Simple Data Structures in DP Implementation advdp [1] BCP Implementation Details advdp [7|
Revision: 1.12 Revision: 1.12
e each variable is marked as unassigned, false, or true ({X,0,1})
’ e no explicit resolution:
: f — when a literal is assigned visit all clauses where its negation occurs
1 % — find those clauses which have all but one literal assigned to false
Variables 7% Clauses
2 . — assign remaining non false literal to true and continue
PN ANy oy
. 31 e decision:
. 3l 2 — heuristically find a variable that is still unassigned
— heuristically determine phase for assignment of this variable
Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz
More Implementation Details advdp [3] BCP Example advdp 4

e decision level is the depth of recursive calls (= #nested decisions)

the trail is a stack to remember order in which variables are assigned

e for each decision level the old trail height is saved on the control stack

e undoing assignments in backtracking:
— get old trail height from control stack

— unassign all variables up to the old trail height

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Revision: 1.12

BT e B T

decision level Control Trail
X| 1
é X| 2>
Variables S| X 3 -2 3| Clauses
2 \\ \;J
| s
X|5

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Revision: 1.12

Example cont.

Example cont.

advdp | 5
Revision: 1.12 Dﬁ

Decide
0
o D,
decision level Control Trail
X1 =
e
Variables g x| 3 % Clauses
Q| X| 4=
<]
A= REE

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Example cont.

Assign
0
\ 1 / 0 \k 1
decision level Control Trail
I
- -1 2
{Ep=aED
Variables % X | 3 > —9 3| Clauses
2 \\ QJ
N e
X|5

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

advdp [7] Example cont.

advdp | 6
Revision: 1.12 Dﬁ

BCP
3
0 2
o | s
decision level Control Trail
1]1 [
Sl1|2—>
Variables %) 1] 3>
A=
2 .
X| 54—

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Revision: 1.12

Decide
| —
3 3
0 2
2 0 \k 1
decision level Control Trail
1)1
Sl1]2
Variables %) 1] 3 > Clauses
B x| 4l
< .
X|5

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

advdp | g
Revision: 1.12 Dﬁ

Example cont. advdp 9] Example cont. advdp [10
5
Assign 4 BCP 4
| —" | —"
3 3 3 7 3
0 2 0 2
o I [: o [
decision level Control Trail decision level Control Trail
11 t[ato—
1|2 > 19| 2 b 12
g N 2 o~
Variables £ | 1 | 3 - Clauses Variables £ | 1| 3 - -2 3| Clauses
2 — ‘» —
gla]4m SR
X| 51— 1]5

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Decision Heuristics

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

advdp [11] Cut Width Heuristics advdp [12

e static heuristics:
— one linear order determined before solver is started
— usually quite fast, since only calculated once

— can also use more expensive algorithms

e dynamic heuristics

— typically calculated from number of occurences of literals
(in unsatisfied clauses)

— rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

— recently, second order dynamic heuristics (Chaff)

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Revision: 1.12 Revision: 1.12

e view CNF as a graph:

clauses as nodes, edges between clauses with same variable
e a cut is a set of variables that splits the graph in two parts
e recursively find short cuts that cut of parts of the graph

e static or dynamically order variables according to the cuts

assume
) no occurences of
s — — — — cee y 2, -4, _2
‘ 1‘ f 3‘ ‘ 2 1‘ ‘ 3 } ‘ K?D‘ 4‘ (1)nthe1rightside

short cut

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Cut Width Algorithm advdp [13 Cut Width Heuristics cont. advdp [12

Revision: 1.12 Revision: 1.12

int

sat (O\F cnf)

{
Set 3 Variabl es cut = generate _good_cut (cnf);
O\F assignnent, left, right;

e resembles cuts in circuits when CNF is generated with Tseitin transformation

e ideally cuts have constant or logarithmic size ...

left = cut_off left_part (cut, cnf);
right = cut_off right part (cut, cnf);

— for instance in tree like circuits

— so the problem is reconvergence:

forall _assignnents (assi gnnent, cut) the same signal / variable is used multiple times

if (sat (apply (assignment, left)) & sat (apply (assignnent, right)))

} return 1; e ... then satisfiability actually becomes polynomial (see exercise)
return O
Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz
CNF in Horn Form dvd DP and Horn Form dvd
A clause is called positive if it contains a positive literal. e CNF in Horn Form: use above specialized fast algorithm

A clause is called negative if all its literals are negative.])) o
e non Horn: split on literals which occurs positive in non Horn clauses

A clause is a Horn clause if contains at most one positive literal. — actually choose variable which occurs most often in such clauses

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

e this gradually transforms non Horn CNF into Horn Form
Order assignments point-wise: 0 <@’ iff 0(X) <d’(x)forall xeV

e main heuristic in SAT solver SATO

Horn Form with only positive clauses has minimal satisfying assignment.

e Note: In general, BCP in DP prunes search space by avoiding assignments incompatible to
minimal satisfying assingment for the Horn part of the CNF.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative
clauses as well. non Horn part of CNF | Horn part of CNF

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Other popular Decision Heuristics

advdp | 17

e Dynamic Largest Individual Sum (DLIS)

fastest dynamic first order heuristic (eg GRASP solver)

choose literal (variable + phase) which occurs most often

ignore satisfied clauses

requires explicit traversal of CNF (or more expensive BCP)

e |ook-forward heuristics (eg SATZ solver)
— do trial assignments and BCP for all unassigned variables (both phases)
— if BCP leads to conflict, force toggled assignment of current trial decision

— skip trial assignments implied by previous trial assignments
(removes a factor of [V| from the runtime of one decision search)

Systemtheory 2 — Formal Systems 2 —#342201 — SS 2006 — Armin Biere — JKU Linz

Revision: 1.12

