DESIGN, AUTOMATION & TEST IN EUROPE

09 – 13 March 2020 · ALPEXPO · Grenoble · France The European Event for Electronic System Design & Test

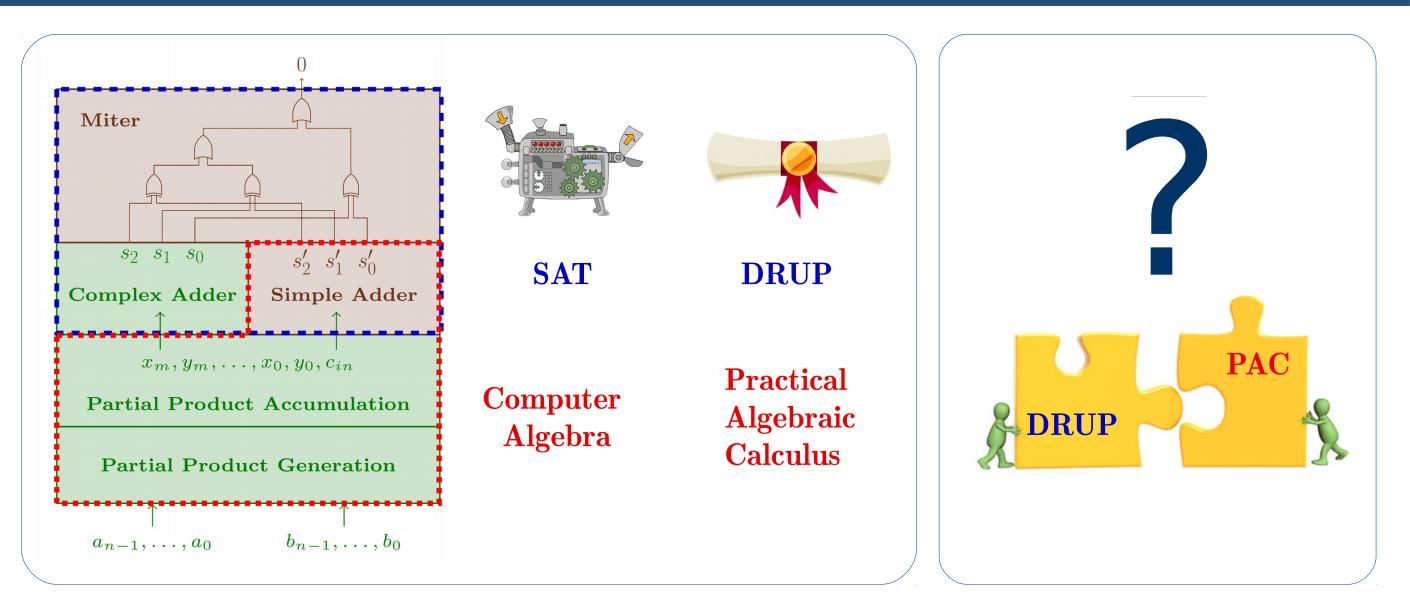
From DRUP to PAC and Back

Daniela Kaufmann Armin Biere Manuel Kauers

Der Wissenschaftsfonds.

DATE'20

Motivation



- Let $f \in \mathbb{Z}[X]$ and $P \subseteq \mathbb{Z}[X]$. We are interested whether the polynomial equation f = 0 is implied by the equations p = 0 with $p \in P$, i.e., decide $f \in \langle P \rangle$.
- All variables $x \in X$ represent logic gates and thus take only values in $\{0,1\}$. This is enforced by *Boolean value constraints*. Let $B(X) = \{x(1-x) \mid x \in X\} \subseteq \mathbb{Z}[X]$ be the set of Boolean value constraints for *X*.
- PAC proofs are sequences of proof rules, which model the ideal properties:

 $(+: p_i, p_j, p_i + p_j; p_i, p_j, p_j, p_j)$ appearing earlier in the proof or are contained in constraint set *P* and $p_i + p_j$ being reduced by B(X)

*: $p_i, q, qp_i;$	p_i appearing earlier in proof or in P and $q \in \mathbb{Z}[X]$ being arbitrary
	and qp_i being reduced by $B(X)$

Example: Let $P = \{-x + 3z, 2xz\} \subseteq \mathbb{Z}[x, y, z]$ and let $f = -2x \in \mathbb{Z}[x, y, z]$. The proof shows $f \in \langle P \cup B(X) \rangle$:

* : -x+3z, 2x, -2x+6xz; * : 2xz, -3, -6xz; + : -2x+6xz, -6xz, -2x;

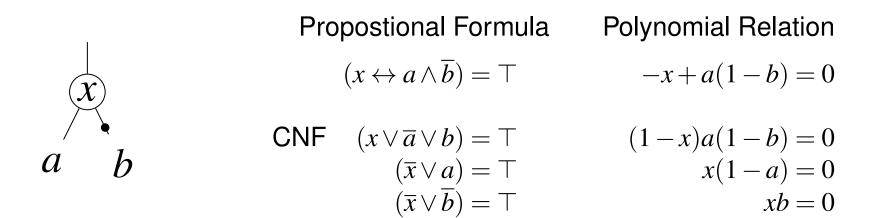
SAT & DRUP

- The SAT problem seeks for an assignment such that a formula F in conjunctive normal form evaluates to true. If no satisfying assignment can be found it is *unsatisfiable*.
- The most basic clausal proof format is *reverse unit propagation* (RUP). Let \overline{C} denote the negation of a clause C. We say C is a *RUP clause* if $F \wedge \overline{C}$ evaluates to **false**. A RUP proof is a sequence of RUP clauses containing the empty clause. DRUP extends RUP by adding deletion information.

Example: This is an unsatisfiable CNF in DIMACS format (left) with DRUP (middle) and TraceCheck (right) proofs.

рс	nf 3	5	-2 0	1	1	-2	-3 0 0
1 -	2 -3	0	d 3 0	2	1	2	0 0
1	2	0	d 1 -2 -3 0	3	-1	-2	0 0
-1 -	2	0	d -1 -2 0	4	-1	2	0 0
-1	2	0	0	5	3	0	0
	3	0		6	-2	0	3 1 5 0
				7	0	4	2 6 0

1. Polynomial encoding of CNF



Using the fact that $x^2 - x = 0$, $b^2 - b = 0$ and $a^2 - a = 0$ we multiply the polynomial equation -x + a(1-b) by different factors to derive the desired polynomials.

$$0 = (-x + a(1-b))(-ba + a) = (1-x)a(1-b)$$

$$0 = (-x + a(1-b))(b-1) = x(1-a)$$

$$0 = (-x + a(1-b))(-a) = xb$$

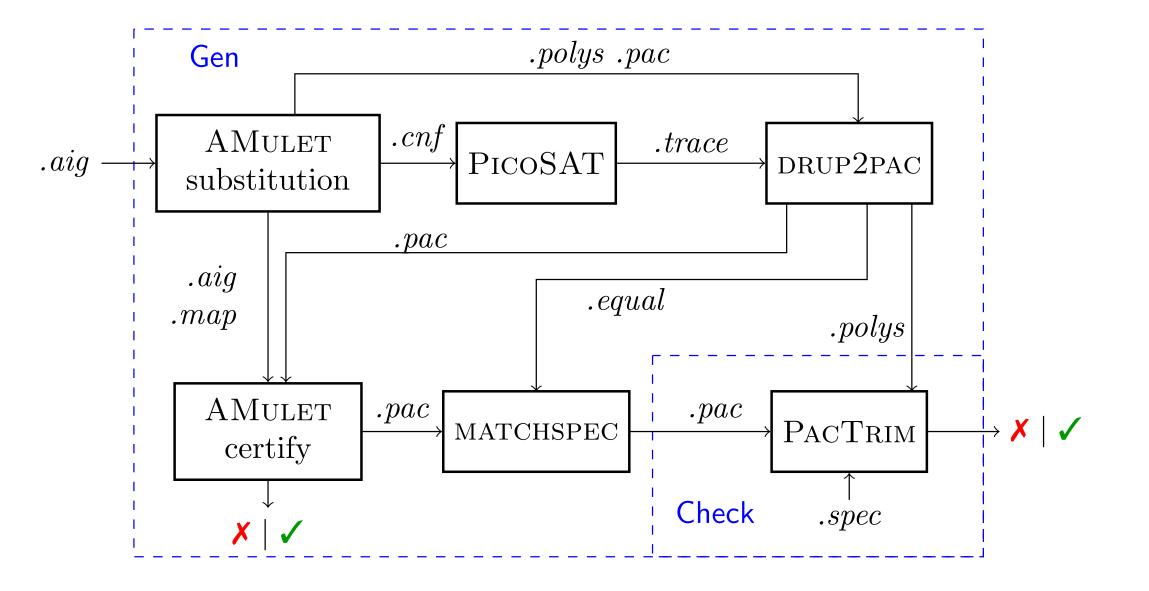
2. Encoding of resolution steps

- Add bit-flipping polynomials (similar to "Polynomial Calculus with Resolution"): Clause $x \lor y \lor z$ can be translated to (1-x)(1-y)(1-z) = 0, which generates $2^3 - 1$ monomials. If we introduce $-f_x + 1 - x = 0$, $-f_y + 1 - y = 0$, $-f_z + 1 - z = 0$, the same equation can be depicted as $f_x f_y f_z = 0$.
- Encode resolution using the traces provided in TraceCheck:

1 1 -2 -3 0 0	Let $a = 1$, $b = 2$ and $c = 3$.											
2 1 2 0 0	We encode the first resolution step of rule 6 (resolving clause 3 and 1).											
3 -1 -2 0 0	Thus from $a \lor \overline{b} \lor \overline{c}$ and $\overline{a} \lor \overline{b}$ we resolve the clause $\overline{b} \lor \overline{c}$.											
4 -1 2 0 0												
5 3 0 0	The corresponding PAC encoding is:											
6 -2 0 3 1 5 0	*: b*a, c, c*b*a;											
7 0 4 2 6 0	+ : -c*b*a+c*b, c*b*a, c*b;											

3. Merge PAC proofs

PAC proofs can be merged by combining constraint sets and proof rules.



1. SMT encoding

- The polynomial proof is translated into a bit-vector proof.
- To this end we encode the PAC proof as an SMT problem over the theory of quantifier free fixed size bit vectors.
- Each PAC rule is individually translated to SMT.
- Each variable in the PAC proof represents the input or output of a gate As a consequence we encode each variable in the PAC proof as a single bit and the coefficients are encoded as bit vectors.
- **Gap:** It is not checked that the specification is derived at the end.

1. Encode as SMT formula

Consider the following PAC rule

$$+: 3x - z, 2y - 3x, 2y - z;$$

Checking the correctness of this rule can be encoded as:

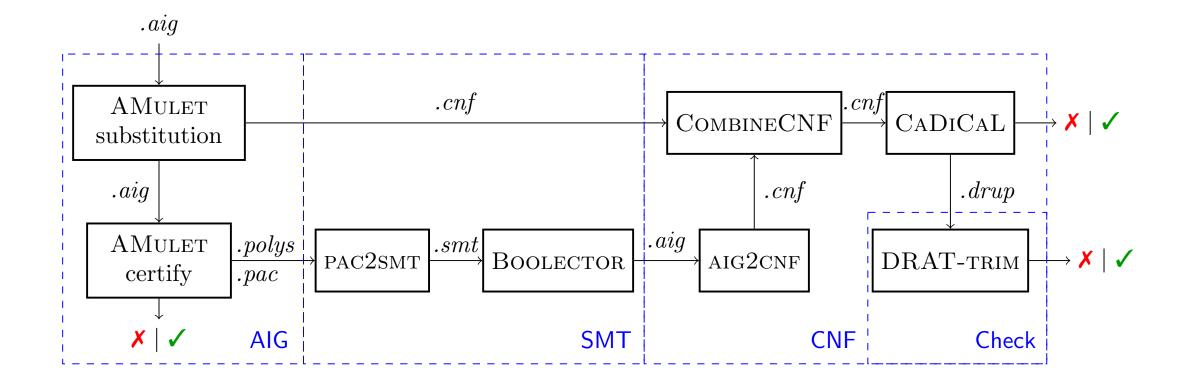
(check-sat)

2. SMT to CNF

- SMT encoding is given to SMT solver Boolector.
- **Gap:** Internal rewriting steps are not covered.
- Boolector generates an And-Inverter-Graph that is translated into CNF.

3. Merge proofs

- Collect all clauses of both CNFs, except for output assumptions.
- The two output clauses $C_0 = l_0, C_1 = l_1$ are merged into the clause $l_0 \vee l_1$.
- Merged CNF is solved using SAT solver and DRUP proof is generated.



		Separate Proofs																
architecture n		DRUP		PAC		total	PAC				DRUP							
		gen	check	size	gen	check	size	ισιαι	gen	check	total	size	aig	smt	cnf	check	total	size
sp-ar-cl	16	0	0	1 299	0	0	7962	0	2	2	3	185 588	0	7	300	264	570	19317884
sp-dt-lf	16	0	0	1 167	0	0	7 787	0	1	1	2	136 349	0	6	279	277	562	18 153 668
bp-ct-bk	16	0	0	1 029	0	0	7 205	0	1	1	2	128720	0	7	TO	-	-	-
bp-wt-cl	16	0	0	2902	0	0	7 946	0	30	11	41	614742	0	7	TO	-	-	-
sp-ar-cl	32	0	0	14927	0	1	33 834	1	133	31	164	1 597 897	0	56	TO	-	_	-
sp-dt-lf	32	0	0	3 1 3 8	0	1	33 451	1	2	3	5	321 720	0	52	ТО	-	-	-
bp-ct-bk	32	0	0	2276	0	1	27312	1	1	2	3	217 128	0	49	TO	-	-	-
bp-wt-cl	32	1	1	46 502	0	1	30 561	2	3 1 3 3	242	3375	5 536 176	0	55	TO	-	-	-

PPG: simple (sp), Booth (bp) FSA: carry look-ahead (cl), Ladner-Fischer (lf), Brent-Kung (bk) PPA: array (ar), Dadda tree (dt), compressor tree (ct), Wallace tree (wt) TO = 3600 sec

Conclusion

From DRUP to PAC:

- requires algebraic reasoning
- include bit-flipping techniques to reduce size
- use TraceCheck format

From PAC to DRUP:

- encode PAC proof as an SMT problem
- translated into CNF using bit-blasting
- leaves gaps in the proof

Single DRUP proofs are three orders of magnitude larger than PAC proofs and contain gaps.

DESIGN, AUTOMATION & TEST IN EUROPE

09 – 13 March 2020 · ALPEXPO · Grenoble · France The European Event for Electronic System Design & Test

From DRUP to PAC and Back

Daniela Kaufmann Armin Biere Manuel Kauers

FШF

Der Wissenschaftsfonds.

DATE'20