More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics

Andreas Fröhlich, Gergely Kovásznai, Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria
http://fmv.jku.at

CSR 2013
June 25 - June 29, 2013
Ekaterinburg, Russia

Motivation

- How does the encoding of the bit-widths affect the complexity of satisfiability checking for BV logics?
- In practice logarithmic (e.g. binary, decimal, hexadecimal) encoding is used (in contrast with unary encoding)

Example in SMT2

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
```

Using Boolector:

- input file of 225 bytes in SMT2 format
- 129 MB in AIGER format; 843 MB in DIMACS format

Motivation

- How does the encoding of the bit-widths affect the complexity of satisfiability checking for BV logics?
- In practice logarithmic (e.g. binary, decimal, hexadecimal) encoding is used (in contrast with unary encoding)

Example in SMT2

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
```

Using Boolector:

- input file of 225 bytes in SMT2 format
- 129 MB in AIGER format; 843 MB in DIMACS format

Let QF_BV be the set of bit-vector formulas with binary encoding and all common bit-vector operations, e.g. bitwise operations, arithmetic operations, concatenation, slicing, shifts, relational operations, ...

- QF_BV is NExpTime-complete
- Proof:
- QF_BV is NExpTime-hard:

$$
\text { DQBF } \xrightarrow{\text { polynomially }} \text { QF_BV }
$$

- QF_BV \in NExpTime:

$$
\mathrm{QF} _\mathrm{BV} \xrightarrow{\text { exponentially }} \mathrm{SAT} \in \mathrm{NP}
$$

Completeness Results

How does restricting the set of operations affect the complexity?

- QF_BV $\ll 1$: bitwise operations, equality, and shift by only 1 \rightarrow QF_BV $\lll 1$ is PSPACE-complete
- QF_BV ${ }_{b w}$: bitwise operations and equality \rightarrow QF_BV $b w$ is NP-complete

Completeness Results

How does restricting the set of operations affect the complexity?

- QF_BV ${ }_{\ll c}$: bitwise operations, equality, and shift by any constant $\rightarrow \mathrm{QF}_{-} \mathrm{BV}_{\ll c}$ is NExpTime-complete
- QF_BV $\lll 1$: bitwise operations, equality, and shift by only 1 $\rightarrow \mathrm{QF}_{-} \mathrm{BV}_{\ll 1}$ is PSPACE-complete
- QF_BV ${ }_{b w}$: bitwise operations and equality \rightarrow QF_BV ${ }_{b w}$ is NP-complete

Completeness Results

How does restricting the set of operations affect the complexity?

- QF_BV $_{\ll c}$: bitwise operations, equality, and shift by any constant $\rightarrow \mathrm{QF}_{-} \mathrm{BV}_{\ll c}$ is NExpTimE-complete
- QF_BV ${ }_{\ll 1}$: bitwise operations, equality, and shift by only 1 $\rightarrow \mathrm{QF}_{-} \mathrm{BV}_{\ll 1}$ is PSPACE-complete
- $\mathrm{QF}_{-} \mathrm{BV}_{b w}$: bitwise operations and equality \rightarrow QF_BV ${ }_{b w}$ is NP-complete

Completeness Results

How does restricting the set of operations affect the complexity?

- QF_BV $_{\ll c}$: bitwise operations, equality, and shift by any constant $\rightarrow \mathrm{QF}_{-} \mathrm{BV}_{\ll c}$ is NExpTimE-complete
- QF_BV ${ }_{\ll 1}$: bitwise operations, equality, and shift by only 1 \rightarrow QF_BV $_{\ll 1}$ is PSPACE-complete
- QF_BV ${ }_{b w}$: bitwise operations and equality
$\rightarrow \mathrm{QF}_{-} \mathrm{BV}_{b w}$ is NP-complete

Complexity: $\mathrm{QF}_{_} \mathrm{BV}_{\ll 1}$

$\mathrm{QF}_{-} \mathrm{BV}_{\ll 1}$ is PSPACE-complete:

- QF_BV is PSpace-hard:

$$
\mathrm{QBF} \xrightarrow{\text { polynomially }} \mathrm{QF}_{-} \mathrm{BV}_{\ll 1}
$$

- QF_BV \in PSpace:

$$
\text { QF_BV }_{\ll 1} \xrightarrow{\text { polynomially }} \text { Sequential Circuits }
$$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

Quantified Boolean Formulas (QBF):

- Variable dependencies are implicitely specified by prefix order
- Dependencies represent a total order

Example DQBF

$$
\begin{aligned}
\forall u_{2} \exists x \forall u_{1} \exists y \forall u_{0} \exists z . & F= \\
\forall u_{2} \exists x \forall u_{1} \exists y \forall u_{0} \exists z \cdot & \left(x \vee y \vee \neg u_{2} \vee \neg u_{1}\right) \wedge \\
& \left(x \vee \neg z \vee u_{2} \vee \neg u_{1} \vee \neg u_{0}\right) \wedge \\
& \left(\neg y \vee z \vee \neg u_{1} \vee u_{0}\right) \wedge \\
& \left(\neg x \vee y \vee \neg u_{2}\right) \wedge \\
& \left(\neg x \vee \neg z \vee u_{2} \vee \neg u_{0}\right)
\end{aligned}
$$

- QBF is PSPACE-complete

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y{ }^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

(1) Eliminate the quantifier prefix
(2) Replace logical connectives with bitwise operators
(3) Replace Boolean variables with bit-vector variables of bit-width 2^{k} k : number of universal variables in the QBF

So far, corresponds to $\exists u_{2}, u_{1}, u_{0}, x, y, z . F$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

- Universal vars \leftarrow Assign binary magic numbers to $U_{i} s$!

$$
U_{2}:=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right], U_{1}:=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right], U_{0}:=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

9 Universal vars \leftarrow Assign binary magic numbers to U_{i} !

$$
\left.U_{2}:=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right], U_{1}:=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
1 \\
0 \\
1 \\
\hline 1
\end{array}\right], U_{0}:=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
\hline 1
\end{array}\right] \quad \begin{array}{l}
1 \\
\hline 1
\end{array}\right]
$$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

4 Universal vars \leftarrow Assign binary magic numbers to $U_{i} s$!
For $m \in\{0,1,2\}$, add:

$$
\begin{gathered}
T_{m}^{[8]}=\left(\bigwedge_{0 \leq i<m} U_{i}^{[8]}\right) \oplus U_{m}^{[8]} \\
T_{m}^{[8]}=U_{m}^{[8]} \ll 1^{[8]}
\end{gathered}
$$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]}
\end{aligned}
$$

$$
\wedge \bigwedge_{m \in\{0,1,2\}}\left(\left(\bigwedge_{0 \leq i<m} U_{i}\right) \oplus U_{m}=U_{m} \ll 1^{[8]}\right)
$$

So far, corresponds to $\forall u_{2}, u_{1}, u_{0} \exists x, y, z . F$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{m \in\{0,1,2\}}\left(\left(\bigwedge_{0 \leq i<m} U_{i}\right) \oplus U_{m}=U_{m} \ll 1^{[8]}\right)
\end{aligned}
$$

6 Existential vars \leftarrow Represent Skolem-functions as bit-vectors!

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{m \in\{0,1,2\}}\left(\left(\bigwedge_{0 \leq i<m} U_{i}\right) \oplus U_{m}=U_{m} \ll 1^{[8]}\right)
\end{aligned}
$$

5 Existential vars \leftarrow Represent Skolem-functions as bit-vectors!

Let U_{m} be the innermost universal variable an existential variable E depends on. For $m>0$, add:

$$
\begin{gathered}
U_{m}^{\prime}=\sim\left(\left(U_{m} \ll 1\right) \oplus U_{m}\right) \\
\left(E \& U_{m}^{\prime}\right)=\left((E \ll 1) \& U_{m}^{\prime}\right)
\end{gathered}
$$

Complexity: $b v f_{\ll 1}$ is PSPACE-hard

$$
\begin{aligned}
& \left(\left(X^{[8]}\left|Y^{[8]}\right| \sim U_{2}^{[8]} \mid \sim U_{1}^{[8]}\right) \&\left(X\left|\sim Z^{[8]}\right| U_{2}\left|\sim U_{1}\right| \sim U_{0}^{[8]}\right) \&\right. \\
& \left(\sim Y|Z| \sim U_{1} \mid U_{0}\right) \&\left(\sim X|Y| \sim U_{2}\right) \& \\
& \left.\left(\sim X|\sim Z| U_{2} \mid \sim U_{0}\right)\right)=\sim 0^{[8]} \\
& \wedge \bigwedge_{m \in\{0,1,2]}\left(\left(\bigwedge_{0 \leq i<m} U_{i}\right) \oplus U_{m}=U_{m} \ll 1^{[8]}\right) \\
& \wedge U_{2}^{\prime}=\sim\left(\left(U_{2} \ll 1\right) \oplus U_{2}\right) \wedge\left(X \& U_{2}^{\prime}\right)=\left((X \ll 1) \& U_{2}^{\prime}\right)
\end{aligned}
$$

$$
\wedge U_{1}^{\prime}=\sim\left(\left(U_{1} \ll 1\right) \oplus U_{1}\right) \wedge\left(Y \& U_{1}^{\prime}\right)=\left((Y \ll 1) \& U_{1}^{\prime}\right)
$$

Corresponds to $\forall u_{2} \exists x \forall u_{1} \exists y \forall u_{0} \exists z$. F

Complexity: QF_BV $\ll 1 \in$ PSpACE

- Existing work for non-fixed-size bit-vectors resp. quantifier-free Presburger arithmetic with bitwise operations (QFPABIT):

QFPABIT $\xrightarrow{\text { polynomially }}$ Sequential Circuits
A. Spielmann, V. Kuncak, Synthesis for Unbounded Bit-Vector Arithmetic. In: Proc. IJCAR'12.

- A flat normal form of the original formula is created:

Logical combination of certain atomic expressions.

- For each atomic expression a direct translation into an atomic sequential circuit can be given.
- The result is the logical combination of the atomic circuits.
- Can be adopted for fixed-size bit-vectors of bit-width 2^{n} by introducing a n-bit counter.

Counter can be realized using bitwise operations and shift by 1 .

Complexity: QF_BV ${ }_{b w} \in$ NP

- Existing work on bit-width reduction of bit-vector formulas.
P. Johannsen, Reducing Bitvector Satisfiability Problems to Scale Down Design Sizes for RTL Property Checking. In: Proc. HLDVT'01.
- Basically: "It is enough to consider as many bits as there are equalities in the formula."

Different bit-positions do not interact with each other and a witness for every falsified equality can be given.
\rightarrow A reduction to a bit-width bounded set of formulas exists.

- If $S \subset$ QF_BV is bit-width bounded, $S \in$ NP.
G. Kovásznai, A. Fröhlich, A. Biere, On the Complexity of Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width. In: Proc. SMT'12.

Practical Considerations

- PSpace-inclusion also holds for addition, indexing, multiplication by constant, relational operations, ...
- Bit-blasting can cause exponential growth.
- Use Model Checkers to solve QF_BV ${ }_{\ll 1}$ formulas more efficiently. A. Fröhlich, G. Kovásznai, A. Biere, Efficiently Solving Bit-Vector Problems Using Model Checkers In: Proc. SMT'13 (to appear).

```
Example in SMT2
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
```


Experimental Results

Time needed to solve instances of shift1add with different bit-widths

Experimental Results

Space needed to solve instances of shift1add with different bit-widths

Conclusion

Theoretical Results:

- QF_BV $_{\ll c}$ is NExpTime-complete.
- QF_BV $\lll 1$ is PSpace-complete.
- QF_BV ${ }_{b w}$ is NP-complete.

Future Work:

- Is Presburger arithmetic on fixed-size bit-vectors still NP-complete?
- Can we use our approach to solve industrial benchmarks more efficiently?
- How can state-of-the-art SMT solvers profit from techniques used in model checkers?

