DESIGN, AUTOMATION & TEST IN EUROPE

09 - 13 March 2020 - ALPEXPO - Grenoble - France
The European Event for Electronic

System Design & Test

From DRUP to PAC and Back

Daniela Kaufmann Armin Biere Manuel Kauers

JXU

JOHANNES KEPLER R SE

Der Wissenschaftsfonds. UNIVERSITAT LINZ

DATE'20

Motivation

SAT DRUP b
Complex Adder Simple Adder
T Ur 0o UL Cin) PAC
Practical
Partial Product Accumulation Computer . X’
Algebra Algebraic % DRUP l
Calculus P 1

Partial Product Generation

Ap—14...,40 bnfl,...,bg

Computer Algebra & PAC

m Let feZ[X]and P C Z[X]. We are interested whether the polynomial equation f = 0 is implied by the equations
p=0with pe P, i.e., decide f € (P).

= All variables x € X represent logic gates and thus take only values in {0,1}. This is enforced by Boolean value
constraints. Let B(X) = {x(1 —x) | x € X} C Z[X] be the set of Boolean value constraints for X.

®= PAC proofs are sequences of proof rules, which model the ideal properties:

pi,pj appearing earlier in the proof or are contained in constraint set P

+1Pis Pjy Pit P g pi+ p;j being reduced by B(X)

p; appearing earlier in proof or in P and g € Z|X] being arbitrary

* 1 Diy 4, 4Djs and gp; being reduced by B(X)

Example: Let P = {—x+3z,2xz} C Zlx,y,z] and let f = —2x € Z|x,y,z]. The proof shows f € (PUB(X)):

* -x+3z, 2X, —2X+6XZ;
*x 1 2X7Z, -3, —6xXZ;

+ : —-2xX+6xz, —-6XzZ, —2X;

SAT & DRUP

= The SAT problem seeks for an assignment such that a formula F in conjunctive normal form evaluates to true.
If no satisfying assignment can be found it is unsatisfiable.

®= The most basic clausal proof format is reverse unit propagation (RUP).
Let C denote the negation of a clause C. We say C is a RUP clause if F A\ C evaluates to false. A RUP proof is
a sequence of RUP clauses containing the empty clause. DRUP extends RUP by adding deletion information.

Example: This is an unsatisfiable CNF in DIMACS format (left) with DRUP (middle) and TraceCheck (right) proofs.

p cnf 3 5 -2 0 1 1 -2 -3 00
1 -2 -3 0 d 30 2 1 2 00
1 2 0 d 1 -2 -3 0 3 -1 -2 0 0
-1 -2 0 d -1 -2 0 4 -1 2 00
-1 2 0 0 5 3 0 O
3 0 6 -2 0 3 150
7 0 4 2 6 0

From DRUP to PAC

1. Polynomial encoding of CNF

Propostional Formula Polynomial Relation

Q (x<>aAb)=T —x+a(l—b)=0
CNF (xvavb)=T (1—x)a(1—>b)=0

a b (FvVa)=T x(1—a)=0
(xVb)=T xb =0

Using the fact that x* —x =0, b* —b =0 and a® —a = 0 we multiply the polynomial equation —x+a(1 — b) by different
factors to derive the desired polynomials.

0= (—x+a(l—b))(—bat+a) =(1—x)a(l—b)

0= (—x+a(l->))(b—1) =x(1—a)
0= (—x+4a(l1->b))(—a) = xb

From DRUP to PAC

2. Encoding of resolution steps

= Add bit-flipping polynomials (similar to “Polynomial Calculus with Resolution”):
Clause xV yVz can be translated to (1 —x)(1 —y)(1 —z) = 0, which generates 23 — 1 monomials.
If we introduce —fy+1—-x=0, —f,+1—-y=0, —f;+1—-2z=0, the same equation can be depicted as f,fyf; = 0.

= Encode resolution using the traces provided in TraceCheck:

1 1 -2 -3 00 Leta =1, b =2 and ¢ =3.

2 1 2 00 We encode the first resolution step of rule 6 (resolving clause 3 and 1).
3 -1 -2 00 Thus from aVv b Ve and aVv b we resolve the clause bV e.

4 -1 2 00

5 3 0 0 The corresponding PAC encoding is:

6 -2 0 3 1 5 0 * 3 bxa, c, Cxbxaj;

7 0 4 + : —cxbxatcxb, c+xbxa, cCxb;

3. Merge PAC proofs
PAC proofs can be merged by combining constraint sets and proof rules.

From DRUP to PAC

" Gen .polys .pac :

: AMULET .cnf .trace :

aig — . | PICOSAT | DRUP2PAC |
substitution |

.DAC :

.a1lg l :

equa |

.map polys :

AMULET | .pac
P | PACTRIM —— X | V/

certify

I
X[V

.pac
| MATCHSPEC

|
|
|
|
|
|
|
|
|
I r _____________ - - - =
|
|
|
|
|
|
|
|
|
|

I
I
Check .Spec i

From PAC to DRUP

1. SMT encoding

= The polynomial proof is translated into a bit-vector proof.
® To this end we encode the PAC proof as an SMT problem over the theory of quantifier free fixed size bit vectors.
= Each PAC rule is individually translated to SMT.

®m Each variable in the PAC proof represents the input or output of a gate As a consequence we encode each
variable in the PAC proof as a single bit and the coefficients are encoded as bit vectors.

= Gap: It is not checked that the specification is derived at the end.

From PAC to DRUP

1. Encode as SMT formula

Consider the following PAC rule
+:3x—2z, 2y —3x, 2y —2z;

Checking the correctness of this rule can be encoded as:

set—-logic QF_B

(V)

(declare-fun x () (_ BitVec 1))

(declare-fun y () (_ BitVec 1))

(declare—-fun z () (_ BitVec 1))

(assert

(let ((Sv0 (bvadd (bvand #b01ll ((_ sign_extend 2) x))
(bvand #blll ((_ sign_extend 2) z)))))

(let ((SwO (bvadd (bvand #b010 ((_ sign_extend 2) vy))
(bvand #b101 ((_ sign_extend 2) x)))))

(let ((SpO0 (bvadd (bvand #b010 ((_ sign_extend 2) vy))
(bvand #blll ((_ sign_extend 2) z)))))

(let ((Se0 (= (bvadd $v0 sSw0) $p0)))

(not $e0))))))

(check—-sat)

From PAC to DRUP

2. SMT to CNF

= SMT encoding is given to SMT solver Boolector.
® Gap: Internal rewriting steps are not covered.

= Boolector generates an And-Inverter-Graph that is translated into CNF.

3. Merge proofs

® Collect all clauses of both CNFs, except for output assumptions.
®= The two output clauses Cy = [y,C| = [; are merged into the clause [y V [;.

= Merged CNF is solved using SAT solver and DRUP proof is generated.

From PAC to DRUP

K
[
[
[
[
L

——
[
[
[
[
[
[
[
[
[

T
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

| I |
| I |
'| AMULET | .cnf | :
I o I —{ COMBINECNF CADICAL > X |V
substitution		
I		
I		
.a1g		.cnf drup
		e 1
I	. [
AMULET	.polys .smt l.atg	
. PoYs	PAC2SMT el BOOLECTOR H AIG2CNF	DRAT-TRIM H— X
certify pac		i
I		:
i X|v AlG | SMT | CNF | Check |
L L L

Experimental Results

Separate Proofs

architecture| n DRUP PAC iotal PAC DRUP

gen check size|gen check size gen check total size|laig smt cnf check total size
sp-ar-cl 16| O 0 1299 O 0 7962, O 2 2 3| 185588|| 0 7300 264 570{19317884
sp-dt-If 16| O 0 1167 O 0 7787, O 1 1 2| 136349|| 0 6279 277 562(18153668
bp-ct-bk 16| O 0 1029 O 0 7205 O 1 1 2| 128720|| 0 7 TO - - -
bp-wt-cl 16| O 0 2902 O 0 7946, O 30 11 41| 614742|| 0 7 TO - - -
sp-ar-cl 32| O 014927 O 133834 1|l 133 31 164(1597897| 0 56 TO - - -
sp-dt-If 32| O 0 3138 O 1 33451 1 2 3 5 321720| 0 52 TO - - -
bp-ct-bk 32| O 0 2276 O 127312] 1 1 2 3] 217128|| 0 49 TO - - -
bp-wt-cl 32| 1 146502 O 1 30561 2183133 242 3375|5536176(] 0 55 TO - - -

PPG: simple (sp), Booth (bp)
FSA: carry look-ahead (cl), Ladner-Fischer (If), Brent-Kung (bk)

PPA: array (ar), Dadda tree (dt), compressor tree (ct), Wallace tree (wt)

TO = 3600 sec

Conclusion

From DRUP to PAC:

® requires algebraic reasoning
® include bit-flipping techniques to reduce size

® yse TraceCheck format

From PAC to DRUP:

= encode PAC proof as an SMT problem
® translated into CNF using bit-blasting

® |eaves gaps in the proof

Single DRUP proofs are three orders of magnitude larger than PAC proofs and contain gaps.

DESIGN, AUTOMATION & TEST IN EUROPE

09 - 13 March 2020 - ALPEXPO - Grenoble - France
The European Event for Electronic

System Design & Test

From DRUP to PAC and Back

Daniela Kaufmann Armin Biere Manuel Kauers

JXU

JOHANNES KEPLER R SE

Der Wissenschaftsfonds. UNIVERSITAT LINZ

DATE20

