Theoretical and Practical Aspects of Bit-Vector Reasoning

Andreas Fröhlich

Institute for Formal Models and Verification Johannes Kepler University

PhD Presentation

Thursday, April 28th, 2016 Linz, Austria

JOHANNES KEPLER UNIVERSITY LINZ

- Research Areas: Bit-Vectors, SAT, DQBF, SMT, Local Search, ...
- List of Contributions:
 - Total of **15 publications** (14 peer-reviewed, 1 benchmark description)
 - **2 solvers** (1 publicly available)
 - 2 translation tools (both publicly available)
 - Several challenging benchmark families (publicly available)
- Thesis "Theoretical and Practical Aspects of Bit-Vector Reasoning"
 - Consisting of 9 publications
 - Some additional unpublished complexity results

- Preliminaries
- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Conclusion

Preliminaries

- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Conclusion

3/27

- Bit-Vector: String of bits $\{0,1\}^n$ of **fixed length** *n*
- Practical Applications
 - Hardware Verification
 - Natural representation of RTL specifications (e.g., VHDL, Verilog)
 - Equivalence checking or property checking (e.g., used by Intel)
 - Software Verification
 - Natural representation of datatypes
 - SAGE: Large-scale project at Microsoft

$\mathsf{P} \subseteq \mathsf{N}\mathsf{P} \subseteq \mathsf{P}\mathsf{Space} \subseteq \mathsf{N}\mathsf{Exp}\mathsf{Time} \subseteq \mathsf{Exp}\mathsf{Space} \subseteq \mathsf{2}\text{-}\mathsf{N}\mathsf{Exp}\mathsf{Time} \subseteq \dots$

- Bounds in regard to the **input size**:
 - P: problems can be solved in polynomial time
 - NP: solutions can be checked in polynomial time
 - PSPACE: problems can be solved with polynomial space
 - NEXPTIME: solutions can be checked in exponential time
- NEXPTIME: more succinct representations than NP
 - Can be solved by NP algorithms after (exponential) expansion

Propositional domain $\{0,1\}$:

• SAT $[\exists x_1, x_2, x_3.]$ $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2)$

■ QBF
$$\forall u_1 \exists e_1 \forall u_2 \exists e_2$$
. $(u_2 \lor \neg e_1) \land (\neg u_1 \lor e_1) \land (u_1 \lor \neg e_2) \land (\neg u_2 \lor e_2)$
PSPACE-complete

■ DQBF $\forall u_1, u_2 \exists e_1(u_1), e_2(u_2).$ $(u_2 \lor \neg e_1) \land (\neg u_1 \lor e_1) \land (u_1 \lor \neg e_2) \land (\neg u_2 \lor e_2)$ NEXPTIME-complete

First-order but no functions:

■ EPR $\exists a, b \forall x, y$. $(p(a, x, y) \lor \neg q(y, x, b)) \land (q(x, b, y) \lor \neg p(y, a, x))$ (Bernays-Schönfinkel class) NEXPTIME-complete

- QF_BV: Included in SMT-LIB
- Bit-Vector Variables: $x^{[4]}, y^{[8]}, z^{[1]}, \dots$
- Bit-Vector Constants: 1011^[4], 10011010^[8], 1^[8],...
- Bit-Vector Operators:
 - Bitwise: \sim & | \oplus ...
 - Arithmetic: + · / …
 - Relational: $= < \leq \ldots$
 - Shifts: $\ll \gg \ldots$
 - • •

- Preliminaries
- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Conclusion

Running example:

$$(z = x + y) \land (z = x \ll 1) \land (x \neq y)$$

- With bit-vectors of fixed bit-width n, e.g., n = 32: $(z^{[32]} = x^{[32]} + y^{[32]}) \land (z^{[32]} = x^{[32]} \ll 1^{[32]}) \land (x^{[32]} \neq y^{[32]})$
- Satisfiability: Are there bit-vectors, so that the formula evaluates to *true*?
 - Common solving approach:
 - Bit-blasting (encoding the bit-vector formula as a circuit) ...
 - and then using a SAT-solver
 - Often assumed to be NP-complete:

"This paper addresses the satisfiability problem for bit-vector formulas: [...] It is easy to see that this problem is NP-complete."

- Complexity actually depends on the encoding of bit-widths
- Consider the previous example, ...

$$(z^{[n]} = x^{[n]} + y^{[n]}) \land (z^{[n]} = x^{[n]} \ll 1^{[n]}) \land (x^{[n]} \neq y^{[n]})$$

- ... with large n, e.g., n = 1,000,000.
- In practice: **logarithmic encoding**, e.g., SMT-LIB format

• $x^{[n]}$ can be "written down" using $\log(n)$ bits, ...

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
```

• ... but bit-blasting requires *n* separate variables $x_0, x_1, \ldots, x_{n-1}$

bit-width	input	size	bit-blasting	output size
10	223	Byte	0.0s	4.1 kB
100	227	Byte	0.0s	51.7 kB
1,000	231	Byte	0.0s	610.3 kB
10,000	235	Byte	0.9s	7.0 MB
100,000	239	Byte	14.1s	79.3 MB
1,000,000	243	Byte	167.9s	883.6 MB
10,000,000	247	Byte	•••	•••

11/27

- Satisfiability for QF_BV is NEXPTIME-complete
- Hardness: reduction from DQBF to QF_BV
 - Use the so-called **binary magic numbers** (e.g., in Knuth—TAOCP)

$$\forall u_0 u_1 u_2 \rightarrow U_0^{[8]} := \begin{bmatrix} 0\\1\\0\\1\\0\\1\\0\\1 \end{bmatrix} \qquad U_1^{[8]} := \begin{bmatrix} 0\\0\\1\\1\\0\\1\\1 \end{bmatrix} \qquad U_2^{[8]} := \begin{bmatrix} 0\\0\\0\\1\\1\\1\\1 \end{bmatrix}$$

Eliminate dependencies:

$$\exists e(u_0, u_2) \quad \to \quad E^{[8]} \& \sim U_1^{[8]} = (E^{[8]} \ll 2^{[8]}) \& \sim U_1^{[8]}$$

[SMT'12]

- Complexity depends on the encoding ...
- ... but also on the set of operators:
 - QF_BV_{\ll} (only bitwise operations, equality, and left shift)

 QF_BV_{\ll} is NEXPTIME-complete

- QF_BV_{\ll_1} (only bitwise operations, equality, and left shift by one) QF_BV_{\ll_1} is PSPACE-complete
- QF_BV_{bw} (only bitwise operations and equality)

QF_BV_{bw} is NP-complete

Andreas Fröhlich, PhD Presentation, April 2016

[CSR'13]

Outline

- Preliminaries
- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Further research
- Conclusion (Summary, Impact, Future Work)

• Consider the previous example:

$$(z^{[n]} = x^{[n]} + y^{[n]}) \land (z^{[n]} = x^{[n]} \ll 1^{[n]}) \land (x^{[n]} \neq y^{[n]})$$

- Can we do better than bit-blasting?
 - + can be expressed by \oplus | & = \ll_1

$$(z^{[n]} = x^{[n]} \oplus y^{[n]} \oplus c^{[n]}_{in}) \land \left(c^{[n]}_{out} = (x^{[n]} \And y^{[n]}) \mid \left((c^{[n]}_{in} \ll 1^{[n]}) \And (x^{[n]} \mid y^{[n]})\right)\right)$$

• The example is in $QF_BV_{\ll_1}$

 \rightarrow can be solved in PSPACE

Polynomial encoding as a model checking problem

15/27

SMV Encoding of Addition

```
init(counter bit0) := FALSE;
next(counter bit0) := counter bit0 xor (TRUE);
init(counter bit1) := FALSE;
next(counter bit1) := counter bit1 xor (counter bit0);
. . .
init(counter_bit19) := FALSE;
next(counter bit19) := counter bit19 xor
  (counter_bit0 & ... & counter bit18);
init(counter gte 1000000) := FALSE;
next(counter_gte_1000000) := counter_gte_1000000 |
  (counter bit0 & counter bit1 & ... & counter bit19);
init (atom add) := TRUE;
next(atom_add) := case
  counter gte 1000000 : atom add;
  TRUE : atom add & (z < -> (x \text{ xor } y \text{ xor atom cin}));
esac;
init(atom cin) := FALSE;
next(atom_cin) := case
  counter_gte_1000000 : atom_cin;
  TRUE : (x \& y) | (x \& atom cin) | (y \& atom cin);
esac;
AG(!counter_gte_1000000 | !atom_add)
```


BV2SMV

- BV2SMV: Polynomial translation from QF_BV_{≪1} to SMV
- SMV formulas can be solved with model checkers
 - BDD based model checkers are most efficient

Application benchmarks by Intel

____ 17/27

[SMT'13]

- Preliminaries
- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Conclusion

18/27

- Interesting in the context of QF_BV
 - DQBF is NEXPTIME-complete \rightarrow possible target logic for QF_BV
- Succinct encodings of problems
 - Partial equivalence checking
 - Partial information games
- However: Not a lot of previous work
 - Mainly theoretic
 - No existing solver

- DQDPLL
 - DPLL and QDPLL successful for SAT and QBF
 - Search-based approach
 - Requires dependency constraints to be respected
 - Many techniques can be lifted (bottom-up)
 - Unit Propagation, Pure Literal Reduction, Clause Learning
 - Universal Reduction, Cube Learning
 - Prototype: Not very efficient
- The first existing DQBF solver

[POS'12]

■ iDQ

[POS'14]

- iProver successful for EPR
- Techniques can be reused and refined (top-down)
 - SAT overapproximations
 - CEGAR loop
- More efficient than iProver
- Can compete with QBF solvers
- CEGAR loop Abstract Solve No Solution Refine Check
- First publicly available (complete) DQBF solver

- Preliminaries
- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Conclusion

- Search on the space of full assignments $\alpha \in \{0,1\}^n$
 - Starting from an initial assignment
 - Local "improvement" in regard to a heuristic "score"
 - Typical score for SAT: Number of unsatisfied clauses
- Example:

$$F = (x_0 \lor x_1) \land (\neg x_0 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2), \quad \text{with } \alpha = (0,0,0), F(\alpha) = 0 \land 1 \land 1$$
$$\rightarrow \alpha(x_0) := \neg \alpha(x_0), \quad \text{with } \alpha = (1,0,0), F(\alpha) = 1 \land 0 \land 1$$
$$\rightarrow \alpha(x_2) := \neg \alpha(x_2), \quad \text{with } \alpha = (1,0,1), F(\alpha) = 1 \land 1 \land 1$$

Stochastic: Probabilistic component in choosing the next move

- Stochastic local search for SAT
 - Lots of previous work, but bad on application benchmarks
- BV-SLS: Stochastic local search for bit-vectors
 - No bit-blasting
 - Works on the theory representation of the formula
- Idea: Combine techniques from SAT with QF_BV theory information
 - Many techniques from SAT can successfully be lifted
 - Theory information allows to deal with structure efficiently

[AAAI'15]

	solved instances		
	QF₋BV	SAGE2	
CCAnr	5409	64	
CCASat	4461	8	
probSAT	3816	10	
Sparrow	3806	12	
VW2	2954	4	
PAWS	3331	143	
YalSAT	3756	142	
Z3 (Default)	7173	5821	
Z3 BV-SLS	6172	3719	

25/27

- Preliminaries
- Selected key contributions
 - Complexity of bit-vector logics
 - Reencoding of bit-vector formulas
 - DQBF solving
 - SLS for SMT
- Conclusion

Conclusion

- Presented contributions:
 - Complexity of quantifier-free bit-vector logics [SMT'12, CSR'13]
 - Reencoding of QF_BV_{<1} to SMV [SMT'13]
 - 2 decision procedures for DQBF [POS'12, POS'14]
 - Lifting stochastic local search to the theory level
- Further results:
 - Reencoding of QF_BV to EPR [CADE'13]
 - More on the complexity of bit-vector logics [MFCS'14, TOCS'15, Thesis'16]
 - Improving state-of-the-art in SAT solving [SAT'14a, SAT'14b, POS'15, SAT'15]

[**AAAI**'15]

- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. A DPLL Algorithm for Solving DQBF.
 [POS'12]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. On the Complexity of Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width. [SMT'12]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. BV2EPR: A Tool for Polynomially Translating Quantifier-free Bit-Vector Formulas into EPR. [CADE'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding. [CSR'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. Efficiently Solving Bit-Vector Problems Using Model Checkers.
 [SMT'13]
- Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, Armin Biere. On the Complexity of Symbolic Verification and Decision Problems in Bit-Vector Logic. [MFCS'14]
- Tomáš Balyo, Andreas Fröhlich, Marijn Heule, Armin Biere. Everything You Always Wanted to Know about Blocked Sets (But Were Afraid to Ask). [SAT'14a]

28/27

- Adrian Balint, Armin Biere, Andreas Fröhlich, Uwe Schöning. Improving implementation of SLS solvers for SAT and new heuristics for k-SAT with long clauses. [SAT'14b]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere, Helmut Veith. iDQ: Instantiation-Based DQBF Solving.
 [POS'14]
- Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, Youssef Hamadi. Stochastic Local Search for Satisfiability Modulo Theories. [AAAI'15]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. Complexity of Fixed-Size Bit-Vector Logics.
- Armin Biere, Andreas Fröhlich. Evaluating CDCL Variable Scoring Schemes.

[SAT'15]

Armin Biere, Andreas Fröhlich. Evaluating CDCL Restart Schemes.

[POS'15]

Andreas Fröhlich. Theoretical and Practical Aspects of Bit-Vector Reasoning.

[Thesis'16]

BV2SMV

- BV2SMV: Polynomial translation from QF_BV_{≪1} to SMV
- SMV formulas can be solved with model checkers
 - BDD based model checkers are most efficient

Application benchmarks by Intel

[SMT'13]

 $x+3 = \sim x$,

where *x* is a bit-vector of n = 6. If we initialize the search:

x = [0, 0, 0, 0, 0, 0]

$$\rightarrow [0, 0, 0, 0, 1, 1] = [1, 1, 1, 1, 1, 1]$$

Best improvement by negating *x*:

x = [1, 1, 1, 1, 1, 1] $\rightarrow [0, 0, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0]$

Flipping the least significant bit is the only move that will further increase the score:

x = [1, 1, 1, 1, 1, 0]

$$\rightarrow [0, 0, 0, 0, 0, 1] = [0, 0, 0, 0, 0, 1]$$

$$\Psi = \forall u_1, u_2 \exists e_1(u_1, u_2), e_2(u_2) . (u_1 \lor e_1) \land (\overline{u}_2 \lor \overline{e}_1 \lor e_2)$$

Initial set of clause instances:

$$(e_1)_{\overline{u}_1} \wedge (\overline{e}_1 \vee e_2)_{u_2}$$

Propositional abstraction:

 $(x_1) \wedge (\overline{x}_2 \lor x_3)$

$$\rightarrow \alpha = \{x_1 \rightarrow 1, x_2 \rightarrow 0, x_3 \rightarrow 0\}$$

Refinement:

$$(e_1)_{\overline{u}_1} \wedge (e_1)_{\overline{u}_1 u_2} \wedge (\overline{e}_1 \vee e_2)_{u_2} \wedge (\overline{e}_1 \vee e_2)_{\overline{u}_1 u_2}$$

Propositional abstraction:

```
(x_1) \land (x_2) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_4)
```

 $\rightarrow \alpha = \{x_1 \rightarrow 1, x_2 \rightarrow 1, x_3 \rightarrow 0, x_4 \rightarrow 1\}$

Bitwise: $z^{[2^n]} = x^{[2^n]} | y^{[2^n]}$

$$p_z(i_{n-1},\ldots,i_0) \leftrightarrow p_x(i_{n-1},\ldots,i_0) \lor p_y(i_{n-1},\ldots,i_0)$$

Shift by one: $z^{[2^n]} = x^{[2^n]} \ll 1^{[2^n]}$

$$succ(i_{n-1},...,i_{3},i_{2},i_{1},0,i_{n-1},...,i_{3},i_{2},i_{1},1)$$

$$succ(i_{n-1},...,i_{3},i_{2},0,1,i_{n-1},...,i_{3},i_{2},1,0)$$

$$succ(i_{n-1},...,i_{3},0,1,1,i_{n-1},...,i_{3},1,0,0)$$

$$\vdots$$

$$succ(0,1,...,1,1,0,...,0)$$

 $\neg p_z(0,\ldots,0) \land (succ(i_{n-1},\ldots,i_0,j_{n-1},\ldots,j_0) \rightarrow (p_z(j_{n-1},\ldots,j_0) \leftrightarrow p_x(i_{n-1},\ldots,i_0)))$

- State-of-the-art solvers for QF_BV rely on **bit-blasting** and SAT solvers
 - Bit-blasting can be exponential
 - Is it possible to solve QF_BV without bit-blasting?
 - Can we profit from knowing the complexity of certain bit-vector classes?
- Some alternative approaches (and optimizations) exist

Translation to EPR	[CADE'13]
Translation to SMV	[SMT'13]
Bit-width reduction (by Johannsen)	
SLS for SMT	[AAAI'15]

- BV2EPR: Polynomial translation from QF_BV to EPR
- EPR formulas can be solved with iProver (by Korovin)
 - CEGAR approach
- Performance worse than bit-blasting for most instances
 - Beneficial on some instances (0.1s instead of T/O)
 - Less memory used (can be several orders of magnitude)

Andreas Fröhlich, PhD Presentation, April 2016

[CADE'13]

- For QF_BV_{bw} , bit-width reduction can be applied
 - There is a solution iff there is a solution with smaller bit-width, e.g.

$$\begin{pmatrix} X^{[32]} \neq Y^{[32]} | Z^{[32]} \end{pmatrix} \land \begin{pmatrix} Y^{[32]} \neq Z^{[32]} \& X^{[32]} \end{pmatrix}$$

$$\rightarrow \qquad \begin{pmatrix} X^{[2]} \neq Y^{[2]} | Z^{[2]} \end{pmatrix} \land \begin{pmatrix} Y^{[2]} \neq Z^{[2]} \& X^{[2]} \end{pmatrix}$$

- Can be extended to allow certain cases of other operators
- Existing work for RTL Property Checking (by Johannsen)
 - Reduces size of design model to up to 30%
 - Reduces runtimes to up to 5%

- Upgrading Theorem: If a problem is complete for a complexity class *C*, it is complete for a v-exponentially harder complexity class than *C* when succinctly encoded by bit-vectors with v-logarithmic scalars. [MFCS'14]
 - Implication: Word-Level Model Checking and Reachability for bit-vectors with binary encoded bit-widths are EXPSPACE-complete.

- Upgrading SAT: Satisfiability for quantifier-free bit-vector formulas with v-logarithmic encoded scalars is v-NEXPTIME-complete. [Thesis'16]
 - Proof: Reduction from Turing machines or domino tiling problems.

		quantifiers			
		no		yes	
		uninterpreted functions		uninterpreted functions	
		no	yes	no	yes
encoding	unary	NP	NP	PSPACE	NEXPTIME
	binary	NEXPTIME	NEXPTIME	?	2-NEXPTIME

Encoding Turing Machines (1)

• The head initially is at position 0:

$$H^{[N]} \wedge lo^{[N]} = 1^{[N]} \ll mid^{[N]}$$

M initially is in state s:

$$Q_{s}^{[N]} \wedge lo^{[N]} = 1^{[N]} \ll mid^{[N]}$$

In each computation step, there is at most one symbol per tape cell, i.e., $\forall \sigma, \sigma' \in \Sigma$, with $\sigma \neq \sigma'$, we add:

$$\neg T_{\boldsymbol{\sigma}}^{[N]} \lor \neg T_{\boldsymbol{\sigma}'}^{[N]} = \neg 0^{[N]}$$

In each computation step, there is at least one symbol per tape cell:

$$\bigvee_{\boldsymbol{\sigma}\in\boldsymbol{\Sigma}} T_{\boldsymbol{\sigma}}^{[N]} = \neg 0^{[N]}$$

In each computation step, there is at most one state at a time, i.e., $\forall q, q' \in Q$, with $q \neq q'$, we add:

$$eg Q_q^{[N]} \lor
eg Q_{q'}^{[N]} =
eg 0^{[N]}$$

• The bits of the state variables can only be set at the head positions:

$$\bigvee_{q\in Q} Q_q^{[N]} \wedge
eg H^{[N]} = 0^{[N]}$$

The tape does not change at positions different from those of the head, i.e., $\forall \sigma \in \Sigma$, we add:

$$(T_{\sigma}^{[N]} \ll size^{[N]} \leftrightarrow T_{\sigma}^{[N]}) \lor (H^{[N]} \ll size^{[N]}) \lor lo^{[N]} = \neg 0^{[N]}$$

• The transition relation, i.e., $\forall q \in Q, \sigma \in \Sigma$, we add:

$$(H^{[N]} \wedge Q_q^{[N]} \wedge T_{\sigma}^{[N]}) \ll size^{[N]} \rightarrow$$

$$\bigvee_{(q,\sigma,q',\sigma',d)\in\delta} (H^{[N]} \circ_d 1^{[N]} \wedge Q_{q'}^{[N]} \wedge T_{\sigma'}^{[N]}) = \neg 0^{[N]}$$

M must reach a final state at one point:

$$\bigvee_{q \in F} Q_q^{[N]} \wedge H^{[N]} \neq 0^{[N]}$$

• Helper variables: $size^{[N]} = 2 \cdot \exp_{v}(n) + 1$, $mid^{[N]} = \exp_{v}(n)$,

$$hi^{[N]} = \neg 0^{[N]} \ll size^{[N]}, \quad lo^{[N]} = \neg (\neg 0^{[N]} \ll size^{[N]})$$

If the head is in a certain position in a computation step, it cannot be at any position other than left or right of the current one in the next step:

$$lo^{[N]} \vee \neg H^{[N]} \vee H^{[N]} \ll (size + 1)^{[N]} \vee H^{[N]} \ll (size - 1)^{[N]} = \neg 0^{[N]}$$

If the head is in a certain position in a computation step, it has to be at position left or right (non-exclusive) of the current one in the next step:

$$\neg (H^{[N]} \ll size^{[N]}) \lor H^{[N]} \ll 1^{[N]} \lor H^{[N]} \gg_{\mathbf{u}} 1^{[N]} = \neg 0^{[N]}$$

In any computation step, the head will never be at two distinct positions exactly two indices apart from each other:

$$H^{[N]} \ll 1^{[N]} \wedge H^{[N]} \gg_{\mathbf{u}} 1^{[N]} = 0^{[N]}$$

43/27