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e each variable is marked as unassigned, false, or true ({X,0,1})
’ e no explicit resolution:
: f — when a literal is assigned visit all clauses where its negation occurs
1 % — find those clauses which have all but one literal assigned to false
Variables 7% Clauses
2 . — assign remaining non false literal to true and continue
PN ANy oy
. 31 e decision:
. 3l 2 — heuristically find a variable that is still unassigned
— heuristically determine phase for assignment of this variable
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More Implementation Details advdp [3] BCP Example advdp 4

e decision level is the depth of recursive calls (= #nested decisions)

the trail is a stack to remember order in which variables are assigned

e for each decision level the old trail height is saved on the control stack

e undoing assignments in backtracking:
— get old trail height from control stack

— unassign all variables up to the old trail height
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e static heuristics:
— one linear order determined before solver is started
— usually quite fast, since only calculated once

— can also use more expensive algorithms

e dynamic heuristics

— typically calculated from number of occurences of literals
(in unsatisfied clauses)

— rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

— recently, second order dynamic heuristics (Chaff)
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e view CNF as a graph:

clauses as nodes, edges between clauses with same variable
e a cut is a set of variables that splits the graph in two parts
e recursively find short cuts that cut of parts of the graph

e static or dynamically order variables according to the cuts

assume
) no occurences of
s — — — — cee y 2, -4, _2
‘ 1‘ f 3‘ ‘ 2 1‘ ‘ 3 } ‘ K?D‘ 4‘ (1)nthe1rightside

short cut
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int

sat (O\F cnf)

{
Set 3 Variabl es cut = generate _good_cut (cnf);
O\F assignnent, left, right;

e resembles cuts in circuits when CNF is generated with Tseitin transformation

e ideally cuts have constant or logarithmic size ...

left = cut_off left_part (cut, cnf);
right = cut_off right part (cut, cnf);

— for instance in tree like circuits

— so the problem is reconvergence:

forall _assignnents (assi gnnent, cut) the same signal / variable is used multiple times

if (sat (apply (assignment, left)) & sat (apply (assignnent, right)))

} return 1; e ... then satisfiability actually becomes polynomial (see exercise)
return O
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CNF in Horn Form dvd DP and Horn Form dvd
A clause is called positive if it contains a positive literal. e CNF in Horn Form: use above specialized fast algorithm

A clause is called negative if all its literals are negative. ] ) ) o
e non Horn: split on literals which occurs positive in non Horn clauses

A clause is a Horn clause if contains at most one positive literal. — actually choose variable which occurs most often in such clauses

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

e this gradually transforms non Horn CNF into Horn Form
Order assignments point-wise: 0 <@’ iff 0(X) <d’(x)forall xeV

e main heuristic in SAT solver SATO

Horn Form with only positive clauses has minimal satisfying assignment.

e Note: In general, BCP in DP prunes search space by avoiding assignments incompatible to
minimal satisfying assingment for the Horn part of the CNF.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative
clauses as well. non Horn part of CNF | Horn part of CNF
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Other popular Decision Heuristics
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e Dynamic Largest Individual Sum (DLIS)

fastest dynamic first order heuristic (eg GRASP solver)

choose literal (variable + phase) which occurs most often

ignore satisfied clauses

requires explicit traversal of CNF (or more expensive BCP)

e |ook-forward heuristics (eg SATZ solver)
— do trial assignments and BCP for all unassigned variables (both phases)
— if BCP leads to conflict, force toggled assignment of current trial decision

— skip trial assignments implied by previous trial assignments
(removes a factor of [V| from the runtime of one decision search)
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