First Order Predicate Logic

Formal Semantics and Related Notions

Wolfgang Schreiner and Wolfgang Windsteiger

Wolfgang.(Schreiner|Windsteiger)@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

Wolfgang Schreiner and Wolfgang Windsteiger

risc.jku.at

mailto:Wolfgang.Schreiner@risc.jku.at,Wolfgang.Windsteiger@risc.jku.at
http://www.risc.jku.at
http://www.risc.jku.at

Formal Semantics

Up to now, our presentation of predicate logic formulas, their manipulation
and proving, was mainly based on the form (syntax) of the formulas; this
leaves many questions open.

» Equivalence of formulas:

> What exactly does a formula mean, e.g., when do two syntactically

different formulas express the same fact?
» Soundness and completeness of proving rules:

» Proving rules allow by only considering the form of formulas to judge
that some formula is a consequence of some other formulas.

» But are the derived judgements really always true, i.e., are the rules
really sound?

» Furthermore, can all true judgements be derived, i.e., are the rules
also complete?

We will answer these questions by underpinning our previous presentation
with a formal definition of the meaning (semantics) of formulas.

Wolfgang Schreiner and Wolfgang Windsteiger isc. jku.at

2"
e

http://www.risc.jku.at

Formal Semantics
The meaning of a predicate logic formula depends on the following entities.

» Domain D
> A non-empty set, the universe about which the formula talks.

D=N.

» Interpretation / of all function and predicate symbols
» Constants: For every constant ¢, /(c) denotes an element of D, i.e.,
I(c)eD.
» Functions: For every function symbol f with arity n > 0, I(f) denotes
an n-ary function on D, i.e., I(f): D" — D.
» Predicates: For every predicate symbol p with arity n >0, /(p)
denotes an n-ary predicate (relation) on D, i.e., I(p) C D".

I = [0~ zero,+ + add, < + less-than,...]

» Assignment a: Var — D
» A function that maps every variable x to a value a(x) in this domain.
a=[x—1,y—0,z—3,..]
7Y
The pair M = (D, /) is also called a structure. o

sc. jku.at 3/16

Wolfgang Schreiner and Wolfgang Windsteiger http:/

http://www.risc.jku.at

The Semantics of Terms

D,l,a —{ [t] —>deD

v

Term semantics [[t]}aD‘I eD
> Given D, |, a, the semantics of term t is a value in D.
> This value is defined by structural induction on t.

t o= x| c|f(te,...,tn)

D,
[x]a" == a(x)
» The semantics of a variable is the value given by the assignment.
DI
[c]2" = (<)
» The semantics of a constant is the value given by the interpretation.

[F(tr)] = 101D T] D)

» The semantics of a function application is the result of the
interpretation of the function symbol applied to the values of the
argument terms.

v

v

v

The recursive definition of a function evaluating a term.

Wolfgang Schreiner and Wolfgang Windsteiger http:/

http://www.risc.jku.at

Example

Wolfga

ne Schreiner and Wolfgang Windsteiger

D =N = {zero, one, two, three, ...}
a=[x+>one,y — two,...]
I =0+ zero,+ — add,...]

[x+(y +0)]2" = add([x]2", [y +015")
add((x), [y +0]2")
dd(one, [y +0]2)
= add(one,add([[yﬂ?’l, [o]
= add(one, add(a(y), 1(0))
= add(one, add(two, zero))
)

= add(one, two

= three

The meaning of the term with the “usual” interpretation.

)

2"
e

http://www.risc.jku.at

Example

Wolfga

ng Schreiner and Wolfgang Windsteiger

D =P(N) = {0,{zero},{one},{two},...,{zero,one},...}
a=[x+— {one},y — {two},..]
I =[0+ 0,4 — union,...]

[x-+(y+0)]2" = union([x]2, [y +0]2)
— union(a(x), [y +0]2)
= union({one}, [y +0]2")
= union({one}, union([y]?"',[0]
= union({one}, union(a(y),1(0))
(

= union({one}, union({two}, emptyset))

= union({one},{two})

= {one, two}

The meaning of the term with another interpretation.

2)

2"
e

http://www.risc.jku.at

The Semantics of Formulas

D,l,a —{ [F] —» true, false

» Formula semantics [F]5 € {true, false}

» Given D, I, a, the semantics of term T is a truth value.
> This value is defined by structural induction on F.

F =p(ty,....,tn) | T | L
|—|F|F1/\F2 | FVF | FL— F | F+ F
|Vx:F|3x:F| ...

> [p(ts.. t)]2 = 1) ([0]2, [t]2

» The semantics of a atomic formula is the result of the interpretation
of the predicate symbol applied to the values of the argument terms.

> [[TﬂaDJ = true, [[L]]E’I = false A
And now for the non-atomic formulas. .

Wolfgang Schreiner and Wolfgang Windsteiger http://wew.risc. jku.at 7/16

http://www.risc.jku.at

The Semantics of Propositional Formulas

v

[[ﬁ’,_—HD./_: true if[[F]]?”:false
2 false else

true if [[Fl]]aD’l =[F 9” = true

v

[[Fl N FQHE"I = {

true else

false else
false if [FL]2" = [F]5" = false
D,I 1 2
> [RvF] ::{true else ’ |
false if [F]5" = F]5" = fal
T Y ::{ alse if [F1]a true and [F2]3 alse

true if [F1]5 =[F2]5"

D,
> [Re k= {false else

The semantics coincides here with that of propositional logic.

Wolfgang Schreiner and Wolfgang Windsteiger

http://www.risc.jku.at

The Semantics of Quantified Formulas

> [[Vx HDI,:

true if [[F]]abHd] = true for all d € D
false else

> Formula is true, if body F is true for every value of the domain
assigned to x.

v [3x: F]27 = true if [[F]]a[sd) = true for some d € D
false else

» Formula is true, if body F is true for at least one value of the domain
assigned to x.

d ifx=y

alx > dl(y) = {a(y) i

The core of the semantics.

2"
e

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc. jku.at

http://www.risc.jku.at

Example
D = N3 = {zero, one, two}
a=[x+ one,y — two,z — two, ..

[Vx:3y:x+y :z]}?’l = true

» [Fy:x+y= = true

z]] a[xr—>zero]
S x4y =210y = S0
> Ix+y= Z]]a[xI»—)zero ysone] = false
> [x+y= zﬂa[x»—)zero,y»—>two] = true

» [Ty x+y=]]a[XHone] = true

> Ixty= z]]a[x»—mne yoszero] = f2lse
> Ix+y= Zﬂa[x»—)one yrsone] — LIUE
> [x+y= z]]a[XHone yrtwo] = = false

» [Ty :x+y= = true

> [[X+y]]a[x»—nwo,yazera]
g |IX+y = ZHa[x»—)two,y»—wne] = false

D.I .
i [[X+y = zﬂa[xn—)two,y»—nwo] = false

]] a[Xr—> two
true

The systematic investigation of respectively search for assignments.

Wolfgang Schreiner and Wolfgang Windsteiger http://

J, I=[0+ zero,+ — add, ..]

isc.ijku.at

2"
e

10/16

http://www.risc.jku.at

Semantic Notions
Let F denote formulas, M structures, a assignments.

» F is satisfiable, if [F]M = true for some M and a.
p(0,x) is satisfiable; q(x) A—q(x) is not.

» M is a model of F (short: M = F), if [F]Y = true for all a.
(N, [0+ zero, p — less-equal]) = p(0, x)

» Fis valid (short: = F), if M = F for all M.
= p(x) A (p(x) = q(x)) = q(x)
» F is satisfiable, if —=F is not valid.
» F is valid, if =F is not satisfiable.

> F is a logical consequence of formula set ' (short: ' = F), if for all
M and a, the following is true:

If [G]M = true for every G in T, then also [F]M = true.
p(x),p(x) = a(x) = a(x)

> F7 is a logical consequence of formula Fp, if {F2} | Fi.

Wolfgang Schreiner and Wolfgang Windsteiger http:

2"
e

11/16

http://www.risc.jku.at

Logical Equivalence

We are now going to address the first question stated in the beginning.
» Definition: two formulas F; and F, are logically equivalent (short:
F1 = Fg), if F1 ': F2 and F2 ': F1.
» Lemma: if F& F' and G < G/, then

—\F<:>—|F/
FAG& F' NG
FVG& F'vGE
F—-G&F -G
F&GeF o6
Vx: F & Vx: F
Ix:Fe3Ix: F

Logically equivalent formulas can be substituted in any context without
affecting the logical equivalence of the result (since F < G iff F <> G is

valid, this justifies the proof rule A-<).

Wolfgang Schreiner and Wolfgang Windsteiger http://www.risc. jku.at

2"
e

12/16

http://www.risc.jku.at

Expressiveness of First-Order Logic

> Variables denote elements of the domain, thus no quantification is
possible over functions and predicates of the domain.

This would require second-order predicate logic.
> Nevertheless we express in first-order logic statements such as
VA,B,f € A— B:f is bijective - 3g€ B— A:Vx € B: f(g(x)) =x

» This is possible because formulas are usually interpreted over the
domain of sets, i.e., all variables denote sets:

A= B:={SCAxB|
(VacA:3beB:(a,b)eS) A
(Va,d',b:(a,b) e SA(a',b)eS—a=2)}

» Terms like f(g(x)) involve a hidden binary function “apply”
f(g(x)) ~ apply(f,apply(g,x))
which denotes “function application™:
apply(f,x):=the y: (x,y) e f

First-order predicate logic over the domain of sets is the “working horse" of -ME.
mathematics; virtually all of mathematics is formulated in this framework. ™

sc.jku.at 13/16

Wolfgang Schreiner and Wolfgang Windsteiger http://

http://www.risc.jku.at

Soundness and Completeness of First-Order Logic

Now we turn our attention to the second question.

Completeness Theorem (Kurt Godel, 1929): First order predicate logic has
a proof calculus for which the following holds:

» Soundness: if by the rules of the calculus a conclusion F can be
derived from a set of assumptions ' (I' - F), then F is a logical
consequence of I (I' = F).

» Completeness: if F is a logical consequence of I (I' |= F), then by the
rules of the calculus F can be derived from I' (I'+ F).

No logic that is stronger (more expressive) than first order predicate logic
has a proof calculus that also enjoys both soundness and completeness.

Wolfgang Schreiner and Wolfgang Windsteiger

2"
e

14/16

http://www.risc.jku.at

Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth
of every formula is algorithmically decidable.

» Undecidability (Church/Turing, 1936/1937): there does not exist any
algorithm that for given formula set ' and formula F always
terminates and says whether [|= F holds or not.

» Semidecidability: but there exists an algorithm, that for given I'
and F, if [= F, detects this fact in a finite amount of time.

This algorithm searches for a proof of [= F in a complete
proof calculus; if such a proof exists, it will eventually detect
it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.

Wolfgang Schreiner and Wolfgang Windsteiger

2"
e

15/16

http://www.risc.jku.at

Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas

> Incompleteness Theorem (Kurt Godel, 1931): it is in no sound logic
possible to prove all true arithmetic statements (i.e., all statements
about natural numbers with addition and multiplication).

» To adequately characterize N, the (infinite) axiom scheme of
mathematical induction has to be added.

» Corollary: in every sound formal system that is sufficiently rich there
are statements that can neither be proved nor disproved.

In practice, complete reasoners for first-order logic are often supported by
(complete or incomplete) reasoners for special theories.

A"
Wolfgang Schreiner and Wolfgang Windsteiger

http:/

isc.ijku.at

i7"\

16/16

http://www.risc.jku.at

