Pthreads Synchronization

Pthreads Programming in C
Focus: Parallel SAT Solving

Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria
http://fmv.jku.at

http://fmv.jku.at/

The Need for Synchronization

2 Threads operating on shared data concurrently:
» scheduling determines outcome of operations — race conditions

» can lead to violations of data invariants
* integrity of data structures: queues, buffers,...

o Classical example: concurrent transactions on bank account

Thread 1 Thread 2 Balance
read balance: €1000 €1000
read balance: €1000 €1000
set balance: €(1000 — 200) €800
set balance: €(1000 — 100) €900
give out cash: €100 €900
give out cash: €200 €900

o Thread notification
» inform one or more threads that certain condition has become true
» example: returnval heap

Pthreads Programming in C SS 2011 Pthreads Synchronization (2)

Basic Pthread Synchronization Mechanisms

2 Controlling access to shared data
» mutex: mutual exclusion
» special kind of semaphore
» locking a mutex allows mutually exclusive access to shared data

» A mutex can be locked (“owned”) by exactly one thread at a time
 lock attempt on already locked mutex will block calling thread until mutex unlocked

o Thread notification
» pthread join(...):very limited, no notification
» condition variables: threads block until notified that condition has become true

» always combined with a mutex protecting the condition's data
« testing and setting the condition must be performed under locked mutex

» multiple threads can block on a condition variable or be notified at a time
« e.g. multiple consumers waiting at an empty queue of items
* e.g. producer inserts items and notifies waiting consumers

2 Synchronization in Java:
» synchronized blocks and methods, wait () and notify(),notifyAll()

Pthreads Programming in C SS 2011 Pthreads Synchronization (3)

Pthread Mutexes (1/2)

o Represented as variables of type pthread mutex t

» never copy mutexes!
» share mutexes by passing pointers
o Static or dynamic allocation and/or initialization
» static initialization
* macro PTHREAD MUTEX INITIALIZER

 set default attributes
— e.g. process/system-wide mutexes, real-time scheduling, priority-aware mutexes,...

— attributes are beyond our scope
» dynamic initialization
 pthread mutex attr_t for setting mutex's attributes
 int pthread mutex init(pthread mutex t *mutex,

— pass NULL for attr to get default attributes
« int pthread mutex destroy(pthread mutex attr t *attr)

— mutex becomes invalid, but can be re-initialized

» dynamic allocation and initialization
« allocate mutexes on heap and initialize dynamically

*attr)

Pthreads Synchronization (4)

SS 2011

Pthreads Programming in C

Pthread Mutexes (2/2)

0 int pthread mutex lock(pthread mutex t *mutex)
» mutex is currently unlocked: caller will own mutex

» mutex is currently locked: caller blocks until mutex is unlocked
» deadlock: recursively locking a mutex (unless mutex is set to be recursive)

9 int pthread mutex trylock(pthread mutex t *mutex)
» mutex is currently unlocked: caller will own the mutex

» mutex is currently locked: caller does not block
 caller can e.g. enter alternative branch

2 int pthread mutex timedlock(...*mutex, ...*expire)
» mutex is currently unlocked: caller will own mutex
» struct timespec *expire: absolute timeout for blocking

0 int pthread mutex unlock(pthread mutex t *mutex)
» among multiple blocking threads, exactly one is selected to own mutex
» error: caller does not own mutex
» error: mutex is unlocked already

o Example: sum, prodcons

Pthreads Programming in C SS 2011 Pthreads Synchronization (5)

Pthread Condition Variables (1/2)

o Represented as variables of type pthread cond t

» like for mutexes: analogous functions for initialization, attributes,...
e PTHREAD COND INITIALIZER, int pthread_cond_init(N R

2 Always associated with exactly one mutex
» but: different condition variables may use same mutex
» condition must be tested and set under protection of mutex
» mutex must be properly locked and unlocked
» suggested usage pattern:

mutex lock();
while (!condition) {
mutex unlock();
non busy wait until notified();
mutex lock();
}
/* critical region: do some work... */
mutex unlock();

o Managed by Pthread condition variables (similar to Java):
» set of waiting threads, (un)locking the mutex, notification of waiting threads

Pthreads Programming in C SS 2011 Pthreads Synchronization (6)

Pthread Condition Variables (2/2)

2 Waiting on a condition variable
» int pthread cond wait(pthread cond t *cond, ... *mutex)
 caller must own mutex, will then block until notified
* mutex is automatically unlocked before waiting and locked again if call returns

2 Notifying waiting threads
» int pthread cond signal(pthread cond t *cond)
« caller notifies one arbitrary thread waiting on cond
+ notified thread wakes up and locks mutex (its call of pthread cond wait returns)
» int pthread cond broadcast(pthread cond t *cond)
« caller notifies all threads waiting on cond
 notified threads wake up (in arbitrary order) and contend for mutex
» notifying threads need not own mutex (but recommended)
» pthread cond timedwait(... *cond, ... *mutex, ... *expire)
* struct timespec *expire: absolute timeout for waiting
« if timed out or notified: call will return with mutex locked again

o Examples: prodcons cond, returnval heapcond

Pthreads Programming in C SS 2011 Pthreads Synchronization (7)

Pthread Barriers

2 Represented as variables of type pthread barrier t

2 Synchronizing pool of threads at a specific point
0 int pthread barrier init(...,unsigned int cnt)
» must be called before using barrier
» cnt: number of threads waiting (calls of ... wait(...)) before all can continue
2 int pthread barrier destroy(pthread barrier t *b)
» reset barrier to invalid state
» must call pthread barrier init(...) before using again
0 int pthread barrier wait(pthread barrier t *b)
» Galling thread will wait (i.e. block) until cnt threads have called ... wait(...)
» Waiting threads are then released in arbitrary order
» Returns non-zero to exactly one arbitrary thread and 0 otherwise
o Example: simple-barrier
o In Java 1.5 or higher: CyclicBarrier

Pthreads Programming in C SS 2011 Pthreads Synchronization (8)

Memory Visibility

2 When will changes of shared data be visible to other threads?

2 Pthreads standard guarantees basic memory visibility rules

» thread creation
« memory state before calling pthread create(...) isvisible to created thread

» mutex unlocking (also combined with condition variables)
* memory state before unlocking a mutex is visible to thread which locks same mutex

» thread termination (i.e. entering state “terminated”)
* memory state before termination is visible to thread which joins with terminated thread

» condition variables
» memory state before notifying waiting threads is visible to woke up threads
2 Memory barriers:
» instructions issued implicitly to ensure memory visibility rules for pthreads
» Impose order on memory accesses

» all memory accesses issued before barrier must complete before any access
issued after the barrier can complete

2 volatile variables do not guarantee memory consistency!

Pthreads Programming in C SS 2011 Pthreads Synchronization (9)

Hints and Pitfalls (1/4)

2 Always wait in a loop on a condition variable (applies to any thread library)
» condition should be re-evaluated after waking up = why?
» intercepted wakeups
» another thread might acquire mutex before the woke up thread and reset condition
» notification on weak predicates (programmer's responsibility)

* e.g. notify if n <= value, but “tight” condition is n < value - unnecessary notifications
» spurious wakeups

« library: more efficient to notify multiple threads at pthread cond signal(...)
* programming errors: notification although the condition is false
» pthread standard does not prevent wakeups without any notifying thread [Butenhof'97]

o Beware of deadlocks
» threads wait for mutexes in circular fashion
» fixed locking hierachy: always lock mutexes in fixed order

» try and back off: unlock all mutexes in a set if one lock fails, then start again later
 can lead to starvation: thread “polls” for mutex and never waits
» Example: deadlock backoff

Pthreads Programming in C SS 2011

Pthreads Synchronization (10)

Hints and Pitfalls (2/4)

o Beware of “badly optimizing” the use of condition variables

» lost wakeups: thread waits although condition is true
* like prodcons_cond: producer signals only if buffer becomes non-empty — error

» do not share condition variables between predicates
« do not know which predicate a notified thread was waiting for
2 Speed/order of threads
» do not assume anything!
» adding sleep(...) is not abug fix (but can “hide” synchronization problems)

Pthreads Programming in C SS 2011 Pthreads Synchronization (11)

Hints and Pitfalls (3/4): Performance Concerns

2 Number of threads:

» cost of thread creation and context switches is system-dependent
2 Synchronization prevents concurrency and parallelism

» best solution: do not share too much (Example: arraysum)
2 Own mutexes for shortest possible time = reduces waiting time
o Massive (un)locking of mutexes is expensive

» Example: freg-locking
2 Mutexes and condition variables consume memory

» Mutex: 40 (24) bytes in 64-bit (32-bit) environment

» Condition variables: 48 bytes in 32- and 64-bit environment

Pthreads Programming in C SS 2011 Pthreads Synchronization (12)

Hints and Pitfalls (4/4): Performance Concerns

2 Fine-grain locking
» using many “small” mutexes increases concurrency and locking overhead
» Example: locked-array/many-locks
2 Coarse-grain locking
» using few “big” mutexes decreases concurrency and locking overhead
» Example: locked-array/big-lock
2 Lock chaining
» e.g. lock(m1), lock(m2), unlock(m1), lock(m3), unlock(m2),...
» e.g. concurrent linked list: locking entire list or single nodes
o Read/write locks: allow concurrent reads
» multiple readers may concurrently read if no writer is active
» one writer prevents any other writer or reader from accessing

Pthreads Programming in C SS 2011 Pthreads Synchronization (13)

Advanced Topics

o Thread-specific data
» gtatic data where each thread has a private value associated with a key
o Attributes
» for threads, mutexes and condition variables
2 Cancellation
» cancel threads either immediately or at special cancellation points
» held resources need to be cleaned up properly (cleanup handlers)
o Realtime scheduling
» setting scheduling policy and priorities, priority-aware mutexes
o Thread-safe libraries
» how to make libraries thread-safe?
» must interfaces be changed?
» often inefficient: one “big” internal mutex protecting entire functions
» problem: functions which maintain internal state across calls
2 Spinlocks vs. mutexes
» busy waiting vs. non-busy waiting

Pthreads Programming in C SS 2011 Pthreads Synchronization (14)

