
- Algorithms to
 - verify robustness and k-robustness
 - synthesize robust systems with minimal k (based on our ratio games)