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• more and more complex systems

Moore’s Law⇒ soon we will have 1030 transistors / processor

multi-million LOC / OS

⇒ exploding testing costs (in general not linear in system size)

• increased dependability

everything important depends on computers:

stir by wire, banking, stock market, workflow, . . .

⇒ quality concerns

• increased functionality

security, mobility, new business processes, . . .
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Test

standard definition: dynamic execution / simulation of a system

integration in development process necessary

extreme position: testing should actually “drive” the development process

Verification

standard definition: static checking, symbolic execution

hardware design: verification is the process of testing

⇒ our view: Test = Verification
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• not unusual to have more than 50% of resources allocated to testing

• testing and verification are (becoming) the bottleneck of development

• quality dilemma (drop quality for more features)

• more efficient methods for test and verification needed

⇒ formal verification is the most promising approach

• experts in new testing and verification methods are lacking

• long term: more formal development process not just formal verification
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• formal = mathematical

• mathematical models⇒ precise semantics

• emphasizes static / symbolic reasoning about programs

(so standard definition of verification falls into this category)

• rather narrow view in digital design: equivalence and model checking

• not esoteric: compilation in a broad sense is a formal method

(high-level description is translated into low-level description)

• our view: use tools for reasoning (i.e. programs are formal entities)
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• abstracts from unnecessary implementation details

• high-level mathematical model of the system

• very useful for high-level design

• catches ambiguous or inconsistent specifications

• formal specification per se: no tools for refinement / checking

• good example: ASM
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• integrates verification in the development process

• usually pure top-down design and incremental refinement steps

• splits large verification tasks (divide et impera) . . .

• . . . but forces dramatic change in development process

• it works but is costly

• each refinement step uses formal verification methods

⇒ more powerfull verification algorithms allow more automation

• good example: B-Method
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Requirements

High−Level Design

Low−Level Design

Implementation

HW SW

Architecture

RTL

Gate

Transitor

Synthesis Verification

1. no implementation without Synthesis

2. Verification is added value (Quality)

3. both processes are incremental

4. both processes can be formal
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• assumptions: specification and system are given

• formal verification checks formally that system fulfills specification

• least change in development process

• full blown verification is really difficult: “post mortem verification”

• simplifications: focus on simple partial specifications

(type safety, functional equivalence of two systems, . . .)

• methods (implemented in tools):

simple algorithms for deducing properties directly

complex algorithms for hard or even undecidable problems
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• boolean methods:

SAT, BDDs, ATPG, Combinational Equivalence Checking

• finite state methods:

Bisimulation and Equivalence Checking of Automata, Model Checking

• term based methods:

Term Rewriting, Resolution, Tableaux, Theorem Proving

• Abstraction (eg SLAM uses BDDs, Model Checking, Theorem Proving)
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• how does it work?

(algorithms and data structures)

• necessary background for use of formal verification

(and formal methods in general)

• capacity and restrictions

• first step to become an expert in a fast expanding area
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optimization of if-then-else chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();

} else f(); else g(); }

How to check that these two versions are equivalent?
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SAT Example cont. sat
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1. represent procedures as independent boolean variables

original := optimized:=

if ¬a∧¬b then h if a then f
else if¬a then g else ifb then g
else f elseh

2. compile if-then-else chains into boolean formulae

compile(if x then y elsez) ≡ (x∧y) ∨ (¬x∧z)

3. check equivalence of boolean formulae

compile(original) ⇔ compile(optimized)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Compilation sat
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original ≡ if ¬a∧¬b then h else if¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f )

optimized ≡ if a then f else ifb then g elseh

≡ a∧ f ∨ ¬a∧ if b then g elseh

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f ) ⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)
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How to Check (In)Equivalence? sat
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Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b, f ,g,h,

which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula compile(original) 6↔ compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP

(this is just a theoretical note and not really important for applications)
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SAT Example: Circuit Equivalence Checking sat
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c
a
b

c

a

b

b ∨ a∧c (a∨b) ∧ (b∨c)

equivalent?

b ∨ a∧c ⇔ (a∨b) ∧ (b∨c)
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SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables V = {x,y, . . .}.

Is there are an assignment σ : V→{0,1} with σ( f ) = 1 ?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment σ (linear in n), calculate σ( f ) (linear in | f |)

Note: on a real (deterministic) computer this would still require 2n time

SAT is complete for NP (see complexity / theory class)

Implications for us:

general SAT algorithms are probably exponential in time (unless NP = P)
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Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1∧C2∧ . . .∧Cn

each clause C is a disjunction of literals

C = L1∨ . . .∨Lm

and each literal is either a plain variable x or a negated variable x.

Example (a∨b∨c)∧ (a∨b)∧ (a∨c)

Note 1: two notions for negation: in x and ¬ as in ¬x for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
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Negation Normal Form sat
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Assumption: we only have conjunction, disjunction and negation as operators.

a formula is in Negation Normal Form (NNF),

if negations only occur in front of variables

⇒ all internal nodes in the formula tree are either ANDs or ORs

linear algorithms for generating NNF from an arbitrary formula

often NNF generations includes elimination of other non-monotonic operators:

NNF of f ↔ g is NNF of f ∧g ∨ f ∧g

in this case the result can be exponentially larger (see parity example later).
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NNF Algorithm sat
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Formula
formula2nnf (Formula f, Boole sign)
{
  if (is_variable (f))
    return sign ? new_not_node (f) : f;
  if (op (f) == AND || op (f) == OR)
    {
      l = formula2nnf (left_child (f), sign);
      r = formula2nnf (right_child (f), sign);
      flipped_op = (op (f) == AND) ? OR : AND;
      return new_node (sign ? flipped_op : op (f), l, r);
    }
  else
    {
      assert (op (f) == NOT);
      return formula2nnf (child (f), !sign);
    }
}
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Simple Translation of Formula into CNF sat
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Formula
formula2cnf_aux (Formula f)
{
  if (is_cnf (f))
    return f;
  if (op (f) == AND)
    {
      l = formula2cnf_aux (left_child (f));
      r = formula2cnf_aux (right_child (f));
      return new_node (AND, l, r);
    }
  else
    {
      assert (op (f) == OR);
      l = formula2cnf_aux (left_child (f));
      r = formula2cnf_aux (right_child (f));
      return merge_cnf (l, r);
    }
}
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Merging two CNFs sat
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Formula
formula2cnf (Formula f)
{
  return formula2cnf_aux (formula2nnf (f, 0));
}

Formula
merge_cnf (Formula f, Formula g)
{
  res = new_constant_node (TRUE);
  for (c = first_clause (f); c; c = next_clause (f, c))
    for (d = first_clause (g); d; d = next_clause (g, d))
      res = new_node (AND, res, new_node (OR, c, d));
  return res;
}
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Why are Sharing / Circuits / DAGs important? sat
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DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion
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Parity Example sat
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Boole
parity (Boole a, Boole b, Boole c, Boole d, Boole e,
        Boole f, Boole g, Boole h, Boole i, Boole j)
{
  tmp0 = b ? !a : a;
  tmp1 = c ? !tmp0 : tmp0;
  tmp2 = d ? !tmp1 : tmp1;
  tmp3 = e ? !tmp2 : tmp2;
  tmp4 = f ? !tmp3 : tmp3;
  tmp5 = g ? !tmp4 : tmp4;
  tmp6 = h ? !tmp5 : tmp5;
  tmp7 = i ? !tmp6 : tmp6;
  return j ? !tmp7 : tmp7;
}

Eliminiate the tmp. . . variables through substitution.

What is the size of the DAG vs the Tree representation?
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How to detect Sharing sat
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• through caching of results in algorithms operating on formulas

(examples: substitution algorithm, generation of NNF for non-monotonic ops)

• when modeling a system: variables are introduced for subformulae

(then these variables are used multiple times in the toplevel formula)

• structural hashing: detects structural identical subformulae

(see Signed And Graphs later)

• equivalence extraction: eg. BDD sweeping, Stålmarcks Method

(we will look at both techniques in more detail later)
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CNF

c

b

a

w

v
w

u
o

x

y
o ∧

(x ↔ a∧c) ∧
(y ↔ b∨x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨c) ∧
(w↔ u∧v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧c)∧ . . .

o∧ (x∨a)∧ (x∨c)∧ (x∨a∨c)∧ . . .
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Algorithmic Description of Tseitin Transformation sat
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1. for each non input circuit signal s generate a new variable xs

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is satisfiability equivalent :

the result is satisfiable iff and only the original formula is satisfiable

not equivalent in the classical sense to original formula: it has new variables

extract satisfying assignment for original formula, from one of the result

(just project satisfying assignment onto the original variables)
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Tseitin Transformation: Input / Output Constraints sat
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Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨y)∧ (y∨x)

Disjunction: x↔ (y∨z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨z))
⇔ (y∨x)∧ (z∨x)∧ (x∨y∨z)

Conjunction: x↔ (y∧z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧z)→ x)
⇔ (x∨y)∧ (x∨z)∧ ((y∧z)∨x)
⇔ (x∨y)∧ (x∨z)∧ (y∨z∨x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨y∨z)∧ (x∨z∨y)∧ ((y↔ z)→ x)
⇔ (x∨y∨z)∧ (x∨z∨y)∧ (((y∧z)∨ (y∧z))→ x)
⇔ (x∨y∨z)∧ (x∨z∨y)∧ ((y∧z)→ x)∧ ((y∧z)→ x)
⇔ (x∨y∨z)∧ (x∨z∨y)∧ (y∨z∨x)∧ (y∨z∨x)
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• goal is smaller CNF (less variables, less clauses)

• extract multi argument operands (removes variables for intermediate nodes)

• half of AND, OR node constraints may be removed for unnegated nodes

a node occurs negated if it has an ancestor which is a negation

half of the constraints determine parent assignment from child assignment

those are unnecessary if node is not used negated

• those have to be carefully applied to DAG structure

(compare with the implementation of the BMC tool from CMU)
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• dates back to the 50ies:

original version is resolution based (less successful)

• idea: case analysis (try x = 0,1 in turn and recurse)

• most successful SAT solvers (autumn 2003)

works for very large instances

• recent (≤ 10 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)
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Resolution dp
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• basis for first (less successful) resolution based DP

• can be extended to first order logic

• helps to explain learning

Resolution Rule

C∪{v} D∪{¬v}
{v,¬v}∩C = {v,¬v}∩D = /0

C∪D

Read: resolving the clause C∪{v} with the clause D∪{¬v}, both above the line, on the variable v,

results in the clause D∪C below the line.
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Correctness of Resolution Rule dp
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Usage of such rules: if you can derive what is above the line (premise) then you are allowed to

deduce what is below the line (conclusion).

Theorem. (premise satisfiable⇒ conclusion satisfiable)

σ(C∪{v}) = σ(D∪{¬v}) = 1 ⇒ σ(C∪D) = 1

Proof.

let c∈C, d ∈ D with (σ(c) = 1 or σ(v) = 1) and (σ(d) = 1 or σ(¬v) = 1)

if σ(c) = 1 or σ(d) = 1 conclusion follows immediately

otherwise σ(v) = σ(¬v) = 1 ⇒ contradiction

q.e.d.
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Completeness of Resolution Rule dp
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Theorem. (conclusion satisfiable⇒ premise satisfiable)

σ(C∪D) = 1 ⇒ ∃σ′ with σ′(C∪{v}) = σ′(D∪{¬v}) = 1

Proof.

with out loss of generality pick c∈C with σ(c) = 1

define σ′(x) =

{
0 if x = v

σ(x) else

since v and ¬v do not occur in C, we still have σ′(C) = 1 and thus σ′(C∪{v}) = 1

by definition σ′(¬v) = 1 and thus σ′(D∪{¬v}) = 1

q.e.d.
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Resolution Based DP dp
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Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable

2. find variables which only occur in one phase (only positive or negative)

3. remove all clauses in which these variables occur

4. if no clause left then terminate with result satisfiable

5. choose x as one of the remaining variables with occurrences in both phases

6. add results of all possible resolutions on this variable

7. remove all trivial clauses and all clauses in which x occurs

8. continue with 1.
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Example for Resolution DP dp
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check whether XOR is weaker than OR, i.e. validity of:

a∨b → (a⊕b)

which is equivalent to unsatisfiability of the negation:

(a∨b) ∧ ¬(a⊕b)

since negation of XOR is XNOR (equivalence):

(a∨b) ∧ (a↔ b)

we end up checking the following CNF for satisfiability:

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)
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(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

initially we can skip 1. - 4. of the algorithm and choose x = b in 5.

in 6. we resolve (¬a∨b) with (a∨¬b) and (a∨b) with (a∨¬b) both on b

and add the results (a∨¬a) and (a∨a) :

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)∧ (a∨¬a)∧ (a∨a)

the trivial clause (a∨¬a) and clauses with ocurrences of b are removed:

(a∨a)

in 2. we find a to occur only positive and in 3. the remaining clause is removed

the test in 4. succeeds and the CNF turns out to be satisfiable

(thus the original formula is invalid – not a tautology)
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Correctness of Resolution Based DP dp
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Proof. in three steps:

(A) show that termination criteria are correct

(B) each transformation preserves satisfiability

(C) each transformation preserves unsatisfiability

Ad (A):

an empty clause is an empty disjunction, which is unsatisfiable

if literals occur only in one phase assign those to 1⇒ all clauses satisfied

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Correctness of Resolution Based DP Part (B) dp
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CNF transformations preserve satisfiability:

removing a clause does not change satisfiability

thus only adding clauses could potentially not preserve satisfiability

the only clauses added are the results of resolution

correctness of resolution rule shows:

if the original CNF is satisfiable, then the added clause are satisfiable

(even with the same satisfying assignment)
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Correctness of Resolution Based DP Part (C) dp
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CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability

thus only removing clauses could potentially not preserve unsatisfiability

trivial clauses (v∨¬v∨ . . .) are always valid and can be removed

let f be the CNF after removing all trivial clauses (in step 7.)

let g be the CNF after removing all clauses in which x occurs (after step 7.)

we need to show ( f unsat⇒ g unsat), or equivalently (g sat⇒ f sat)

the latter can be proven as the completeness proof for the resolution rule

(see next slide)
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Correctness of Resolution Based DP Part (C) cont. dp
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If we interpret ∪ as disjunction and clauses as formulae, then

(C1∨x)∧ . . .∧ (Ck∨x) ∧ (D1∨¬x)∧ . . .∧ (Dl ∨¬x)

is, via distributivity law, equivalent to

((C1∧ . . .∧Ck)︸ ︷︷ ︸
C

∨x) ∧ ((D1∧ . . .∧Dl)︸ ︷︷ ︸
D

∨¬x)

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those σ′ derived

for multiple resolutions are formally allowed to assign different values for the resolution variable.
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Problems with Resolution Based DP dp
Revision: 1.11

43

• if variables have many occurences, then many resolutions are necessary

• in the worst x and ¬x occur in half of the clauses . . .

• . . . then the number of clauses increases quadratically

• clauses become longer and longer

• unfortunately in real world examples the CNF explodes

(we will latter see how BDDs can be used to overcome some of these problems)

• How to obtain the satisfying assignment efficiently (counter example)?
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Second version of DP dp
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• resolution based version often called DP, second version DPLL

(DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])

• it eliminates variables through case analysis: time vs space

• only unit resolution used (also called boolean constraint propagation)

• case analysis is on-the-fly:

cases are not elaborated in a predefined fixed order, but . . .

. . . only remaining crucial cases have to be considered

• allows sophisticated optimizations
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Unit-Resolution dp
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a unit clause is a clause with a single literal

in CNF a unit clause forces its literal to be assigned to 1

unit resolution is an application of resolution, where one clause is a unit clause

also called boolean constraint propagation

Unit-Resolution Rule

C∪{¬l} {l}
{l ,¬l}∩C = /0

C

here we identify ¬¬v with v for all variables v.
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Unit-Resolution Example dp
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check whether XNOR is weaker than AND, i.e. validity of:

a∧b → (a↔ b)

which is equivalent to unsatisfiability of the CNF (exercise)

a∧b ∧ (a∨b)∧ (¬a∨¬b)

adding clause obtained from unit resolution on a results in

a∧b ∧ (a∨b)∧ (¬a∨¬b)∧ (¬b)

removing clauses containing a or ¬a

b ∧ (¬b)

unit resolution on b results in an empty clause and we conclude unsatisfiability.
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Ad: Unit Resolution dp
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• if unit resolution produces a unit, e.g. resolving (a∨¬b) with b produces a, continue unit reso-

lution with this new unit

• often this repeated application of unit resolution is also called unit resolution

• unit resolution + removal of subsumed clauses never increases size of CNF

C subsumes D :⇔ C⊆ D

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

• boolean constraint propagation (BCP): given a unit l , remove all clauses in which l occurs in the

same phase, and remove all literals ¬l in clauses, where it occurs in the opposite phase (the

latter is unit resolution)
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Basic DPLL Algorithm dp
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1. apply repeated unit resolution and removal of all subsumed clauses (BCP)

2. if empty clause found then return unsatisfiable

3. find variables which only occur in one phase (only positive or negative)

4. remove all clauses in which these variables occur (pure literal rule)

5. if no clause left then return satisfiable

6. choose x as one of the remaining variables with occurrences in both phases

7. recursively call DPLL on current CNF with the unit clause {x} added

8. recursively call DPLL on current CNF with the unit clause {¬x} added

9. if one of the recursive calls returns satisfiable return satisfiable

10. otherwise return unsatisfiable
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DPLL Example dp
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(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)

Skip 1. - 6., and choose x = a. First recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧a

unit resolution on a and removal of subsumed clauses gives

b∧ (¬b)

BCP gives empty clause, return unsatisfiable . Second recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧¬a

BCP gives ¬b, only positive recurrence of b left, return satisfiable

(satisfying assignment {a 7→ 0,b 7→ 0})
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Expansion Theorem of Shannon dp
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Theorem.

f (x) ≡ x∧ f (1)∨x∧ f (0)

Proof.

Let σ be an arbitrary assignment to variables in f including x

case σ(x) = 0:

σ( f (x)) = σ( f (0)) = σ(0∧ f (1)∨1∧ f (0)) = σ(x∧ f (1)∨x∧ f (0))

case σ(x) = 1:

σ( f (x)) = σ( f (1)) = σ(1∧ f (1)∨0∧ f (0)) = σ(x∧ f (1)∨x∧ f (0))
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first observe: x∧ f (x) is satisfiable iff x∧ f (1) is satisfiable

similarly, x∧ f (x) is satisfiable iff x∧ f (0) is satisfiable

then use expansion theorem of Shannon:

f (x) satisfiable iff x∧ f (0) or x∧ f (1) satisfiable iff x∧ f (x) or x∧ f (x) satisfiable

rest follows along the lines of the the correctness proof for resolution based DP
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1 2

−21

−1 2

−2−1

−1 −23

1

2

3

−3 2

1−3

Variables Clauses
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BCP Implementation Details advdp
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• each variable is marked as unassigned, false, or true ({X,0,1})

• no explicit resolution:

– when a literal is assigned visit all clauses where its negation occurs

– find those clauses which have all but one literal assigned to false

– assign remaining non false literal to true and continue

• decision:

– heuristically find a variable that is still unassigned

– heuristically determine phase for assignment of this variable
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More Implementation Details advdp
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• decision level is the depth of recursive calls (= #nested decisions)

• the trail is a stack to remember order in which variables are assigned

• for each decision level the old trail height is saved on the control stack

• undoing assignments in backtracking:

– get old trail height from control stack

– unassign all variables up to the old trail height
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BCP Example advdp
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TrailControldecision level
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Example cont. advdp
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TrailControldecision level
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TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

0

BCP

1

1

1

1 0

3

2

1

A
ss

ig
nm

en
t

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Example cont. advdp
Revision: 1.12

59

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

Decide

1

1

1

0

0

3 3

2

12

A
ss

ig
nm

en
t

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Example cont. advdp
Revision: 1.12

60

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4

3−2

−1 2

X

Assign

1

1

1

1
5

4

3

2

10

0

3

2

A
ss

ig
nm

en
t

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz



Example cont. advdp
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Decision Heuristics advdp
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• static heuristics:

– one linear order determined before solver is started

– usually quite fast, since only calculated once

– can also use more expensive algorithms

• dynamic heuristics

– typically calculated from number of occurences of literals

(in unsatisfied clauses)

– rather expensive, since it requires traversal of all clauses

(or more expensive updates in BCP)

– recently, second order dynamic heuristics (Chaff)
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Cut Width Heuristics advdp
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• view CNF as a graph:

clauses as nodes, edges between clauses with same variable

• a cut is a set of variables that splits the graph in two parts

• recursively find short cuts that cut of parts of the graph

• static or dynamically order variables according to the cuts

−2 1 −3 1−1 2 3 −43 1, 2, −1, −2

assume
no occurences of

on the right side

short cut
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Cut Width Algorithm advdp
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int
sat (CNF cnf)
{
  SetOfVariables cut = generate_good_cut (cnf);
  CNF assignment, left, right;

  left = cut_off_left_part (cut, cnf);
  right = cut_off_right_part (cut, cnf);

  forall_assignments (assignment, cut)
  {
    if (sat (apply (assignment, left)) && sat (apply (assignment, right)))
      return 1;
  }

  return 0;
}
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Cut Width Heuristics cont. advdp
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• resembles cuts in circuits when CNF is generated with Tseitin transformation

• ideally cuts have constant or logarithmic size . . .

– for instance in tree like circuits

– so the problem is reconvergence:

the same signal / variable is used multiple times

• . . . then satisfiability actually becomes polynomial (see exercise)
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CNF in Horn Form advdp
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A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: σ≤ σ′ iff σ(x)≤ σ′(x) for all x∈V

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative

clauses as well.
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DP and Horn Form advdp
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• CNF in Horn Form: use above specialized fast algorithm

• non Horn: split on literals which occurs positive in non Horn clauses

– actually choose variable which occurs most often in such clauses

• this gradually transforms non Horn CNF into Horn Form

• main heuristic in SAT solver SATO

• Note: In general, BCP in DP prunes search space by avoiding assignments incompatible to

minimal satisfying assingment for the Horn part of the CNF.

non Horn part of CNF Horn part of CNF
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Other popular Decision Heuristics advdp
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• Dynamic Largest Individual Sum (DLIS)

– fastest dynamic first order heuristic (eg GRASP solver)

– choose literal (variable + phase) which occurs most often

– ignore satisfied clauses

– requires explicit traversal of CNF (or more expensive BCP)

• look-forward heuristics (eg SATZ solver)

– do trial assignments and BCP for all unassigned variables (both phases)

– if BCP leads to conflict, force toggled assignment of current trial decision

– skip trial assignments implied by previous trial assignments

(removes a factor of |V| from the runtime of one decision search)
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Backjumping learn
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x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.
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Backjumping Example learn
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−3

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −3 first (bad decision).
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Backjumping Example learn
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−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −1 and get first conflict.
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Backjumping Example learn
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−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Regularly backtrack and assign 1 to get second conflict.
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Backjumping Example learn
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1−1

−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)3

Backtrack to root, assign 3 and derive same conflicts.
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Backjumping Example learn
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−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Assignment −3 does not contribute to conflict.
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Backjumping Example learn
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(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)−3

−1

1

So just backjump to root before assigning 1.

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Backjumping learn
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• backjumping helps to recover from bad decisions

– bad decisions are those that do not contribute to conflicts

– without backjumping same conflicts are generated in second branch

– with backjumping the second branch of bad decisions is just skipped

• particularly useful for unsatisfiable instances

– in satisfiable instances good decisions will guide us to the solution

• with backjumping many bad decisions increase search space roughly quadratically instead of

exponentially with the number of bad decisions
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Implication Graph learn
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• the implication graph maps inputs to the result of resolutions

• backward from the empty clause all contributing clauses can be found

• the variables in the contributing clauses are contributing to the conflict

• important optimization, since we only use unit resolution

– generate graph only for resolutions that result in unit clauses

– the assignment of a variable is result of a decision or a unit resolution

– therefore the graph can be represented by saving the reasons for assignments with each

assigned variable
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General Implication Graph as Hyper-Graph learn
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a

a cb

b

c∨∨
reason implied

assignment

original
assignments

(edges of directed hyper graphs may have multiple source and target nodes)
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Optimized Implication Graph for Unit Resolution in DP learn
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a

b

a cb ∨∨

c

c

implied
assignment

assignments
original

reason associated to

• graph becomes an ordinary (non hyper) directed graph

• simplifies implementation:

– store a pointer to the reason clause with each assigned variable

– decision variables just have a null pointer as reason

– decisions are the roots of the graph

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Learning learn
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• can we learn more from a conflict?

– backjumping does not fully avoid the occurrence of the same conflict

– the same (partial) assignments may generate the same conflict

• generate conflict clauses and add them to CNF

– the literals contributing to a conflict form a partial assignment

– this partial assignment is just a conjunction of literals

– its negation is a clause (implied by the original CNF)

– adding this clause avoids this partial assignment to happen again
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Conflict Driven Backtracking/Backjumping learn
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• observation: current decision always contributes to conflict

– otherwise BCP would have generated conflict one decision level lower

– conflict clause has (exactly one) literal assigned on current decision level

• instead of backtracking

– generate and add conflict clause

– undo assignments as long conflict clause is empty or unit clause

(in case conflict clause is the empty clause conclude unsatisfiability)

– resulting assignment from unit clause is called conflict driven assignment
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CNF for following Examples learn
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-3 1 2 0

3 -1 0

3 -2 0

-4 -1 0

-4 -2 0

-3 4 0

3 -4 0

-3 5 6 0

3 -5 0

3 -6 0

4 5 6 0

We use a version of the DIMACS format.

Variables are represented as positive integers.

Integers represent literals.

Subtraction means negation.

A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4 (cf Exercise 4 + 5).

(but we are going to apply DP with learning to it)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

DP with Learning Run 1 (3 as 1st decision) learn
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= 0l

= 0l

= 1l

= 0l

3

(conflict)
empty clause

(conflict)
empty clause

unit clause −3 is generated as learned clause and we backtrackt to 

3

−1

−2

3 4
−3 1 2

(no unit clause originally, so no implications)

since −3 has a real unit clause as reason, an empty conflict clause is learned

−3

−6

−5

−4

4 5 6

decision

unit

1st conflict clause
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DP with Learning Run 2 Fig. 1 (-1, 3 as decision order) learn
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= 0l

= 1l

= 2l

3

−1

(conflict)
empty clause

= 1l

decision

−1

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

(using the FIRST clause)

23

4
−4 −2

since FIRST clause was used to derive 2, conflict clause is (1 −3)

backtrack to (smallest level for which conflict clause is a unit clause)
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DP with Learning Run 2 Fig. 2 (-1, 3 as decision order) learn
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= 0l

= 1l

(conflict)
empty clause

= 0l

decision

−1

(no unit clause originally, so no implications)

1st conflict clause

3

−1
−3

−4

−5

−6

4 5 6

backtrack to decision level 

learned conflict clause is the unit clause 1
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DP with Learning Run 2 Fig. 3 (-1, 3 as decision order) learn
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= 0l

(conflict)
empty clause

3

−1

since the learned clause is the empty clause, conclude unsatisfiability

1
unit

2nd conflict clause

−4

−3

−5

−6

4 5 6
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DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) learn
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= 0l

= 1l

= 2l

(conflict)
empty clause

= 0l

decision

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

3

3

−6
−6

4

−1

−2
−3 1 2

learn the unit clause −3 and BACKJUMP to decision level
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DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) learn
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= 0l

(conflict)
empty clause

3

−6

−3

−4

−6

−5 4 5 6

finally the empty clause is derived which proves unsatisfiability

unit

1st conflict clause
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Toplevel Loop in DP with Learning learn
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int
sat (Solver solver)
{
  Clause conflict;

  for (;;)
    {
      if (bcp_queue_is_empty (solver) && !decide (solver))
        return SATISFIABLE;

      conflict = deduce (solver);

      if (conflict && !backtrack (solver, conflict))
        return UNSATISFIABLE;
    }
}
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Backtracking in DP with Learning learn
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int
backtrack (Solver solver, Clause conflict)
{
  Clause learned_clause; Assignment assignment; int new_level;

  if (decision_level(solver) == 0)
    return 0;

  analyze (solver, conflict);
  learned_clause = add (solver);

  assignment = drive (solver, learned_clause);
  enqueue_bcp_queue (solver, assignment);

  new_level = jump (solver, learned_clause);
  undo (solver, new_level);

  return 1;
}
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Learning as Resolution learn
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• conflict clause: obtained by backward resolving empty clause with reasons

– start at clause which has all its literals assigned to false

– resolve one of the false literals with its reason

– invariant: result still has all its literals assigned to false

– continue until user defined size is reached

• gives a nice correspondence between resolution and learning in DP

– allows to generate a resolution proof from a DP run

– implemented in RELSAT solver
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Conflict Clauses as Cuts in the Implication Graph learn
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decision conflict

−2nlevel

level

level

n

n

−1

a simple cut always exists: set of roots (decisions) contributing to the conflict
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Unique Implication Points (UIP) learn
Revision: 1.14

93

decision conflict

−2

UIP

nlevel

level

level

n

n

−1

UIP = articulation point in graph decomposition into biconnected components

(simply a node which, if removed, would disconnect two parts of the graph)
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Detection of UIPs learn
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• can be found by graph traversal in the order of made assignments

• trail respects this order

• traverse reasons of variables on trail starting with conflict

• count “open paths”

(initially size of clause with only false literals)

• if all paths converged at one node, then UIP is found

• decision of current decision level is a UIP and thus a sentinel
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Further Options in Using UIPs learn
Revision: 1.14

95

• assume a non decision UIP is found

• this UIP is part of a potential cut

• graph traversal may stop (everything behind the UIP is ignored)

• negation of the UIP literal constitutes the conflict driven assignment

• may start new clause generation (UIP replaces conflict)

– each conflict may generate multiple learned clauses

– however, using only the first UIP encountered seems to work best
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More Heuristics for Conflict Clauses Generation learn
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• intuitively is is important to localize the search (cf cutwidth heuristics)

• cuts for learned clauses may only include UIPs of current decision level

• on lower decision levels an arbitrary cut can be chosen

• multiple alternatives

– include all the roots contributing to the conflict

– find minimal cut (heuristically)

– cut off at first literal of lower decision level (works best)
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Second Order Dynamic Decision Heuristics: VSIDS learn
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• “second order” because it involves statistics about the search

• Variable State Independent Decaying Sum (VSIDS) decision heuristic

(implemented in CHAFF and LIMMAT solver)

• VSIDS just counts the occurrences of a literals in conflict clauses

• literal with maximal count (score) is chosen

• score is multiple by a factor f < 1 after a certain number of conflicts occurred

(this is the “decaying” part and also called rescoring)

• emphasizes (negation of) literals contributing recently to conflicts (localization )
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BERKMIN’s Dynamic Second Order Heuristics learn
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• observation:

– recently added conflict clauses contain all the good variables of VSIDS

– the order of those clauses is not used in VSIDS

• basic idea:

– simply try to satisfy recently learned clauses first

– use VSIDS to chose the decision variable for one clause

– if all learned clauses are satisfied use other heuristics

– intuitively obtains another order of localization (no proofs yet)

• results are mixed, but in general sligthly more robust than just VSIDS

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Restarts learn
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• for satisfiable instances the solver may get stuck in the unsatisfiable part

– even if the search space contains a large satisfiable part

• often it is a good strategy to abandon the current search and restart

– restart after the number of decisions reached a restart limit

• avoid to run into the same dead end

– by randomization (either on the decision variable or its phase)

– and/or just keep all the learned clauses

• for completeness dynamically increase restart limit
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Other Types of Learning learn
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• similar to look-ahead heuristics: polynomially bounded search

– may be recursively applied (however, is often too expensive)

• Stålmarck’s Method

– works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z= (e⊕ f ) etc.

– generalization of BCP to (in)equalities between variables

– test rule splits on the two values of a variable

• Recursive Learning (Kunz & Pradhan)

– works on circuit structure (derives implications)

– splits on different ways to justify a certain variable value
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Stålmarck’s Method learn
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1. BCP over (in)equalities:
x = y z= (x⊕y)

z= 0
x = 0 z= (x∨y)

z= y
etc.

2. structural rules:
x = (a∨b) y = (a∨b)

x = y
etc.

3. test rule:

{x = 0}∪E
⇓

E0∪E

{x = 1}∪E
⇓

E1∪E
(E0∩E1)∪E

Assume x= 0, BCP and derive (in)equalities E0, then assume x= 1, BCP and derive (in)equalities

E1. The intersection of E0 and E1 contains the (in)equalities valid in any case.
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Stålmarck’s Method Recursively learn
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x = 0

⇓

x = 1

⇓
y = 0 y = 1 y = 0 y = 1

E00 E01 E10 E11

E0 E1

⇓⇓⇓⇓

E

(we do not show the (in)equalities that do not change)
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Stålmarck’s Method Summary learn
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• recursive application

– depth of recursion bounded by number of variables

– complete procedures (determines satisfiability or unsatisfiability)

– for a fixed (constant) recursion depth k polynomial!

• k-saturation:

– apply split rule on recursively up to depth k on all variables

– 0-saturation: apply all rules accept test rule (just BCP: linear)

– 1-saturation: apply test rule (not recursively) for all variables

(until no new (in)equalities can be derived)
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Model Checking mc
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• check algorithmically temporal / sequential properties

– systems are originally finite state

– simple model: finite state automaton

• comparison of automata can be seen as model checking

– check that the output streams of two finite state systems “match”

– process algebra: simulation and bisimulation checking

• temporal logics as specification mechanism

– safety, liveness and more general temporal operators, fairness
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Model Checking for Infinite Systems mc
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• fixpoint algorithms with symbolic representations:

– timed automata (clocks)

– hybrid automata (differential equations)

– termination guaranteed if finite quotient structure exists

• simply run model checker for some time, e.g. Java Pathfinder

• run time verification

1. example: add checker synthesized from temporal spec

2. example: run all schedules for one test case

• check programs (incl. loops and recursion) over finite domains, e.g. SLAM
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Traffic Light Controller (TLC) mc
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Traffic Light Controller (TLC) mc
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Safety mc
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the two traffic lights should never show a green light at the same time
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State Space mc
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• state space is the set of assignments to variables of the system

– state space is finite if the range of variables is finite

– this notion works for inifinite state spaces as well

• TLC example:

– single assignment σ:{southnorth,eastwest}→ {green,yellow, red}

– set of assignments is isomorphic to {green,yellow, red}2

– eg state space is isomorphic to the crossproduct of variable ranges

• not all states are reachable: (green,green)
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Safety mc
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• safety properties specify invariants of the system

• simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states

2. check for violation of invariant for newly reached states

3. terminate if all newly reached states can be found

• compare with assertions

– used in run time checking: assert in C and VHDL

– contract checking: require, ensure, etc. in Eiffel
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Unsafe TLC in SMV mc
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MODULE trafficlight (enable)
VAR
  light : { green, yellow, red };
  back : boolean;
ASSIGN
  init (light) := red;
  next (light) :=
    case
      light = red & !enable : red;
      light = red & enable : yellow;
      light = yellow & back : red;
      light = yellow & !back : green;
      1 : yellow;
    esac;
  next (back) :=
    case
      light = red & enable : 0;
      light = green : 1;
      1 : back;
    esac;
MODULE main
VAR
  southnorth : trafficlight (1);
  eastwest : trafficlight (1);
SPEC
  AG !(southnorth.light = green & eastwest.light = green)
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SMV mc
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• symbolic model checker implemented by Ken McMillan at CMU (early 90’ies)

• input language: finite models + temporal specification

• hierarchical description, similar to hardward description language (HDL)

• integer and enumeration types, arithmetic operations

• heavily relies on the data structure Binary Decision Diagrams (BDDs)
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Reachable States of One Traffic Light mc
Revision: 1.12

120

0

1
red

1

1
red

1

0
red

1

0
yellow

0

0
red

1 0

1
yellowyellow

1

0

0
yellow

1

0

0

0
green green

states out
12 reachable

light
enable

back

of 12 states
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Reachable States of Unsafe TLC mc
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1

0
yellow

1

0
yellow

1

0
green

1
yellow
1

1

0
green

1
yellow
1

1

0
red

1

0
red

1

1
red

1

1
red

1

0
red

1

1
red

1
red
1

1
red
0

unfortunately
buggy state
is among them

7 reachable states out
of 144 states
(or 72 if only one ’enable’)
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Safe TLC in SMV mc
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MODULE main
VAR
  turn : { ew, sn };
  southnorth : trafficlight (enablesouthnorth);
  eastwest : trafficlight (enableeastwest);
DEFINE
  enableeastwest := southnorth.light = red & turn = ew;
  enablesouthnorth := eastwest.light = red & turn = sn;
SPEC
  AG !(southnorth.light = green & eastwest.light = green)

idea: disable traffic light as long the other is not red and its not the others turn
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Liveness mc
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traffic lights showing red should eventually show green
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Liveness mc
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traffic lights showing red should eventually show green
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Liveness mc
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traffic lights showing red should eventually show green

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Boolean Encoding mc
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• compilation of finite model into pure propositional domain

• first step is to flatten the hierarchy

– recursive instantiation of all submodules

– name and parameter substitution

– may increase program size exponentially

• second step is to encode variables with boolean variables

light light@1 light@0

green 7→ 0 0
yellow 7→ 0 1
red 7→ 1 0
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Result of Boolean Encoding mc
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• initial state predicate I represented as boolean formula

!eastwest.light@0 & eastwest.light@1

(equivalent to init(eastwest.light) := red)

• transition relation T represented as boolean formula

• encoding of atomic predicates p as boolean formulae

!eastwest.light@1 & !eastwest.light@0

(equivalent to eastwest.light != green)
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Bounded Model Checking bmc
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[BiereCimattiClarkeZhu99]

• uses SAT for model checking

– historically not the first symbolic model checking approach

– scales better than original BDD based techniques

• mostly incomplete in practice

– validity of a formula can often not be proven

– focus on counter example generation

– only counter example up to certain length (the bound k) are searched
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Bounded Model Checking Safety bmc
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checking safety property Gp for a bound k as SAT problem:

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

I(s0) ∧ T(s0,s1) ∧·· ·∧ T(sk−1,sk) ∧
k_

i=0

¬p(si)

check occurrence of ¬p in the first k states
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Bounded Model Checking Liveness bmc
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generic counter example trace of length k for liveness Fp

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

I(s0) ∧ T(s0,s1) ∧·· ·∧ T(sk,sk+1) ∧
k_

l=0

sl = sk+1 ∧
k̂

i=0

¬p(si)

(however we recently showed that liveness can always

be reformulated as safety [BiereArthoSchuppan02])
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Time Frame Expansion in HW bmc
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inputs
sequential
feedback
loop

states
outputs

sequential circuit

combinational
logic
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Time Frame Expansion in HW bmc
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inputs

outputs
statesstates

break sequential loop
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Time Frame Expansion in HW bmc
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inputs

outputs
states

inputs

outputs
statesstates

added 1st copy
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Time Frame Expansion in HW bmc
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inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 2nd copy
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Time Frame Expansion in HW bmc
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inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 3rd copy
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Time Frame Expansion in HW bmc
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inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 4th copy

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz



Time Frame Expansion in HW bmc
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inputs

observed signals
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Bounded Model Checking Safety in HW bmc
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inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

find inputs for which failed becomes true
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Bounded Model Checking Liveness in HW bmc
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inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

sel

CMP

find inputs for which failed becomes true
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Completeness in Bounded Model Checking bmc
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• find bounds on the maximal length of counter examples

– also called completeness threshold

– exact bounds are hard to find⇒ approximations

• induction

– use inductive invariants as we have seen before

– generalization of inductive invariants: pseudo induction

• use SAT for quantifier elimination as with BDDs (later)

– then model checking becomes fixpoint calculation
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Measuring Distances bmc
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Distance: length of shortest path between two states

δ(s, t)≡min{n | ∃s0, . . . ,sn[s= s0, t = sn and T(si,si+1) for 0≤ i < n]}

(distance can be infinite if s and t are not connected)

Diameter: maximal distance between two connected states

d(T)≡max{δ(s, t) | T∗(s, t)}

with T∗ defined as the transitive reflexive hull of T.

Radius: maximal distance of a reachable state from the initial states

r(T, I)≡max{δ(s, t) | T∗(s, t) and I(s) and δ(s, t)≤ δ(s′, t) for all s′ with I(s′)}

(minimal number of steps to reach an arbitrary state in BFS)
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Diameter Example bmc
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initial states
unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states

0 1

2 3

4

5 6 7 8

9

diameter 4, radius 2

(reachable diameter 3, distance from 0 to 4 or max. distance between 2,3,4)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Completeness Threshold for Safety bmc
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• a bad state is reached in at most r(T, I) steps from the initial states

– a bad state is a state violating the invariant to be proven

• thus, the radius is a completeness threshold for safety properties

• for safety properties the max. k for doing bounded model checking is r(T, I)

• if no counter example of this length can be found the safety property holds
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How to determine the radius? bmc
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reformulation:

the radius is the max. length r of a path leading from an initial state to a state t, such there is no

other path from an initial state to t with length less than r .

Thus radius r is the minimal number which makes the following formula valid:

∀s0, . . . ,sr+1[ (I(s0)∧
r̂

i=0

T(si,si+1))→

∃ n≤ r [ ∃t0, . . . , tn[ I(t0)∧
n−1̂

i=0

T(ti, ti+1)∧ tn = sr+1 ] ] ]

after replacing ∃ n≤ r · · · by
Wr

n=0 · · · we get a Quantified Boolean Formula (QBF), which is much

harder to prove un/satisfiable (PSPACE complete).
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Visualization of Reformulation bmc
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0t

s1

t1

sr s +1rs −1r

t −1r

tr s +1r

s0

initial states

( = )

∀

∃

(we allow ti+1 to be identical to ti in the lower path)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz

Reoccurrence Radius/Diameter bmc
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• we can not find the real radius / diameter with SAT efficiently

• over approximation idea:

– drop requirement that there is no shorter path

– enforce different (no reoccurring) states on single path instead

reoccurrence diameter:

length of the longest path without reoccurring states

reoccurrence radius:

length of the longest initialized path without reoccurring states
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Determination of Reoccurrence Diameter bmc
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reformulation:

the reoccurrence radius is the length of the longest path from initial states without reoccurring states

(one may further assume that only the first state is an initial state)

The reoccurring radius is the minimal r which makes the following formula valid:

∀s0, . . . ,sr+1[ (I(s0)∧
r̂

i=0

T(si,si+1)) →
_

0≤i< j≤r+1

si = sj ]

this is a propositional formula and can be checked by SAT

(exercise: reoccurrence radius/diameter is an upper bound on real radius/diameter)
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Bad Example for Reoccurrence Radius bmc
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1

0

2 n

radius 1, reoccurrence radius n
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Bounded Semantics with Loop bmc
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(E)LTL formula in NNF

let the path π be a (k, l) lasso

π |=i
k p iff p∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f and π |=i
k g

π |=i
k X f iff

{
π |=l

k f if i = k

π |=i+1
k f else

π |=i
k G f iff

Vk
j=min(i,l) π |= j

k f

π |=i
k F f iff

Wk
j=min(i,l) π |= j

k f
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Bounded Semantics without Loop bmc
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ELTL formula in NNF

there is no l for which path π is a (k, l) lasso

π |=i
k p iff p∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f and π |=i
k g

π |=i
k X f iff

{
false if i = k

π |=i+1
k f else

π |=i
k G f iff false

π |=i
k F f iff

Wk
j= i

π |= j
k f
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Bounded Semantics bmc
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• definition:

π |=k f :⇔ π |=0
k f

• bounded semantics aproximates real semantics:

πk |= f ⇒ π |= f for all k

• (theoretical) completeness:

if π |= f then there exists k with πk |= f

• note: negate original property first (e.g. AGp 7→ EF¬p)

– ALTL→ ELTL

– counter example→ witness

– bounded witness is also a non-bounded witness
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Translation of Bounded Semantics to SAT bmc
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• two recursive translations from (E)LTL in NNF for fixed k:

– l [·]ik assumes (k, l)-loop

– [·]ik assumes that no (k, l)-loop exists for all l

• add time frame expansion of transition relation:

I(s0) ∧ T(s0,s1) ∧·· ·∧ T(sk−1,sk)

• add loopk(l) constraint for looping translation: loopk(l) := T(sk,sl)

• add noloopk constraint for non-looping translation:

noloopk := ¬
k_

l=0

loopk(l)

Systemtheory 2 – Formal Systems 2 – #342201 – SS 2006 – Armin Biere – JKU Linz



Looping Translation bmc
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l [p]ik := p(si)

l [¬p]ik := ¬p(si)

l [ f ∧g]ik := l [ f ]ik∧ l [g]ik

l [X f ]ik := l [ f ]
next(i)
k

l [G f ]ik :=
kV

j=min(l,i)
l [ f ]

j
k

l [F f ]ik :=
kW

j=min(l,i)
l [ f ]

j
k

with

next(i) :=
{

i +1 if i < k
l else
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Non-Looping Translation bmc
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[p]ik := p(si)

[¬p]ik := ¬p(si)

[ f ∧g]ik := [ f ]ik∧ [g]ik

[X f ]ik :=

{
[ f ]i+1

k if i < k

false else

[G f ]ik := false

[F f ]ik :=
kW

j=i
[ f ] j

k
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Translation bmc
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[K, f ]k := noloopk∧ [ f ]0k ∨
k_

l=0

loopk(l)∧ l [ f ]
0
k

• Theorem: K |= E f ⇔ ∃k [K, f ]k satisfiable

• l [·]ik and [·]ik are linear in k if subformulae are shared

– unique table for automatic sharing syntactically equivalent formulae

– implemented as hash table (keys are pairs of formulae ids)

• more complex and quadratic translations for R and U
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