
From DRUP to PAC and Back
Daniela Kaufmann Armin Biere Manuel Kauers

RiSE

DATE’20

Computer
Algebra

SAT DRUP

Practical
Algebraic
Calculus

DRUP

PAC

Motivation

Computer Algebra & PAC

Let f ∈ Z[X] and P⊆ Z[X]. We are interested whether the polynomial equation f = 0 is implied by the equations
p = 0 with p ∈ P, i.e., decide f ∈ 〈P〉.

All variables x ∈ X represent logic gates and thus take only values in {0,1}. This is enforced by Boolean value
constraints. Let B(X) = {x(1− x) | x ∈ X} ⊆ Z[X] be the set of Boolean value constraints for X .

PAC proofs are sequences of proof rules, which model the ideal properties:

+ : pi, p j, pi+ p j;
pi, p j appearing earlier in the proof or are contained in constraint set P
and pi+ p j being reduced by B(X)

∗ : pi, q, qpi;
pi appearing earlier in proof or in P and q ∈ Z[X] being arbitrary
and qpi being reduced by B(X)

Example: Let P = {−x+3z,2xz} ⊆ Z[x,y,z] and let f =−2x ∈ Z[x,y,z]. The proof shows f ∈ 〈P∪B(X)〉:

* : -x+3z, 2x, -2x+6xz;

* : 2xz, -3, -6xz;

+ : -2x+6xz, -6xz, -2x;

SAT & DRUP

The SAT problem seeks for an assignment such that a formula F in conjunctive normal form evaluates to true.
If no satisfying assignment can be found it is unsatisfiable.

The most basic clausal proof format is reverse unit propagation (RUP).
Let C denote the negation of a clause C. We say C is a RUP clause if F ∧C evaluates to false. A RUP proof is
a sequence of RUP clauses containing the empty clause. DRUP extends RUP by adding deletion information.

Example: This is an unsatisfiable CNF in DIMACS format (left) with DRUP (middle) and TraceCheck (right) proofs.

p cnf 3 5 -2 0 1 1 -2 -3 0 0

1 -2 -3 0 d 3 0 2 1 2 0 0

1 2 0 d 1 -2 -3 0 3 -1 -2 0 0

-1 -2 0 d -1 -2 0 4 -1 2 0 0

-1 2 0 0 5 3 0 0

3 0 6 -2 0 3 1 5 0

7 0 4 2 6 0

From DRUP to PAC

1. Polynomial encoding of CNF

a b

x

Propostional Formula Polynomial Relation

(x↔ a∧b) => −x+a(1−b) = 0

CNF (x∨a∨b) => (1− x)a(1−b) = 0
(x∨a) => x(1−a) = 0
(x∨b) => xb = 0

Using the fact that x2−x = 0, b2−b = 0 and a2−a = 0 we multiply the polynomial equation −x+a(1−b) by different
factors to derive the desired polynomials.

0 = (−x+a(1−b))(−ba+a) = (1− x)a(1−b)
0 = (−x+a(1−b))(b−1) = x(1−a)
0 = (−x+a(1−b))(−a) = xb

From DRUP to PAC

2. Encoding of resolution steps

Add bit-flipping polynomials (similar to “Polynomial Calculus with Resolution”):
Clause x∨ y∨ z can be translated to (1− x)(1− y)(1− z) = 0, which generates 23−1 monomials.
If we introduce − fx+1−x = 0, − fy+1−y = 0, − fz+1− z = 0, the same equation can be depicted as fx fy fz = 0.

Encode resolution using the traces provided in TraceCheck:

1 1 -2 -3 0 0

2 1 2 0 0

3 -1 -2 0 0

4 -1 2 0 0

5 3 0 0

6 -2 0 3 1 5 0

7 0 4 2 6 0

Let a =1, b =2 and c =3.
We encode the first resolution step of rule 6 (resolving clause 3 and 1).
Thus from a∨b∨ c and a∨b we resolve the clause b∨ c.

The corresponding PAC encoding is:

* : b*a, c, c*b*a;

+ : -c*b*a+c*b, c*b*a, c*b;

3. Merge PAC proofs
PAC proofs can be merged by combining constraint sets and proof rules.

From DRUP to PAC

AMulet
substitution

AMulet
certify

matchspec PacTrim

PicoSAT drup2pac

Gen

Check

.aig
.cnf

.aig
.map

.trace

.pac .pac

.spec

.pac

.equal
.polys

.polys .pac

7 | 3

7 | 3

From PAC to DRUP

1. SMT encoding

The polynomial proof is translated into a bit-vector proof.

To this end we encode the PAC proof as an SMT problem over the theory of quantifier free fixed size bit vectors.

Each PAC rule is individually translated to SMT.

Each variable in the PAC proof represents the input or output of a gate As a consequence we encode each
variable in the PAC proof as a single bit and the coefficients are encoded as bit vectors.

Gap: It is not checked that the specification is derived at the end.

From PAC to DRUP

1. Encode as SMT formula

Consider the following PAC rule

+ : 3x− z, 2y−3x, 2y− z;

Checking the correctness of this rule can be encoded as:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1))
(declare-fun y () (_ BitVec 1))
(declare-fun z () (_ BitVec 1))
(assert
(let (($v0 (bvadd (bvand #b011 ((_ sign_extend 2) x))

(bvand #b111 ((_ sign_extend 2) z)))))
(let (($w0 (bvadd (bvand #b010 ((_ sign_extend 2) y))

(bvand #b101 ((_ sign_extend 2) x)))))
(let (($p0 (bvadd (bvand #b010 ((_ sign_extend 2) y))

(bvand #b111 ((_ sign_extend 2) z)))))
(let (($e0 (= (bvadd $v0 $w0) $p0)))

(not $e0))))))
(check-sat)

From PAC to DRUP

2. SMT to CNF

SMT encoding is given to SMT solver Boolector.

Gap: Internal rewriting steps are not covered.

Boolector generates an And-Inverter-Graph that is translated into CNF.

3. Merge proofs

Collect all clauses of both CNFs, except for output assumptions.

The two output clauses C0 = l0,C1 = l1 are merged into the clause l0∨ l1.

Merged CNF is solved using SAT solver and DRUP proof is generated.

From PAC to DRUP

AMulet
substitution

AMulet
certify

pac2smt Boolector aig2cnf

CombineCNF CaDiCaL

DRAT-trim

.aig

.cnf

.aig

.polys

.pac
.smt .aig

.cnf

.cnf

.drup

7 | 3

7 | 3

7 | 3

AIG SMT CNF Check

Experimental Results

architecture n
Separate Proofs

DRUP PAC
total

PAC DRUP
gen check size gen check size gen check total size aig smt cnf check total size

sp-ar-cl 16 0 0 1 299 0 0 7 962 0 2 2 3 185 588 0 7 300 264 570 19 317 884
sp-dt-lf 16 0 0 1 167 0 0 7 787 0 1 1 2 136 349 0 6 279 277 562 18 153 668
bp-ct-bk 16 0 0 1 029 0 0 7 205 0 1 1 2 128 720 0 7 TO - - -
bp-wt-cl 16 0 0 2 902 0 0 7 946 0 30 11 41 614 742 0 7 TO - - -
sp-ar-cl 32 0 0 14 927 0 1 33 834 1 133 31 164 1 597 897 0 56 TO - - -
sp-dt-lf 32 0 0 3 138 0 1 33 451 1 2 3 5 321 720 0 52 TO - - -
bp-ct-bk 32 0 0 2 276 0 1 27 312 1 1 2 3 217 128 0 49 TO - - -
bp-wt-cl 32 1 1 46 502 0 1 30 561 2 3 133 242 3 375 5 536 176 0 55 TO - - -

PPG: simple (sp), Booth (bp) PPA: array (ar), Dadda tree (dt), compressor tree (ct), Wallace tree (wt)
FSA: carry look-ahead (cl), Ladner-Fischer (lf), Brent-Kung (bk) TO = 3600 sec

Conclusion

From DRUP to PAC:

requires algebraic reasoning

include bit-flipping techniques to reduce size

use TraceCheck format

From PAC to DRUP:

encode PAC proof as an SMT problem

translated into CNF using bit-blasting

leaves gaps in the proof

Single DRUP proofs are three orders of magnitude larger than PAC proofs and contain gaps.

From DRUP to PAC and Back
Daniela Kaufmann Armin Biere Manuel Kauers

RiSE

DATE’20

