Theoretical and Practical Aspects of Bit-Vector Reasoning

Andreas Fröhlich
Institute for Formal Models and Verification
Johannes Kepler University

PhD Presentation
Thursday, April 28th, 2016
Linz, Austria

JOHANNES KEPLER UNIVERSITY LINZ

- Research Areas: Bit-Vectors, SAT, DQBF, SMT, Local Search, ...
- List of Contributions:
- Total of 15 publications (14 peer-reviewed, 1 benchmark description)
- 2 solvers (1 publicly available)
- 2 translation tools (both publicly available)
- Several challenging benchmark families (publicly available)
- Thesis "Theoretical and Practical Aspects of Bit-Vector Reasoning"
- Consisting of 9 publications
- Some additional unpublished complexity results
- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Conclusion
- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Conclusion
- Bit-Vector: String of bits $\{0,1\}^{n}$ of fixed length n
- Practical Applications
- Hardware Verification
- Natural representation of RTL specifications (e.g., VHDL, Verilog)
- Equivalence checking or property checking (e.g., used by Intel)
- Software Verification
- Natural representation of datatypes
- SAGE: Large-scale project at Microsoft

$$
\mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{NEXPTIME} \subseteq \operatorname{ExPSPACE} \subseteq 2-\text { NEXPTIME } \subseteq \ldots
$$

- Bounds in regard to the input size:
- P: problems can be solved in polynomial time
- NP: solutions can be checked in polynomial time
- PSPACE: problems can be solved with polynomial space
- NExpTime: solutions can be checked in exponential time
- NEXPTIME: more succinct representations than NP
- Can be solved by NP algorithms after (exponential) expansion

Propositional domain $\{0,1\}$:

- SAT $\left[\exists x_{1}, x_{2}, x_{3}\right] \quad\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right)$
- QBF $\quad \forall u_{1} \exists e_{1} \forall u_{2} \exists e_{2} . \quad\left(u_{2} \vee \neg e_{1}\right) \wedge\left(\neg u_{1} \vee e_{1}\right) \wedge\left(u_{1} \vee \neg e_{2}\right) \wedge\left(\neg u_{2} \vee e_{2}\right)$
- DQBF $\forall u_{1}, u_{2} \exists e_{1}\left(u_{1}\right), e_{2}\left(u_{2}\right) . \quad\left(u_{2} \vee \neg e_{1}\right) \wedge\left(\neg u_{1} \vee e_{1}\right) \wedge\left(u_{1} \vee \neg e_{2}\right) \wedge\left(\neg u_{2} \vee e_{2}\right)$

First-order but no functions:

- EPR $\quad \exists a, b \forall x, y . \quad(p(a, x, y) \vee \neg q(y, x, b)) \wedge(q(x, b, y) \vee \neg p(y, a, x))$ (Bernays-Schönfinkel class)
- QF_BV: Included in SMT-LIB
- Bit-Vector Variables: $x^{[4]}, y^{[8]}, z^{[1]}, \ldots$
- Bit-Vector Constants: $1011^{[4]}, 10011010^{[8]}, 1^{[8]}, \ldots$
- Bit-Vector Operators:
- Bitwise: ~ \& | $\oplus \ldots$
- Arithmetic: + - . / ...
- Relational: $=<\leq \ldots$
- Shifts:
- ...
- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Conclusion
- Running example:

$$
(z=x+y) \wedge(z=x \ll 1) \wedge \quad(x \neq y)
$$

- With bit-vectors of fixed bit-width n, e.g., $n=32$:

$$
\left(z^{[32]}=x^{[32]}+y^{[32]}\right) \wedge\left(z^{[32]}=x^{[32]} \ll 1^{[32]}\right) \wedge\left(x^{[32]} \neq y^{[32]}\right)
$$

- Satisfiability: Are there bit-vectors, so that the formula evaluates to true?
- Common solving approach:
- Bit-blasting (encoding the bit-vector formula as a circuit) ...
- . . . and then using a SAT-solver
- Often assumed to be NP-complete:
"This paper addresses the satisfiability problem for bit-vector formulas: [...] It is easy to see that this problem is NP-complete."
- Complexity actually depends on the encoding of bit-widths
- Consider the previous example, ...

$$
\left(z^{[n]}=x^{[n]}+y^{[n]}\right) \wedge\left(z^{[n]}=x^{[n]} \ll 1^{[n]}\right) \wedge\left(x^{[n]} \neq y^{[n]}\right)
$$

\ldots with large n, e.g., $n=1,000,000$.

- In practice: logarithmic encoding, e.g., SMT-LIB format

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
```

- $x^{[n]}$ can be "written down" using $\log (n)$ bits,..

```
(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))
```

- ... but bit-blasting requires n separate variables $x_{0}, x_{1}, \ldots, x_{n-1}$

bit-width	input size \mid bit-blasting	output size		
10	223	Byte	0.0 s	4.1 kB
100	227	Byte	0.0 s	51.7 kB
1,000	231	Byte	0.0 s	610.3 kB
10,000	235	Byte	0.9 s	7.0 MB
100,000	239	Byte	14.1 s	79.3 MB
$1,000,000$	243	Byte	167.9 s	883.6 MB
$10,000,000$	247	Byte	\cdots	\cdots

- Satisfiability for QF BV is NEXPTImE-complete
- Hardness: reduction from DQBF to QF_BV
- Use the so-called binary magic numbers (e.g., in Knuth-TAOCP)

$$
\forall u_{0} u_{1} u_{2} \quad \rightarrow \quad U_{0}^{[8]}:=\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right] \quad U_{1}^{[8]}:=\left[\begin{array}{c}
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right] \quad U_{2}^{[8]}:=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Eliminate dependencies:

$$
\exists e\left(u_{0}, u_{2}\right) \quad \rightarrow \quad E^{[8]} \& \sim U_{1}^{[8]}=\left(E^{[8]} \ll 2^{[8]}\right) \& \sim U_{1}^{[8]}
$$

- Complexity depends on the encoding ...
- ...but also on the set of operators:
- QF_BV $_{\ll}$ (only bitwise operations, equality, and left shift)
$\mathrm{QF}_{-} \mathrm{BV}_{\ll}$ is NExpTIME-complete
- QF $\mathrm{BV}_{\ll 1}$ (only bitwise operations, equality, and left shift by one)

QF $\mathrm{BV}_{\ll 1}$ is PSPACE-complete

- QF_BV ${ }_{b w}$ (only bitwise operations and equality)
$\mathrm{QF}_{-} \mathrm{BV}_{b w}$ is NP-complete
- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Further research
- Conclusion (Summary, Impact, Future Work)
- Consider the previous example:

$$
\left(z^{[n]}=x^{[n]}+y^{[n]}\right) \wedge\left(z^{[n]}=x^{[n]} \ll 1^{[n]}\right) \wedge\left(x^{[n]} \neq y^{[n]}\right)
$$

- Can we do better than bit-blasting?
- + can be expressed by $\oplus \quad \& \quad=<_{1}$

$$
\left(z^{[n]}=x^{[n]} \oplus y^{[n]} \oplus c_{\text {in }}^{[n]}\right) \wedge\left(c_{\text {out }}^{[n]}=\left(x^{[n]} \& y^{[n]}\right) \mid\left(\left(c_{\text {in }}^{[n]} \ll 1^{[n]}\right) \&\left(x^{[n]} \mid y^{[n]}\right)\right)\right)
$$

- The example is in $Q F_{-} \mathrm{BV}_{<_{1}}$
\rightarrow can be solved in PSPACE
- Polynomial encoding as a model checking problem

```
init(counter_bit0) := FALSE;
next(counter_bit0) := counter_bit0 xor (TRUE);
init(counter_bit1) := FALSE;
next(counter_bit1) := counter_bit1 xor (counter_bit0);
...
init(counter_bit19) := FALSE;
next(counter_bit19) := counter_bit19 xor
    (counter_bit0 & ... & counter_bit18);
init(counter_gte_1000000) := FALSE;
next(counter_gte_1000000) := counter_gte_1000000 |
    (counter_bit0 & counter_bit1 & ... & counter_bit19);
init(atom_add) := TRUE;
next(atom_add) := case
        counter_gte_1000000 : atom_add;
        TRUE : atom_add & (z <-> (x xor y xor atom_cin));
esac;
init(atom_cin) := FALSE;
next(atom_cin) := case
        counter_gte_1000000 : atom_cin;
        TRUE : (x & y) | (x & atom_cin) | (y & atom_cin);
esac;
AG(!counter_gte_1000000 | !atom_add)
```

- BV2SMV: Polynomial translation from QF $\mathrm{BV}_{<_{1}}$ to SMV
- SMV formulas can be solved with model checkers
- BDD based model checkers are most efficient

- Application benchmarks by Intel
- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Conclusion
- Interesting in the context of QF_BV
- DQBF is NEXPTIME-complete \rightarrow possible target logic for QF_BV
- Succinct encodings of problems
- Partial equivalence checking
- Partial information games
- However: Not a lot of previous work
- Mainly theoretic
- No existing solver
- DQDPLL
- DPLL and QDPLL successful for SAT and QBF
- Search-based approach
- Requires dependency constraints to be respected
- Many techniques can be lifted (bottom-up)
- Unit Propagation, Pure Literal Reduction, Clause Learning
- Universal Reduction, Cube Learning
- Prototype: Not very efficient
- The first existing DQBF solver
- iDQ
- iProver successful for EPR
- Techniques can be reused and refined (top-down)
- SAT overapproximations
- CEGAR loop
- More efficient than iProver
- Can compete with QBF solvers

- First publicly available (complete) DQBF solver
- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Conclusion
- Search on the space of full assignments $\alpha \in\{0,1\}^{n}$
- Starting from an initial assignment
- Local "improvement" in regard to a heuristic "score"
- Typical score for SAT: Number of unsatisfied clauses
- Example:
- $F=\left(x_{0} \vee x_{1}\right) \wedge\left(\neg x_{0} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right), \quad$ with $\alpha=(0,0,0), F(\alpha)=0 \wedge 1 \wedge 1$

$$
\begin{array}{ll}
\rightarrow \alpha\left(x_{0}\right):=\neg \alpha\left(x_{0}\right), & \text { with } \alpha=(1,0,0), F(\alpha)=1 \wedge 0 \wedge 1 \\
\rightarrow \alpha\left(x_{2}\right):=\neg \alpha\left(x_{2}\right), & \text { with } \alpha=(1,0,1), F(\alpha)=1 \wedge 1 \wedge 1
\end{array}
$$

- Stochastic: Probabilistic component in choosing the next move
- Stochastic local search for SAT
- Lots of previous work, but bad on application benchmarks
- BV-SLS: Stochastic local search for bit-vectors
- No bit-blasting
- Works on the theory representation of the formula
- Idea: Combine techniques from SAT with QF_BV theory information
- Many techniques from SAT can successfully be lifted
- Theory information allows to deal with structure efficiently

	solved instances	
	QF_BV	SAGE2
CCAnr	5409	64
CCASat	4461	8
probSAT	3816	10
Sparrow	3806	12
VW2	2954	4
PAWS	3331	$\mathbf{1 4 3}$
YalSAT	3756	142
Z3 (Default)	7173	5821
Z3 BV-SLS	$\mathbf{6 1 7 2}$	$\mathbf{3 7 1 9}$

- Preliminaries
- Selected key contributions
- Complexity of bit-vector logics
- Reencoding of bit-vector formulas
- DQBF solving
- SLS for SMT
- Conclusion
- Presented contributions:
- Complexity of quantifier-free bit-vector logics
[SMT'12, CSR'13]
- Reencoding of $\mathrm{QF}_{-} \mathrm{BV}_{\ll 1}$ to SMV
- 2 decision procedures for DQBF
[POS'12, POS'14]
- Lifting stochastic local search to the theory level
- Further results:
- Reencoding of QF_BV to EPR
[CADE'13]
- More on the complexity of bit-vector logics
- Improving state-of-the-art in SAT solving
[MFCS'14, TOCS'15, Thesis'16]
[SAT'14a, SAT'14b, POS'15, SAT'15]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. A DPLL Algorithm for Solving DQBF.
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. On the Complexity of Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width.
[SMT'12]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. BV2EPR: A Tool for Polynomially Translating Quantifier-free Bit-Vector Formulas into EPR.
[CADE'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. More on the Complexity of Quan-tifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding.
[CSR'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. Efficiently Solving Bit-Vector Problems Using Model Checkers.
[SMT'13]
- Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, Armin Biere. On the Complexity of Symbolic Verification and Decision Problems in Bit-Vector Logic.
[MFCS'14]
- Tomáš Balyo, Andreas Fröhlich, Marijn Heule, Armin Biere. Everything You Always Wanted to Know about Blocked Sets (But Were Afraid to Ask).
[SAT'14a]
- Adrian Balint, Armin Biere, Andreas Fröhlich, Uwe Schöning. Improving implementation of SLS solvers for SAT and new heuristics for k-SAT with long clauses. [SAT'14b]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere, Helmut Veith. iDQ: InstantiationBased DQBF Solving.
[POS'14]
- Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, Youssef Hamadi. Stochastic Local Search for Satisfiability Modulo Theories.
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. Complexity of Fixed-Size BitVector Logics.
- Armin Biere, Andreas Fröhlich. Evaluating CDCL Variable Scoring Schemes.
[SAT'15]
- Armin Biere, Andreas Fröhlich. Evaluating CDCL Restart Schemes.
- Andreas Fröhlich. Theoretical and Practical Aspects of Bit-Vector Reasoning.
[Thesis'16]
- BV2SMV: Polynomial translation from QF $\mathrm{BV}_{<_{1}}$ to SMV
- SMV formulas can be solved with model checkers
- BDD based model checkers are most efficient

- Application benchmarks by Intel

$$
x+3=\sim x
$$

where x is a bit-vector of $n=6$. If we initialize the search:

$$
\begin{gathered}
x=[0,0,0,0,0,0] \\
\rightarrow[0,0,0,0,1,1]=[1,1,1,1,1,1]
\end{gathered}
$$

Best improvement by negating x :

$$
\begin{gathered}
x=[1,1,1,1,1,1] \\
\rightarrow[0,0,0,0,1,0]=[0,0,0,0,0,0]
\end{gathered}
$$

Flipping the least significant bit is the only move that will further increase the score:

$$
\begin{gathered}
x=[1,1,1,1,1,0] \\
\rightarrow[0,0,0,0,0,1]=[0,0,0,0,0,1]
\end{gathered}
$$

$$
\psi=\forall u_{1}, u_{2} \exists e_{1}\left(u_{1}, u_{2}\right), e_{2}\left(u_{2}\right) \cdot\left(u_{1} \vee e_{1}\right) \wedge\left(\bar{u}_{2} \vee \bar{e}_{1} \vee e_{2}\right)
$$

Initial set of clause instances:

$$
\left(e_{1}\right)_{\bar{u}_{1}} \wedge\left(\bar{e}_{1} \vee e_{2}\right)_{u_{2}}
$$

Propositional abstraction:

$$
\left(x_{1}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)
$$

$\rightarrow \alpha=\left\{x_{1} \rightarrow 1, x_{2} \rightarrow 0, x_{3} \rightarrow 0\right\}$

Refinement:

$$
\left(e_{1}\right)_{\bar{u}_{1}} \wedge\left(e_{1}\right)_{\bar{u}_{1} u_{2}} \wedge\left(\bar{e}_{1} \vee e_{2}\right)_{u_{2}} \wedge\left(\bar{e}_{1} \vee e_{2}\right)_{\bar{u}_{1} u_{2}}
$$

Propositional abstraction:

$$
\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{4}\right)
$$

$\rightarrow \alpha=\left\{x_{1} \rightarrow 1, x_{2} \rightarrow 1, x_{3} \rightarrow 0, x_{4} \rightarrow 1\right\}$

Bitwise: $z^{\left[2^{n}\right]}=x\left[2^{\left[2^{n}\right]} \mid y y^{\left[2^{n}\right]}\right.$

$$
p_{z}\left(i_{n-1}, \ldots, i_{0}\right) \leftrightarrow p_{x}\left(i_{n-1}, \ldots, i_{0}\right) \vee p_{y}\left(i_{n-1}, \ldots, i_{0}\right)
$$

Shift by one: $z^{\left[2^{n}\right]}=x^{\left[2^{n}\right]} \ll 1^{\left[2^{n}\right]}$

$$
\begin{gathered}
\operatorname{succ}\left(i_{n-1}, \ldots, i_{3}, i_{2}, i_{1}, 0, i_{n-1}, \ldots, i_{3}, i_{2}, i_{1}, 1\right) \\
\operatorname{succ}\left(i_{n-1}, \ldots, i_{3}, i_{2}, 0,1, i_{n-1}, \ldots, i_{3}, i_{2}, 1,0\right) \\
\operatorname{succ}\left(i_{n-1}, \ldots, i_{3}, 0,1,1, i_{n-1}, \ldots, i_{3}, 1,0,0\right)
\end{gathered}
$$

!

$$
\operatorname{succ}(0,1, \ldots, 1,1,0, \ldots, 0)
$$

$$
\neg p_{z}(0, \ldots, 0) \wedge\left(\operatorname{succ}\left(i_{n-1}, \ldots, i_{0}, j_{n-1}, \ldots, j_{0}\right) \rightarrow\left(p_{z}\left(j_{n-1}, \ldots, j_{0}\right) \leftrightarrow p_{x}\left(i_{n-1}, \ldots, i_{0}\right)\right)\right)
$$

- State-of-the-art solvers for QF_BV rely on bit-blasting and SAT solvers
- Bit-blasting can be exponential
- Is it possible to solve QF_BV without bit-blasting?
- Can we profit from knowing the complexity of certain bit-vector classes?
- Some alternative approaches (and optimizations) exist
- Translation to EPR
- Translation to SMV
- Bit-width reduction (by Johannsen)
- SLS for SMT
- BV2EPR: Polynomial translation from QF_BV to EPR
- EPR formulas can be solved with iProver (by Korovin)
- CEGAR approach
- Performance worse than bit-blasting for most instances
- Beneficial on some instances (0.1 s instead of T/O)
- Less memory used (can be several orders of magnitude)
- For $Q F _\mathrm{BV}_{b w}$, bit-width reduction can be applied
- There is a solution iff there is a solution with smaller bit-width, e.g.

$$
\begin{aligned}
& \left(X^{[32]} \neq Y^{[32]} \mid Z^{[32]}\right) \wedge\left(Y^{[32]} \neq Z^{[32]} \& X^{[32]}\right) \\
& \rightarrow \quad\left(X^{[2]} \neq Y^{[2]} \mid Z^{[2]}\right) \wedge\left(Y^{[2]} \neq Z^{[2]} \& X^{[2]}\right)
\end{aligned}
$$

- Can be extended to allow certain cases of other operators
- Existing work for RTL Property Checking (by Johannsen)
- Reduces size of design model to up to 30%
- Reduces runtimes to up to 5%
- Upgrading Theorem: If a problem is complete for a complexity class C, it is complete for a v-exponentially harder complexity class than C when succinctly encoded by bit-vectors with v-logarithmic scalars.
[MFCS'14]
- Implication: Word-Level Model Checking and Reachability for bit-vectors with binary encoded bit-widths are ExPSPACE-complete.
- Upgrading SAT: Satisfiability for quantifier-free bit-vector formulas with v-logarithmic encoded scalars is v-NEXPTIME-complete.
- Proof: Reduction from Turing machines or domino tiling problems.

	quantifiers				
	no		yes		
	uninterpreted functions		uninterpreted functions		
		no	yes	no	yes
encoding	unary	NP	NP	PSPACE	NEXPTIME
	binary	NEXPTIME	NEXPTIME	$?$	2-NEXPTIME

- The head initially is at position 0 :

$$
H^{[N]} \wedge l o^{[N]}=1^{[N]} \ll \operatorname{mid}^{[N]}
$$

- M initially is in state s :

$$
Q_{s}^{[N]} \wedge l o^{[N]}=1^{[N]} \ll \operatorname{mid} d^{[N]}
$$

- In each computation step, there is at most one symbol per tape cell, i.e., $\forall \sigma, \sigma^{\prime} \in \Sigma$, with $\sigma \neq \sigma^{\prime}$, we add:

$$
\neg T_{\sigma}^{[N]} \vee \neg T_{\sigma^{\prime}}^{[N]}=\neg 0^{[N]}
$$

- In each computation step, there is at least one symbol per tape cell:

$$
\bigvee_{\sigma \in \Sigma} T_{\sigma}^{[N]}=\neg 0^{[N]}
$$

- In each computation step, there is at most one state at a time, i.e., $\forall q, q^{\prime} \in Q$, with $q \neq q^{\prime}$, we add:

$$
\neg Q_{q}^{[N]} \vee \neg Q_{q^{\prime}}^{[N]}=\neg 0^{[N]}
$$

- The bits of the state variables can only be set at the head positions:

$$
\bigvee_{q \in Q} Q_{q}^{[N]} \wedge \neg H^{[N]}=0^{[N]}
$$

- The tape does not change at positions different from those of the head, i.e., $\forall \sigma \in \Sigma$, we add:

$$
\left(T_{\sigma}^{[N]} \ll s i z e^{[N]} \leftrightarrow T_{\sigma}^{[N]}\right) \vee\left(H^{[N]} \ll s i z e^{[N]}\right) \vee l o^{[N]}=\neg 0^{[N]}
$$

- The transition relation, i.e., $\forall q \in Q, \sigma \in \Sigma$, we add:

$$
\begin{aligned}
& \left(H^{[N]} \wedge Q_{q}^{[N]} \wedge T_{\sigma}^{[N]}\right) \ll s i z e^{[N]} \rightarrow \\
& \quad \bigvee_{\left(q, \sigma, q^{\prime}, \sigma^{\prime}, d\right) \in \delta}\left(H^{[N]} \circ_{d} 1^{[N]} \wedge Q_{q^{\prime}}^{[N]} \wedge T_{\sigma^{\prime}}^{[N]}\right)=\neg 0^{[N]}
\end{aligned}
$$

- M must reach a final state at one point:

$$
\bigvee_{q \in F} Q_{q}^{[N]} \wedge H^{[N]} \neq 0^{[N]}
$$

- Helper variables: \quad size $e^{[N]}=2 \cdot \exp _{\mathrm{v}}(n)+1, \quad$ mid $d^{[N]}=\exp _{\mathrm{v}}(n)$,

$$
h i^{[N]}=\neg 0^{[N]} \ll s i z e^{[N]}, \quad l o^{[N]}=\neg\left(\neg 0^{[N]} \ll s i z e^{[N]}\right)
$$

- If the head is in a certain position in a computation step, it cannot be at any position other than left or right of the current one in the next step:

$$
l o^{[N]} \vee \neg H^{[N]} \vee H^{[N]} \ll(s i z e+1)^{[N]} \vee H^{[N]} \ll(s i z e-1)^{[N]}=\neg 0^{[N]}
$$

- If the head is in a certain position in a computation step, it has to be at position left or right (non-exclusive) of the current one in the next step:

$$
\neg\left(H^{[N]} \ll \operatorname{siz}^{[N]}\right) \vee H^{[N]} \ll 1^{[N]} \vee H^{[N]} \gg \mathbf{u} 1^{[N]}=\neg 0^{[N]}
$$

- In any computation step, the head will never be at two distinct positions exactly two indices apart from each other:

$$
H^{[N]} \ll 1^{[N]} \wedge H^{[N]} \gg \mathbf{u} 1^{[N]}=0^{[N]}
$$

