Pthreads Basics

Pthreads Programming in C
Focus: Parallel SAT Solving

Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria
http://fmv.jku.at

http://fmv.jku.at/

POSIX Threads

2 POSIX: Portable Operating System Interface
» |EEE standards defining API of software for UNIX-like operating systems

2 POSIX threads (Pthreads)
» standard approved 1995, amendments

» functions for
 creating threads
 synchronizing threads
 thread interaction

» opaque data types for
* thread identifiers
« synchronization constructs
 attributes

» header file pthread.h
» compilation: gcc -pthread -o prog prog.c
o References:
» D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997
» http://opengroup.org/onlinepubs/007908799/xsh/pthread.h.html

Pthreads Programming in C SS 2011 Pthreads Basics (2)

(P)Threads in Linux

2 How can a thread-library be implemented?

o Abstraction levels:
» threads: created by a user program
» kernel entity: “process”, scheduled by operating system
» processor: physical device, gets assigned kernel entities by scheduler
2 Design decision: how to map threads to kernel entities?
2 M-to-1:
» all threads of process mapped to one kernel entity
» fast scheduling (in library), but no parallelism
2 M-to-N:
» threads of process mapped to different kernel entities
» two-level scheduling (library and kernel) incurs overhead, but allows parallelism
o 1-to-1:
» each thread mapped to one kernel entity
» scheduling in kernel, less overhead than in M-to-N case, allows parallelism
» used in most modern Linux systems: Native POSIX Threads Library (NPTL)

Pthreads Programming in C SS 2011 Pthreads Basics (3)

Pthread Lifecycle: States

o Ready

» able to run, waiting for processor
2 Running

» 0N multiprocessor possibly more than one at a time
o Blocked

resume
» thread is waiting for a shared resource €« (blocked
preempted

2 Terminated /‘
: \ Aspended
» system resources partially released created
scheduled
» but not yet fully cleaned up
» thread's own memory is obsolete
« can still return value

2 (Recycled)

» all system resources fully cleaned up
» controlled by the operating system i resources reclaimed

\ recycled)

l done or cancelled

Pthreads Programming in C SS 2011 Pthreads Basics (4)

Pthread Creation

2 int pthread create(arg0, argl, arg2, arg3)

»

»

»

»

»

arg0: pthread t *tid ptr

« where to store thread ID of type pthread t
argl: const pthread att t *attr

* may set certain attributes at startup

* ignored for the moment: always pass NULL - set default attributes
arg2: void *(*start) (void *)

» pointer to thread's startup function

- takes exactly one void* as argument
arg3: void *arg

 actual parameter of thread's startup function
returns zero on success, else error code

2 thread ID is stored in *tid ptr
» pthread t pthread self() returns ID of current thread

»

int pthread equal(pthread t tidl, pthread t tid2) compares IDs

o Example: helloworld

Pthreads Programming in C SS 2011 Pthreads Basics (5)

o Process creates thread which executes main-function = “main-thread”

2 main-thread behaves slightly differently from ordinary threads:

» termination of main-thread by returning from main causes process to terminate
« all threads of process terminate
« Example: helloworld

» calling pthread exit(...) inmain-thread causes process to continue
« all created threads continue
* recall lifecycle: main-thread terminates = resources partially released
— Attention: stack may be released!

« memory errors: dereferencing pointers into main-thread's (released) stack
« Example: helloworld buggy

Pthreads Programming in C SS 2011 Pthreads Basics (6)

Pthread Termination

a

a

Q

Q

generally: thread terminates if startup function returns
int pthread exit(void *value ptr)
» causes thread to terminate (special semantics in main-thread)
» implicitly called if thread's startup function returns (except in main-thread)
» value ptr is the thread's return value (see pthread join(...))
int pthread detach(pthread t tid)
» resources of tid can be reclaimed after tid has terminated
» default: not detached
» any thread can detach any thread (including itself)
int pthread join(pthread t tid, void **value)
» returns when tid has terminated (or already terminated), caller blocks

» optionally stores tid's return value in *value
* return value from calling pthread exit(...) orreturning from startup function

» joined thread will be implicitly detached
» detached threads can not be joined

Pthreads Programming in C SS 2011 Pthreads Basics (7)

Pthread Termination - Examples

o Example: helloworld join

o Returning values from threads

» returning values from threads via pthread join(...)
« example: returnval
 but: waiting for termination often not needed
* good practice to release system resources as early as possible
» alternative to pthread join(...):custom return mechanism
 threads store their return values on the heap
 Example: returnval heap
— problem: need to n(ﬁfy main-thread somehow that all threads have written results
» error: joining a detached thread
* resources are (may be or not) already released
* join should fail
« Example: returnval buggy
» error: returning pointer to local variable
« Example: returnval buggy

Pthreads Programming in C SS 2011 Pthreads Basics (8)

Pthread Lifecycle Revisited (1/2)

2 Creation
» process creation = main-thread creation
» pthread create(...):new threads are ready
°* no synzhronization between pthread create(...) and new thread's execution
o Startup
» main-thread's main function called after process creation

» newly created threads execute startup function
2 Running
» ready threads are eligible to acquire processor — will be running
» scheduler assigns timeslice to ready thread — threads will be preempted
» switching threads = context (registers, stack, pc) must be saved
2 Blocking
» running threads may block, e.g. to wait for shared resource
» blocking threads become ready (not running) again

Pthreads Programming in C SS 2011 Pthreads Basics (9)

Pthread Lifecycle Revisited (2/2)

2 Termination

» generally: when thread returns from startup function

» pthread exit

» can also explicitly be cancelled by pthread cancel(...)

» (optional cleanup handlers are called)

» only thread's ID and return value remain valid, other resources might be released

» terminated threads can still be joined or detached

* joined threads will be implicitly detached, i.e. all its system resources will be released

2 Recycling

» occurs immediately for terminated, detached threads — all resources released

Pthreads Programming in C SS 2011 Pthreads Basics (10)

Creating and Using Threads: Pitfalls

2 Sharing pointers into stack memory of threads
» perfectly alright, but handle with care
* passing arguments
* returning values
2 Resources of terminated, non-detached threads can not fully be released
» large number of threads — performance problems?
» should join or detach threads

o Relying on the speed/order of individual threads
» do not make any assumptions!

» need mechanism to notify threads that certain conditions are true
« example: returnval heap

» must prevent threads from modifying shared data concurrently
« example: sum

2 = Synchronization

Pthreads Programming in C SS 2011 Pthreads Basics (11)

