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Research Overview 1/27

Research Areas: Bit-Vectors, SAT, DQBF, SMT, Local Search, . . .

List of Contributions:

Total of 15 publications (14 peer-reviewed, 1 benchmark description)

2 solvers (1 publicly available)

2 translation tools (both publicly available)

Several challenging benchmark families (publicly available)

Thesis “Theoretical and Practical Aspects of Bit-Vector Reasoning”

Consisting of 9 publications

Some additional unpublished complexity results
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Bit-Vector Reasoning: Motivation 4/27

Bit-Vector: String of bits {0,1}n of fixed length n

Practical Applications

Hardware Verification

Natural representation of RTL specifications (e.g., VHDL, Verilog)

Equivalence checking or property checking (e.g., used by Intel)

Software Verification

Natural representation of datatypes

SAGE: Large-scale project at Microsoft
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Complexity Classes 5/27

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME ⊆ EXPSPACE ⊆ 2-NEXPTIME ⊆ . . .

Bounds in regard to the input size:

P: problems can be solved in polynomial time

NP: solutions can be checked in polynomial time

PSPACE: problems can be solved with polynomial space

NEXPTIME: solutions can be checked in exponential time

NEXPTIME: more succinct representations than NP

Can be solved by NP algorithms after (exponential) expansion
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Related Problems 6/27

Propositional domain {0,1}:

SAT [∃x1,x2,x3 .] (x1∨¬x2)∧ (¬x1∨ x3)∧ (x2∨¬x3)∧ (¬x1∨ x2)

NP-complete

QBF ∀u1∃e1∀u2∃e2 . (u2∨¬e1)∧ (¬u1∨ e1)∧ (u1∨¬e2)∧ (¬u2∨ e2)

PSPACE-complete

DQBF ∀u1,u2∃e1(u1),e2(u2) . (u2∨¬e1)∧ (¬u1∨ e1)∧ (u1∨¬e2)∧ (¬u2∨ e2)

NEXPTIME-complete

First-order but no functions:

EPR ∃a,b∀x,y . (p(a,x,y)∨¬q(y,x,b))∧ (q(x,b,y)∨¬p(y,a,x))

(Bernays-Schönfinkel class) NEXPTIME-complete
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Bit-Vector Logics 7/27

QF BV: Included in SMT-LIB

Bit-Vector Variables: x[4],y[8],z[1], . . .

Bit-Vector Constants: 1011[4],10011010[8],1[8], . . .

Bit-Vector Operators:

Bitwise: ∼ & | ⊕ . . .

Arithmetic: + − · / . . .

Relational: = < ≤ . . .

Shifts: � � . . .

. . .
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Solving QF BV 9/27

Running example:

(z = x+ y) ∧ (z = x� 1) ∧ (x 6= y)

With bit-vectors of fixed bit-width n, e.g., n = 32:

(z[32] = x[32]+ y[32]) ∧ (z[32] = x[32]� 1[32]) ∧ (x[32] 6= y[32])

Satisfiability: Are there bit-vectors, so that the formula evaluates to true?

Common solving approach:

Bit-blasting (encoding the bit-vector formula as a circuit) . . .

. . . and then using a SAT-solver

Often assumed to be NP-complete:

“This paper addresses the satisfiability problem for bit-vector for-
mulas: [...] It is easy to see that this problem is NP-complete.”
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SMT-LIB Format 10/27

Complexity actually depends on the encoding of bit-widths

Consider the previous example, . . .

(z[n] = x[n]+ y[n]) ∧ (z[n] = x[n]� 1[n]) ∧ (x[n] 6= y[n])

. . . with large n, e.g., n = 1,000,000.

In practice: logarithmic encoding, e.g., SMT-LIB format

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
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Bit-Blasting is exponential 11/27

x[n] can be “written down” using log(n) bits, . . .

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))

. . . but bit-blasting requires n separate variables x0,x1, . . . ,xn−1

bit-width | input size | bit-blasting | output size
10 223 Byte 0.0s 4.1 kB

100 227 Byte 0.0s 51.7 kB
1,000 231 Byte 0.0s 610.3 kB

10,000 235 Byte 0.9s 7.0 MB
100,000 239 Byte 14.1s 79.3 MB

1,000,000 243 Byte 167.9s 883.6 MB
10,000,000 247 Byte ... ...
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QF BV is NEXPTIME-Complete 12/27

Satisfiability for QF BV is NEXPTIME-complete [SMT’12]

Hardness: reduction from DQBF to QF BV

Use the so-called binary magic numbers (e.g., in Knuth—TAOCP)

∀ u0 u1 u2 → U [8]
0 :=



0
1
0
1
0
1
0
1


U [8]

1 :=



0
0
1
1
0
0
1
1


U [8]

2 :=



0
0
0
0
1
1
1
1


Eliminate dependencies:

∃ e(u0,u2) → E [8] & ∼U [8]
1 = (E [8]� 2[8]) & ∼U [8]

1
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Restricted Operator Sets 13/27

Complexity depends on the encoding . . .

. . . but also on the set of operators: [CSR’13]

QF BV� (only bitwise operations, equality, and left shift)

QF BV� is NEXPTIME-complete

QF BV�1 (only bitwise operations, equality, and left shift by one)

QF BV�1 is PSPACE-complete

QF BVbw (only bitwise operations and equality)

QF BVbw is NP-complete
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Solving QF BV�1 15/27

Consider the previous example:

(z[n] = x[n]+ y[n]) ∧ (z[n] = x[n]� 1[n]) ∧ (x[n] 6= y[n])

Can we do better than bit-blasting?

+ can be expressed by ⊕ | & = �1

(z[n] = x[n]⊕ y[n]⊕ c[n]in ) ∧
(

c[n]out = (x[n] & y[n]) |
(
(c[n]in � 1[n]) & (x[n] | y[n])

))
The example is in QF BV�1

→ can be solved in PSPACE

Polynomial encoding as a model checking problem
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SMV Encoding of Addition 16/27

init(counter_bit0) := FALSE;
next(counter_bit0) := counter_bit0 xor (TRUE);
init(counter_bit1) := FALSE;
next(counter_bit1) := counter_bit1 xor (counter_bit0);
...
init(counter_bit19) := FALSE;
next(counter_bit19) := counter_bit19 xor
(counter_bit0 & ... & counter_bit18);

init(counter_gte_1000000) := FALSE;
next(counter_gte_1000000) := counter_gte_1000000 |
(counter_bit0 & counter_bit1 & ... & counter_bit19);

init(atom_add) := TRUE;
next(atom_add) := case
counter_gte_1000000 : atom_add;
TRUE : atom_add & (z <-> (x xor y xor atom_cin));

esac;

init(atom_cin) := FALSE;
next(atom_cin) := case
counter_gte_1000000 : atom_cin;
TRUE : (x & y) | (x & atom_cin) | (y & atom_cin);

esac;

AG(!counter_gte_1000000 | !atom_add)
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BV2SMV 17/27

BV2SMV: Polynomial translation from QF BV�1 to SMV [SMT’13]

SMV formulas can be solved with model checkers

BDD based model checkers are most efficient
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DQBF: Motivation 19/27

Interesting in the context of QF BV

DQBF is NEXPTIME-complete→ possible target logic for QF BV

Succinct encodings of problems

Partial equivalence checking

Partial information games

However: Not a lot of previous work

Mainly theoretic

No existing solver
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DQBF: Solvers (1) 20/27

DQDPLL [POS’12]

DPLL and QDPLL successful for SAT and QBF

Search-based approach

Requires dependency constraints to be respected

Many techniques can be lifted (bottom-up)

Unit Propagation, Pure Literal Reduction, Clause Learning

Universal Reduction, Cube Learning

Prototype: Not very efficient

The first existing DQBF solver
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DQBF: Solvers (2) 21/27

iDQ [POS’14]

iProver successful for EPR

Techniques can be reused and refined (top-down)

SAT overapproximations

CEGAR loop

More efficient than iProver

Can compete with QBF solvers

First publicly available (complete) DQBF solver

Abstract

Refine Check

Solve

Solution

No Solution

CEGAR loop
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Stochastic Local Search for SAT 23/27

Search on the space of full assignments α ∈ {0,1}n

Starting from an initial assignment

Local “improvement” in regard to a heuristic “score”

Typical score for SAT: Number of unsatisfied clauses

Example:
F = (x0∨ x1)∧ (¬x0∨¬x2)∧ (¬x1∨¬x2), with α = (0,0,0),F(α) = 0∧1∧1

→ α(x0) := ¬α(x0), with α = (1,0,0),F(α) = 1∧0∧1

→ α(x2) := ¬α(x2), with α = (1,0,1),F(α) = 1∧1∧1

Stochastic: Probabilistic component in choosing the next move
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Lifting SLS to SMT 24/27

Stochastic local search for SAT

Lots of previous work, but bad on application benchmarks

BV-SLS: Stochastic local search for bit-vectors [AAAI’15]

No bit-blasting

Works on the theory representation of the formula

Idea: Combine techniques from SAT with QF BV theory information

Many techniques from SAT can successfully be lifted

Theory information allows to deal with structure efficiently
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BV-SLS: Results 25/27

solved instances
QF BV SAGE2

CCAnr 5409 64
CCASat 4461 8
probSAT 3816 10
Sparrow 3806 12
VW2 2954 4
PAWS 3331 143
YalSAT 3756 142
Z3 (Default) 7173 5821
Z3 BV-SLS 6172 3719

QF BV QF BV SAGE2

0

1

10

100

T/O

0 1 10 100 T/O

Z3
 B

V-
SL

S 
[s

ec
]

CCAnr [sec]

0

1

10

100

T/O

0 1 10 100 T/O
Z3 (Default) [sec]

0

1

10

100

T/O

0 1 10 100 T/O
Z3 (Default) [sec]

10

10²

10³

10⁴
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Conclusion 27/27

Presented contributions:

Complexity of quantifier-free bit-vector logics [SMT’12, CSR’13]

Reencoding of QF BV�1 to SMV [SMT’13]

2 decision procedures for DQBF [POS’12, POS’14]

Lifting stochastic local search to the theory level [AAAI’15]

Further results:

Reencoding of QF BV to EPR [CADE’13]

More on the complexity of bit-vector logics [MFCS’14, TOCS’15, Thesis’16]

Improving state-of-the-art in SAT solving [SAT’14a, SAT’14b, POS’15, SAT’15]
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BV2SMV 30/27

BV2SMV: Polynomial translation from QF BV�1 to SMV [SMT’13]

SMV formulas can be solved with model checkers

BDD based model checkers are most efficient
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Example: SLS for SMT 31/27

x+3 =∼x ,

where x is a bit-vector of n = 6. If we initialize the search:

x = [0,0,0,0,0,0]

→ [0,0,0,0,1,1] = [1,1,1,1,1,1]

Best improvement by negating x:

x = [1,1,1,1,1,1]

→ [0,0,0,0,1,0] = [0,0,0,0,0,0]

Flipping the least significant bit is the only move that will further increase the score:

x = [1,1,1,1,1,0]

→ [0,0,0,0,0,1] = [0,0,0,0,0,1]
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Example: iDQ 32/27

ψ = ∀u1,u2∃e1(u1,u2),e2(u2) . (u1∨ e1)∧ (u2∨ e1∨ e2)

Initial set of clause instances:

(e1)u1∧ (e1∨ e2)u2

Propositional abstraction:

(x1)∧ (x2∨ x3)

→ α = {x1→ 1,x2→ 0,x3→ 0}

Refinement:

(e1)u1∧ (e1)u1u2∧ (e1∨ e2)u2∧ (e1∨ e2)u1u2

Propositional abstraction:

(x1)∧ (x2)∧ (x3∨ x4)∧ (x2∨ x4)

→ α = {x1→ 1,x2→ 1,x3→ 0,x4→ 1}
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Reduction: QF BV to EPR 33/27

Bitwise: z[2
n] = x[2

n] | y[2n]

pz(in−1, . . . , i0) ↔ px(in−1, . . . , i0)∨ py(in−1, . . . , i0)

Shift by one: z[2
n] = x[2

n]� 1[2
n]

succ(in−1, . . . , i3, i2, i1,0, in−1, . . . , i3, i2, i1,1)

succ(in−1, . . . , i3, i2,0,1, in−1, . . . , i3, i2,1,0)

succ(in−1, . . . , i3,0,1,1, in−1, . . . , i3,1,0,0)

...

succ(0,1, . . . ,1, 1,0, . . . ,0)

¬pz(0, . . . ,0) ∧ (succ(in−1, . . . , i0, jn−1, . . . , j0) → (pz( jn−1, . . . , j0) ↔ px(in−1, . . . , i0)))
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Decision Procedures for QF BV 34/27

State-of-the-art solvers for QF BV rely on bit-blasting and SAT solvers

Bit-blasting can be exponential

Is it possible to solve QF BV without bit-blasting?

Can we profit from knowing the complexity of certain bit-vector classes?

Some alternative approaches (and optimizations) exist

Translation to EPR [CADE’13]

Translation to SMV [SMT’13]

Bit-width reduction (by Johannsen)

SLS for SMT [AAAI’15]
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BV2EPR 35/27

BV2EPR: Polynomial translation from QF BV to EPR [CADE’13]

EPR formulas can be solved with iProver (by Korovin)

CEGAR approach

Performance worse than bit-blasting for most instances

Beneficial on some instances (0.1s instead of T/O)

Less memory used (can be several orders of magnitude)
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Bit-Width Reduction 36/27

For QF BVbw, bit-width reduction can be applied

There is a solution iff there is a solution with smaller bit-width, e.g.(
X [32] 6= Y [32]|Z[32]

)
∧
(

Y [32] 6= Z[32]&X [32]
)

→
(

X [2] 6= Y [2]|Z[2]
)
∧
(

Y [2] 6= Z[2]&X [2]
)

Can be extended to allow certain cases of other operators

Existing work for RTL Property Checking (by Johannsen)

Reduces size of design model to up to 30%

Reduces runtimes to up to 5%
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ν-Logarithmic Succinct Encodings 37/27

Upgrading Theorem: If a problem is complete for a complexity class C, it is
complete for a ν-exponentially harder complexity class than C when succinctly
encoded by bit-vectors with ν-logarithmic scalars. [MFCS’14]

Implication: Word-Level Model Checking and Reachability for bit-vectors
with binary encoded bit-widths are EXPSPACE-complete.
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ν-Logarithmic SAT 38/27

Upgrading SAT: Satisfiability for quantifier-free bit-vector formulas with
ν-logarithmic encoded scalars is ν-NEXPTIME-complete. [Thesis’16]

Proof: Reduction from Turing machines or domino tiling problems.
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Complexity of Bit-Vector Logics 39/27

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding unary NP NP PSPACE NEXPTIME
binary NEXPTIME NEXPTIME ? 2-NEXPTIME
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Encoding Turing Machines (1) 40/27

The head initially is at position 0:

H [N]∧ lo[N] = 1[N]� mid[N]

M initially is in state s:

Q[N]
s ∧ lo[N] = 1[N]� mid[N]

In each computation step, there is at most one symbol per tape cell, i.e., ∀σ,σ′ ∈ Σ,
with σ 6= σ′, we add:

¬T [N]
σ ∨¬T [N]

σ′ = ¬0[N]

In each computation step, there is at least one symbol per tape cell:∨
σ∈Σ

T [N]
σ = ¬0[N]
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Encoding Turing Machines (2) 41/27

In each computation step, there is at most one state at a time, i.e., ∀q,q′ ∈ Q, with
q 6= q′, we add:

¬Q[N]
q ∨¬Q[N]

q′ = ¬0[N]

The bits of the state variables can only be set at the head positions:∨
q∈Q

Q[N]
q ∧¬H [N] = 0[N]

The tape does not change at positions different from those of the head, i.e., ∀σ ∈ Σ,
we add:

(T [N]
σ � size[N]↔ T [N]

σ )∨ (H [N]� size[N])∨ lo[N] = ¬0[N]
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Encoding Turing Machines (3) 42/27

The transition relation, i.e., ∀q ∈ Q,σ ∈ Σ, we add:

(H [N]∧Q[N]
q ∧T [N]

σ )� size[N]→

∨
(q,σ,q′,σ′,d)∈δ

(H [N] ◦d 1[N]∧Q[N]
q′ ∧T [N]

σ′ ) = ¬0[N]

M must reach a final state at one point:∨
q∈F

Q[N]
q ∧H [N] 6= 0[N]

Helper variables: size[N] = 2 · expν(n)+1, mid[N] = expν(n),

hi[N] = ¬0[N]� size[N], lo[N] = ¬(¬0[N]� size[N])
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Encoding Turing Machines (4) 43/27

If the head is in a certain position in a computation step, it cannot be at any position
other than left or right of the current one in the next step:

lo[N]∨¬H [N]∨H [N]� (size+1)[N]∨H [N]� (size−1)[N] = ¬0[N]

If the head is in a certain position in a computation step, it has to be at position left or
right (non-exclusive) of the current one in the next step:

¬(H [N]� size[N])∨H [N]� 1[N]∨H [N] �u 1[N] = ¬0[N]

In any computation step, the head will never be at two distinct positions exactly two
indices apart from each other:

H [N]� 1[N]∧H [N] �u 1[N] = 0[N]

Andreas Fröhlich, PhD Presentation, April 2016


