Theoretical and Practical Aspects
of Bit-Vector Reasoning

Andreas Frohlich

Institute for Formal Models and Verification
Johannes Kepler University

PhD Presentation
Thursday, April 28th, 2016
Linz, Austria

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Research Overview 1/27

m Research Areas: Bit-Vectors, SAT, DQBF, SMT, Local Search, ...

m L|ist of Contributions:
= Total of 15 publications (14 peer-reviewed, 1 benchmark description)
= 2 solvers (1 publicly available)
= 2 translation tools (both publicly available)

= Several challenging benchmark families (publicly available)

® Thesis “Theoretical and Practical Aspects of Bit-Vector Reasoning”
= Consisting of 9 publications

= Some additional unpublished complexity results

EEEEEEE
IIIIIIIIIIIIII

Outline 0/27

B Preliminaries

® Selected key contributions
= Complexity of bit-vector logics
= Reencoding of bit-vector formulas

= DQBF solving

SLS for SMT

® Conclusion

EEEEEE
IIIIIIIIIIIIII

Outline 3/27

® Preliminaries

m Selected key contributions
= Complexity of bit-vector logics
= Reencoding of bit-vector formulas

= DQBF solving

SLS for SMT

® Conclusion

EEEEEEEEEEEEEE
TTTTTT

Bit-Vector Reasoning: Motivation 4/27

® Bit-Vector: String of bits {0, 1}" of fixed length n

= Practical Applications

= Hardware Verification

Natural representation of RTL specifications (e.g., VHDL, Verilog)
Equivalence checking or property checking (e.g., used by Intel)

= Software Verification

Natural representation of datatypes

SAGE: Large-scale project at Microsoft

EEEEEEE
IIIIIIIIIIIIII

Complexity Classes 5/27

P C NP C PSPACE C NEXPTIME C EXPSPACE C 2-NEXPTIME C ...

®= Bounds in regard to the input size:
= P: problems can be solved in polynomial time
= NP: solutions can be checked in polynomial time
= PSPACE: problems can be solved with polynomial space

= NEXPTIME: solutions can be checked in exponential time

= NEXPTIME: more succinct representations than NP

= (Can be solved by NP algorithms after (exponential) expansion

EEEEEEE
IIIIIIIIIIIIII

Related Problems 6/27

Propositional domain {0, 1}:

= SAT [Expxp,x3.] (V) A (g Vag) A Vo) A (—xp Vag)
NP-complete

= QBF Yuyde; Vuy des . (I/tz V ﬂel) A <—lu1 V €1> A (u1 V —lez) A (—lu2 V 82)
PSPACE-complete

= DQBF Vuj,updei(uy),ea(uz). (uzpV—er)A(-upVey)A(upV-ez) A(-upVer)
NEXPTIME-complete

First-order but no functions:

= EPR da,bVx,y. (pla,x,y)V—q(y.x,b)) N(g(x,b,y)V—p(y,a,x))
(Bernays-Schonfinkel class) NEXPTIME-complete

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Bit-Vector Logics 7/27

= QF BV: Included in SMT-LIB
= Bit-Vector Variables: x4 yl8 A1 .
= Bit-Vector Constants: 10114 1001101018]. 18], ...

® Bit-Vector Operators:

= Bitwise: ~ & | &
= Arithmetic: + - - /
= Relational: = < <

= Shifts: <« >

EEEEEEE
IIIIIIIIIIIIII

QOutline 8/27

B Preliminaries

m Selected key contributions
= Complexity of bit-vector logics

= Reencoding of bit-vector formulas

DQBF solving

SLS for SMT

® Conclusion

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Solving QF BV

® Running example:
(z=x+y) AN (z=x<1) A (x#Yy)
= With bit-vectors of fixed bit-width », e.g., n = 32:
(232 = xB321 1 32y A (7132 = <32 132y A (132) £ 4, 32]y
m Satisfiability: Are there bit-vectors, so that the formula evaluates to true?

= Common solving approach:

Bit-blasting (encoding the bit-vector formula as a circuit) ...
...and then using a SAT-solver

= QOften assumed to be NP-complete:

“This paper addresses the satisfiability problem for bit-vector for-
mulas: [...] It is easy to see that this problem is NP-complete.”

9/27

EEEEEEE
IIIIIIIIIIIIII

SMT-LIB Format 10/27

= Complexity actually depends on the encoding of bit-widths

® Consider the previous example, ...

I BN N L B D L NN A
...with large n, e.g., n = 1,000, 000.

® |n practice: logarithmic encoding, e.g., SMT-LIB format

(set—-logic QF_BV)

(declare—-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare—-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x vy)))

(assert (= z (bvshl x (_ bvl 1000000))))
(assert (distinct x vy))

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Bit-Blasting is exponential

= x!"l can be “written down” using log(n) bits, . ..

(set-logic QF_BV)
(declare—-fun x ()
(declare—fun y ()
(declare—-fun z ()
(assert (= z (
(assert (= z (
(

(
(

(—

BitVec 1000000))

assert (distinct x vy))

BitVec 1000000))
BitVec 1000000))
bvadd x y)))
bvshl x

(_ bvl 1000000))))

® .. but bit-blasting requires n separate variables xg,xy,...,x,_1

bit-width | input

10 223

100 2277

1,000 231
10,000 235
100,000 239
1,000,000 243
10,000,000 2477

size
Byte
Byte
Byte
Byte
Byte
Byte
Byte

| bit-blasting

0.
0.
0.
0.
14.
167.

Os
Os
Os
9s
1ls
9s

output

4.
51.
610.
7.
79.
883.

size

O WO W Ik

kB
kB
kB
MB
MB
MB

11/27

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

QF_BV is NEXPTIME-Complete

m Satisfiability for QF BV is NEXPTIME-complete

® Hardness: reduction from DQBF to QF_BV

= Use the so-called binary magic numbers (e.g., in Knuth—TAOCP)

Vuoul 17%) —

= Eliminate dependencies:

3 e(ug,uy)

%

EBl & NUI[S] _ (EB « 288y & NUI[S]

—_—O = O = O = O

—_—_ O O = = O

12/27

[SMT’12]

—_ = = = O OO OO O

EEEEEE
IIIIIIIIIIIIII

Restricted Operator Sets 13/27

= Complexity depends on the encoding ...

= .. but also on the set of operators: [CSR’13]

= QF BV (only bitwise operations, equality, and left shift)
QF BV is NEXPTIME-complete

= QF_BV«, (only bitwise operations, equality, and left shift by one)
QF BV, is PSPACE-complete

= QF_BV,,, (only bitwise operations and equality)
QF_BV,,, is NP-complete

EEEEEEE
IIIIIIIIIIIIII

Outline a7

B Preliminaries

m Selected key contributions
= Complexity of bit-vector logics
= Reencoding of bit-vector formulas
= DQBF solving

m SLS for SMT

® Further research

®m Conclusion (Summary, Impact, Future Work)

EEEEEEEEEEEEEE
T

Solving QF BV «, 15/27

® Consider the previous example:

AN N T BN B o N BN

= Can we do better than bit-blasting?

= fcanbeexpressedby & | & = <«
(217 = ¥l @yl EBCI[Z]) A (C[O”Jt — () & ylly | ((CI[Z] < 111y & (7! |y[n])))

= The example is in QF BV,

— can be solved in PSPACE

= Polynomial encoding as a model checking problem

EEEEEEE
IIIIIIIIIIIIII

SMV Encoding of Addition

init (counter_bit0) := FALSE;
next (counter_bit0) := counter_bit0 xor (TRUE);
init (counter bitl) = FALSE;

()

next (counter _bitl

init (counter_bitl9) := FALSE;
next (counter bitl9) := counter bitl9 xor
(counter_bit0 & ... & counter bitl8);

init (counter_gte_1000000) := FALSE;
next (counter_gte_1000000) := counter_gte_1000000 |

(counter_bit0 & counter bitl & ... & counter bitl9);

init (atom_add) := TRUE;
next (atom_add) := case

counter_gte_ 1000000 : atom_add;

TRUE : atom_add & (z <-> (x xor y xor atom_cin));
esac;

init (atom_cin) := FALSE;
next (atom_cin) := case

counter_gte_1000000 : atom_cin;

TRUE : (x & y) | (x & atom_cin) | (y & atom_cin);
esac;

AG (!counter_gte_1000000 | 'atom_add)

:= counter_bitl xor (counter_bitO0);

16/27

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

BV2SMV 17/27

= BV2SMV: Polynomial translation from QF_BV , to SMV [SMT’13]

m SMV formulas can be solved with model checkers

= BDD based model checkers are most efficient

Time needed to solve instances of shift1add with different bit-widths Space needed to solve instances of shiftiadd with different bit-widths
1000 T T T T T T T T T T
Boolector ——] Boolector ——
STP ---x--- » X o] STP ---x---
llImc -~ /] llImc -~
liImc-BDD-bw -~ '3 /! /] liImc-BDD-bw &
NuSMV - —=-— : ,X\/ / NuSMV - —=—
NuSMV-bw ---c-- ! / « 1000 [NuSMV-bw --o-- .
Tip-BMC -~ -e-- - K n % Tip-BMC -~ -e-- - E
! / U __
xoo K BI X
Bv‘/@ K
g g1 8 f R = T
E g e g * _m
- So - 0 -t
G 'JB] %) e]
el]) %x% g .~r+%!‘755g; ©-9-0-0-9-0---9-0:-0-6--9
10 fiﬁaff’ég'\iﬁ'%'f&—F—iﬁ ETA 0 - Al - - W = JON = B = s R = B = M IO = SR B = S B M S
. B .o
K ®
" 'y
o]
P At I ® I I I
100 1000 10000 100000 1e+06 100 1000 10000 100000 1e+06
bit-width bit-width

= Application benchmarks by Intel

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Qutline 18/27

B Preliminaries

m Selected key contributions
= Complexity of bit-vector logics
= Reencoding of bit-vector formulas

= DQBF solving

SLS for SMT

® Conclusion

EEEEEEEEEEEEEE
TTTTTT

DQBF: Motivation 19/27

® |nteresting in the context of QF _BV

= DQBF is NEXPTIME-complete — possible target logic for QF BV

® Succinct encodings of problems
= Partial equivalence checking

= Partial information games

= However: Not a lot of previous work
= Mainly theoretic

= No existing solver

EEEEEEE
IIIIIIIIIIIIII

DQBF: Solvers (1) 20/27

= DQDPLL [POS’12]
= DPLL and QDPLL successful for SAT and QBF

= Search-based approach

Requires dependency constraints to be respected

= Many techniques can be lifted (bottom-up)

Unit Propagation, Pure Literal Reduction, Clause Learning
Universal Reduction, Cube Learning

= Prototype: Not very efficient

® The first existing DQBF solver

EEEEEEE
IIIIIIIIIIIIII

DQBF: Solvers (2) 21/27

® iDQ [POS’14]
= |Prover successful for EPR

= Techniques can be reused and refined (top-down)

SAT overapproximations CEGAR loop |

V

CEGAR loop
= No Solution

= More efficient than iProver

= Can compete with QBF solvers

Solution

= First publicly available (complete) DQBF solver

EEEEEEE
IIIIIIIIIIIIII

Qutline 22/27

B Preliminaries

m Selected key contributions
= Complexity of bit-vector logics
= Reencoding of bit-vector formulas

= DQBF solving

SLS for SMT

® Conclusion

EEEEEEEEEEEEEE
TTTTTT

Stochastic Local Search for SAT 23/27

® Search on the space of full assignments o € {0,1}"
= Starting from an initial assignment
= Local “improvement” in regard to a heuristic “score”
= Typical score for SAT: Number of unsatisfied clauses

= Example:
= F=(xgVx1)A(—xgV—x)A(—x1V—xp), withoa=(0,0,0),F(a)=0AT1A1

— 0L(xp) := —0a(xg), with a = (1,0,0),F(a0) = 1AOA 1

— 0(xp) 1= —a(xn), with a = (1,0,1),F(a) = 1ATA1

m Stochastic: Probabilistic component in choosing the next move

JXU

JOHANNES KEPLER

PLI
UNIVERSITY LINZ

Lifting SLS to SMT 24/27

m Stochastic local search for SAT

= Lots of previous work, but bad on application benchmarks

m BV-SLS: Stochastic local search for bit-vectors [AAAI'15]
= No bit-blasting

= Works on the theory representation of the formula

® |dea: Combine techniques from SAT with QF BV theory information
= Many techniques from SAT can successfully be lifted

= Theory information allows to deal with structure efficiently

EEEEEEE
IIIIIIIIIIIIII

BV-SLS: Results

Z3 BV-SLS [sec]

T/0

100 |

x
%
X
10 #& =~

CCAnNr [sec]

T/0)

100

10 ¢

solved instances

QF BV | SAGE2

CCAnr 5409 64
CCASat 4461 8
probSAT 3816 10
Sparrow 3806 12
VW2 2954 4
PAWS 3331 143
YalSAT 3756 142
Z3 (Default) 7173 5821
Z3 BV-SLS 6172 3719

10 100 T/O

Z3 (Default) [sec]

T/0

100

10

0 1 10 100 T/O

Z3 (Default) [sec]

25/27

104

103

— 102

— 10

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Qutline 26/27

B Preliminaries

m Selected key contributions
= Complexity of bit-vector logics
= Reencoding of bit-vector formulas

= DQBF solving

SLS for SMT

® Conclusion

EEEEEEEEEEEEEE
TTTTTT

Conclusion 27/27

® Presented contributions:

= Complexity of quantifier-free bit-vector logics [SMT’12, CSR’13]
= Reencoding of QF BV, to SMV [SMT’13]
= 2 decision procedures for DQBF [POS’12, POS’14]
= Lifting stochastic local search to the theory level [AAAI'15]

= Further results:
= Reencoding of QF BV to EPR [CADE’13]

= More on the complexity of bit-vector logics [IMFCS’14, TOCS’15, Thesis’16]

= |mproving state-of-the-art in SAT solving [SAT’14a, SAT'14b, POS’15, SAT’'15]

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

References (1) 28/27

® Andreas Frohlich, Gergely Kovasznai, Armin Biere. A DPLL Algorithm for Solving
DQBF. [POS’12]

® Gergely Kovasznai, Andreas Frohlich, Armin Biere. On the Complexity of Fixed-Size
Bit-Vector Logics with Binary Encoded Bit-Width. [SMT'12]

® Gergely Kovasznai, Andreas Frohlich, Armin Biere. BV2EPR: A Tool for Polynomially
Translating Quantifier-free Bit-Vector Formulas into EPR. [CADE'13]

® Andreas Frohlich, Gergely Kovasznai, Armin Biere. More on the Complexity of Quan-
tifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding. [CSR’13]

® Andreas Frohlich, Gergely Kovasznai, Armin Biere. Efficiently Solving Bit-Vector Prob-
lems Using Model Checkers. [SMT’13]

m Gergely Kovasznai, Helmut Veith, Andreas Frohlich, Armin Biere. On the Complexity
of Symbolic Verification and Decision Problems in Bit-Vector Logic. [IMFCS’14]

= Tomas Balyo, Andreas Frohlich, Marijn Heule, Armin Biere. Everything You Always
Wanted to Know about Blocked Sets (But Were Afraid to Ask). [SAT’1443]

EEEEEEE
IIIIIIIIIIIIII

References (2) 20/27

® Adrian Balint, Armin Biere, Andreas Frohlich, Uwe Schoning. Improving implementa-
tion of SLS solvers for SAT and new heuristics for k-SAT with long clauses. [SAT 14Db]

® Andreas Frohlich, Gergely Kovasznai, Armin Biere, Helmut Veith. iDQ: Instantiation-
Based DQBF Solving. [POS’14]

® Andreas Frohlich, Armin Biere, Christoph M. Wintersteiger, Youssef Hamadi. Stochas-
tic Local Search for Satisfiability Modulo Theories. [AAAI'15]

®m Gergely Kovasznai, Andreas Frohlich, Armin Biere. Complexity of Fixed-Size Bit-
Vector Logics. [TOCS’15]

= Armin Biere, Andreas Frohlich. Evaluating CDCL Variable Scoring Schemes.
[SAT’15]

= Armin Biere, Andreas Frohlich. Evaluating CDCL Restart Schemes.
[POS’15]

= Andreas Frohlich. Theoretical and Practical Aspects of Bit-Vector Reasoning.
[Thesis'16]

EEEEEEE
IIIIIIIIIIIIII

BV2SMV

= BV2SMV: Polynomial translation from QF_BV , to SMV

m SMV formulas can be solved with model checkers

= BDD based model checkers are most efficient

Time needed to solve instances of power2sum with different bit-widths

1000

Booiector —t X
STP - . x/
lime ------ K 7X -
limc-BDD-bw & . / A
NuSMV - —=-— / / ;
NuSMV-bw ---c--- | ® S re W
Tip-BMC - -e-- | Ay °
-}
./ ,' s
e - 4
i o-. .
° E/ e Q/
£ o &,/ i
oA
. o /I ’O"o
! ; .
/
’vE i,l" o o]
F a H
.I,"’:ﬂ/' o9
-] - O,
wged
1 1 1
10000 100000 1e+06

bit-width

= Application benchmarks by Intel

space

1000

30/27

[SMT’13]

Space needed to solve instances of power2sum with different bit-widths

Boolector ——

STP —--x---

llme --->---
liImc-BDD-bw &
NuSMV - —=—

I NuSMV-bw ---6--
Tip-BMC -~ -e-- -

-
f—
- e O--0--0-0-0-.g-0--0-0---6
*Eﬁ‘ﬁf.’gg/—g' BB ==
3 1 1 1
100 1000 10000 100000 1e+06
bit-width

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Example: SLS for SMT 31/27

xX+3=r~x,

where x is a bit-vector of n = 6. If we initialize the search:
x=10,0,0,0,0,0]
—[0,0,0,0,1,1] =[1,1,1,1,1,1]
Best improvement by negating x:
x=[1,1,1,1,1,1]
—10,0,0,0,1,0] =[0,0,0,0,0,0]
Flipping the least significant bit is the only move that will further increase the score:

x=1[1,1,1,1,1,0]

—10,0,0,0,0,1] =[0,0,0,0,0, 1]

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Example: iDQ

Y = Vuj,upTdey(ug,up),ex(uz) . (uyVer)A(upVerVey)
Initial set of clause instances:
(et)m N (€1Ver)u,
Propositional abstraction:
(x1) A (X2 V x3)

—o={x; — 1,xp - 0,x3 -0}

Refinement:
(e1)m A (e1)mu N (€1Ver)uy, N(e1Vex)m u,
Propositional abstraction:
(x1) A () A (X3 Vxg) A (X2 V x4)

—o={x; — L,xp > 1,x3 > 0,x4 — 1}

32/27

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Reduction: QF BV to EPR 33/27

Bitwise: z12"] = x[2"] | y[2"]

Pzlin—1;---510) < Px(in—1,---5i0) vV Py(in—1,---,io)

Shift by one: 712" = x[2" « 12
succ(in_1,---,i3,02,i1,0,0,—1,-.-,13,12,11,1)

succ(ip_1,.--,i3,i2,0,1,i,_1,...,i3,i2,1,0)

succ(iy—_1,---,i3,0,1,1,i,_1,...,i3,1,0,0)

succ(0,1,...,1, 1,0,...,0)

_|pZ(O7"°7O) /\ (Succ(il’l—lv"'aiO? jn_17"’7j0) % (pZ(jn_17"’7jO) H px(in_17"'7i0)))

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Decision Procedures for QF BV 34/27

m State-of-the-art solvers for QF_BV rely on bit-blasting and SAT solvers

= Bit-blasting can be exponential
= |s it possible to solve QF BV without bit-blasting?

= Can we profit from knowing the complexity of certain bit-vector classes?

= Some alternative approaches (and optimizations) exist

= Translation to EPR [CADE’13]
= Translation to SMV [SMT’13]
= Bit-width reduction (by Johannsen)

= SLS for SMT [AAAI'15]

EEEEEE
IIIIIIIIIIIIII

BV2EPR 35/27

= BV2EPR: Polynomial translation from QF_BV to EPR [CADE’13]

® EPR formulas can be solved with iProver (by Korovin)

= CEGAR approach

= Performance worse than bit-blasting for most instances
= Beneficial on some instances (0.1s instead of T/O)

= | ess memory used (can be several orders of magnitude)

EEEEEEE
IIIIIIIIIIIIII

Bit-Width Reduction 36/27

= For QF_BV,,,, bit-width reduction can be applied

= There is a solution iff there is a solution with smaller bit-width, e.g.

(X[32] £ y132] | Z[32]) A (Y[32] £ 7132] &XBZ])

N (Xm - Y[2]|Z[2]) A (Y[Z] £ Z[2]&X[2])

= (Can be extended to allow certain cases of other operators

® Existing work for RTL Property Checking (by Johannsen)
= Reduces size of design model to up to 30%

= Reduces runtimes to up to 5%

EEEEEEE
IIIIIIIIIIIIII

v-Logarithmic Succinct Encodings 37/27

= Upgrading Theorem: If a problem is complete for a complexity class C, it is
complete for a v-exponentially harder complexity class than C when succinctly
encoded by bit-vectors with v-logarithmic scalars. IMFCS’14]

= |mplication: Word-Level Model Checking and Reachability for bit-vectors
with binary encoded bit-widths are EXPSPACE-complete.

EEEEEEE
IIIIIIIIIIIIII

v-Logarithmic SAT 38/27

= Upgrading SAT:. Satisfiability for quantifier-free bit-vector formulas with
v-logarithmic encoded scalars is v-NEXPTIME-complete. [Thesis’'16]

= Proof: Reduction from Turing machines or domino tiling problems.

EEEEEEE
IIIIIIIIIIIIII

Complexity of Bit-Vector Logics

39/27

quantifiers
no yes
uninterpreted functions | uninterpreted functions
no yes no yes
encoding unary NP NP PSPACE | NEXPTIME
binary | NEXPTIME | NEXPTIME ? 2-NEXPTIME

EEEEEEEE
IIIIIIIIIIIIII

Encoding Turing Machines (1) 40/27

® The head initially is at position 0:

BN 6 16¥] — 1IN gV

= M initially is in state s:
QLN] AotV = 1IN « jigV)

= |n each computation step, there is at most one symbol per tape cell, i.e., Vo,6' € X,
with ¢ # ¢/, we add:

_‘TcLN] v ﬁTCEJ/V] — oV

® |n each computation step, there is at least one symbol per tape cell:

\/ M = —ol¥

ccr

J!U

JOH. ES KE ER
UN S IN

Encoding Turing Machines (2) /27

3 7

= |n each computation step, there is at most one state at a time, i.e., Vg,4’ € Q, with

g #q', we add:

04" v -0 = -0

® The bits of the state variables can only be set at the head positions:

NI\ V] — oIN]
V Q4
qeQ

= The tape does not change at positions different from those of the head, i.e., Vo € X,
we add:

(TcLN] < size™ & TCLN]) \V/ (H[N] < Size[N}) v 1oVl = V]

IIIIIIIIIIIIII

Encoding Turing Machines (3) 42/27

3 7

® The transition relation, i.e., Vg € 0,0 € X, we add:

(HN] /\Q[qN] /\TCLN]) < size™ =

V (HN Odl[N]/\Q[q],v]/\T(E,V]) — ol
(¢,0.4',0",d)€d

= M must reach a final state at one point:
\/ Q[qN] AW - olV]
qelF

= Helper variables: sizel™ =2-exp,(n)+1, mid™ = exp,(n),

hilN] = -V « size[N], loN] = ﬂ(ﬁO[N] < Size[N])

EEEEEEE
IIIIIIIIIIIIII

Encoding Turing Machines (4) 43/27

3 7

= |f the head is in a certain position in a computation step, it cannot be at any position
other than left or right of the current one in the next step:

oMy —HW v HIN « (size + 1)V v BN <« (size — 1)IV] = —olV]

® |f the head is in a certain position in a computation step, it has to be at position left or
right (non-exclusive) of the current one in the next step:

~(HM « size™y v HN « 1IN gIN) 5. 1IN = V]

® |n any computation step, the head will never be at two distinct positions exactly two
indices apart from each other:

HWN « 1M AN > 1V = olN]

IIIIIIIIIIIIII

