First Order Predicate Logic

Formal Semantics and Related Notions

Wolfgang Schreiner and Wolfgang Windsteiger Wolfgang.(Schreiner|Windsteiger)@risc.jku.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU), Linz, Austria
http://www.risc.jku.at

Formal Semantics

Up to now, our presentation of predicate logic formulas, their manipulation and proving, was mainly based on the form (syntax) of the formulas; this leaves many questions open.

- Equivalence of formulas:
- What exactly does a formula mean, e.g., when do two syntactically different formulas express the same fact?
- Soundness and completeness of proving rules:
- Proving rules allow by only considering the form of formulas to judge that some formula is a consequence of some other formulas.
- But are the derived judgements really always true, i.e., are the rules really sound?
- Furthermore, can all true judgements be derived, i.e., are the rules also complete?

We will answer these questions by underpinning our previous presentation with a formal definition of the meaning (semantics) of formulas.

Formal Semantics

The meaning of a predicate logic formula depends on the following entities.

- Domain D
- A non-empty set, the universe about which the formula talks.

$$
D=\mathbb{N}
$$

- Interpretation I of all function and predicate symbols
- Constants: For every constant $c, I(c)$ denotes an element of D, i.e., $I(c) \in D$.
- Functions: For every function symbol f with arity $n>0, I(f)$ denotes an n-ary function on D, i.e., $I(f): D^{n} \rightarrow D$.
- Predicates: For every predicate symbol p with arity $n>0, I(p)$ denotes an n-ary predicate (relation) on D, i.e., $I(p) \subseteq D^{n}$.

$$
I=[0 \mapsto \text { zero },+\mapsto \text { add },<\mapsto \text { less-than }, \ldots]
$$

- Assignment a: Var $\rightarrow D$
- A function that maps every variable x to a value $a(x)$ in this domain.

$$
a=[x \mapsto 1, y \mapsto 0, z \mapsto 3, \ldots]
$$

The pair $M=(D, I)$ is also called a structure.

The Semantics of Terms

$$
D, I, a \longrightarrow \llbracket t \rrbracket \longrightarrow d \in D
$$

- Term semantics $\llbracket t \rrbracket_{a}^{D, I} \in D$
- Given D, I, a, the semantics of term t is a value in D.
- This value is defined by structural induction on t.

$$
t::=x|c| f\left(t_{1}, \ldots, t_{n}\right)
$$

- $\llbracket x \rrbracket_{a}^{D, I}:=a(x)$
- The semantics of a variable is the value given by the assignment.
- $\llbracket c \rrbracket_{a}^{D, I}:=I(c)$
- The semantics of a constant is the value given by the interpretation.
- $\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{a}^{D, I}:=I(f)\left(\llbracket t_{1} \rrbracket_{a}^{D, I}, \ldots, \llbracket t_{n} \rrbracket_{a}^{D, I}\right)$
- The semantics of a function application is the result of the interpretation of the function symbol applied to the values of the argument terms.

The recursive definition of a function evaluating a term.

Example

$$
\begin{aligned}
& D=\mathbb{N}=\{\text { zero, one, two }, \text { three }, \ldots\} \\
& a=[x \mapsto \text { one }, y \mapsto \text { two }, \ldots] \\
& I=[0 \mapsto \text { zero },+\mapsto \text { add }, \ldots]
\end{aligned}
$$

$$
\begin{aligned}
\llbracket x+(y+0) \rrbracket_{a}^{D, I} & =\operatorname{add}\left(\llbracket x \rrbracket_{a}^{D, I}, \llbracket y+0 \rrbracket_{a}^{D, I}\right) \\
& =\operatorname{add}\left(a(x), \llbracket y+0 \rrbracket_{a}^{D, l}\right) \\
& =\operatorname{add}\left(o n e, \llbracket y+0 \rrbracket_{a}^{D, l}\right) \\
& =\operatorname{add}\left(o n e, \operatorname{add}\left(\llbracket y \rrbracket_{a}^{D, I}, \llbracket 0^{0} \rrbracket_{a}^{D, l}\right)\right) \\
& =\operatorname{add}(\text { one }, \operatorname{add}(a(y), I(0)) \\
& =\operatorname{add}(\text { one, add(two,zero) }) \\
& =\operatorname{add}(\text { one, two }) \\
& =\text { three }
\end{aligned}
$$

The meaning of the term with the "usual" interpretation.

Example

$$
\begin{aligned}
& D=\mathcal{P}(\mathbb{N})=\{\emptyset,\{\text { zero }\},\{\text { one }\},\{\text { two }\}, \ldots,\{\text { zero }, \text { one }\}, \ldots\} \\
& a=[x \mapsto\{\text { one }\}, y \mapsto\{\text { two }\}, \ldots] \\
& I=[0 \mapsto \emptyset,+\mapsto \text { union }, \ldots]
\end{aligned}
$$

$$
\begin{aligned}
\llbracket x+(y+0) \rrbracket_{a}^{D, I} & =\operatorname{union}\left(\llbracket x \rrbracket_{a}^{D, I}, \llbracket y+0 \rrbracket_{a}^{D, I}\right) \\
& =\operatorname{union}\left(a(x), \llbracket y+0 \rrbracket_{a}^{D, I}\right) \\
& =\operatorname{union}\left(\{\text { one }\}, \llbracket y+0 \rrbracket_{a}^{D, I}\right) \\
& =\text { union }\left(\{\text { one }\}, \text { union }\left(\llbracket y \rrbracket_{a}^{D, I}, \llbracket 0 \rrbracket_{a}^{D, I}\right)\right) \\
& =\operatorname{union}(\{\text { one }\}, \text { union }(a(y), I(0)) \\
& =\text { union }(\{\text { one }\}, \text { union }(\{\text { two }\}, \text { emptyset })) \\
& =\text { union }(\{\text { one }\},\{\text { two }\}) \\
& =\{\text { one }, \text { two }\}
\end{aligned}
$$

The meaning of the term with another interpretation.

The Semantics of Formulas

- Formula semantics $\llbracket F \rrbracket_{a}^{D, I} \in\{$ true, false $\}$
- Given D, I, a, the semantics of term T is a truth value.
- This value is defined by structural induction on F.

$$
\begin{aligned}
& F:=p\left(t_{1}, \ldots, t_{n}\right)|\top| \perp \\
&|\neg F| F_{1} \wedge F_{2}\left|F_{1} \vee F_{2}\right| F_{1} \rightarrow F_{2} \mid F_{1} \leftrightarrow F_{2} \\
&|\forall x: F| \exists x: F \mid \ldots \\
& \llbracket p\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{a}^{D, I}:=I(p)\left(\llbracket t_{1} \rrbracket_{a}^{D, I}, \ldots, \llbracket t_{n} \rrbracket_{a}^{D, I}\right)
\end{aligned}
$$

- The semantics of a atomic formula is the result of the interpretation of the predicate symbol applied to the values of the argument terms.
- $\llbracket 丁 \rrbracket_{a}^{D, I}:=$ true, $\llbracket \perp \rrbracket_{a}^{D, I}:=$ false

And now for the non-atomic formulas.

The Semantics of Propositional Formulas

- $\llbracket \neg F \rrbracket_{a}^{D, 1}:= \begin{cases}\text { true } & \text { if } \llbracket F \rrbracket_{a}^{D, I}=\text { false } \\ \text { false } & \text { else }\end{cases}$
- $\llbracket F_{1} \wedge F_{2} \rrbracket_{a}^{D, 1}:= \begin{cases}\text { true } & \text { if } \llbracket F_{1} \rrbracket_{a}^{D, l}=\llbracket F_{2} \rrbracket_{a}^{D, 1}=\text { true } \\ \text { false } & \text { else }\end{cases}$
- $\llbracket F_{1} \vee F_{2} \rrbracket_{a}^{D, I}:=\left\{\begin{array}{l}\text { false if } \llbracket F_{1} \rrbracket_{a}^{D, I}=\llbracket F_{2} \rrbracket_{a}^{D, I}=\text { false } \\ \text { true }\end{array}\right.$
- $\llbracket F_{1} \rightarrow F_{2} \rrbracket_{a}^{D, 1}:= \begin{cases}\text { false } & \text { if } \llbracket F_{1} \rrbracket_{a}^{D, 1}=\text { true and } \llbracket F_{2} \rrbracket_{a}^{D, 1}=\text { false } \\ \text { true } & \text { else }\end{cases}$
- $\llbracket F_{1} \leftrightarrow F_{2} \rrbracket_{a}^{D, I}:= \begin{cases}\text { true } & \text { if } \llbracket F_{1} \prod_{a}^{D, I}=\llbracket F_{2} \rrbracket_{a}^{D, I} \\ \text { false } & \text { else }\end{cases}$

The semantics coincides here with that of propositional logic.

The Semantics of Quantified Formulas

- $\llbracket \forall x: F \rrbracket_{a}^{D, I}:= \begin{cases}\text { true } & \text { if } \llbracket F \rrbracket_{a[x \mapsto d]}^{D, I}=\text { true for all } d \in D \\ \text { false } & \text { else }\end{cases}$
- Formula is true, if body F is true for every value of the domain assigned to x.
$-\llbracket \exists x: F \rrbracket_{a}^{D, I}:= \begin{cases}\text { true } & \text { if } \llbracket F \rrbracket_{a[x \mapsto d]}^{D, I} \\ \text { false } & \text { else }\end{cases}$
- Formula is true, if body F is true for at least one value of the domain assigned to x.

$$
a[x \mapsto d](y)= \begin{cases}d & \text { if } x=y \\ a(y) & \text { else }\end{cases}
$$

The core of the semantics.

Example

$$
\begin{aligned}
& D=\mathbb{N}_{3}=\{\text { zero,one, two }\} \\
& a=[x \mapsto \text { one, } y \mapsto \text { two }, z \mapsto \text { two }, \ldots], I=[0 \mapsto z e r o,+\mapsto \text { add }, \ldots] \\
& \llbracket \forall x: \exists y: x+y=z \rrbracket_{a}^{D, I}=\text { true } \\
& -\llbracket \exists y: x+y=z \rrbracket_{a[x \mapsto z e r o]}^{D, I}=\text { true } \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \rightarrow z e r o, y \mapsto z e r o]}^{D, l}=\text { false } \\
& \text { - } \llbracket x+y=z \rrbracket_{\mathrm{a}[x \mapsto z e r o, y \mapsto o n e]}^{D, I}=\text { false } \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \mapsto z e r o, y \mapsto t w o]}^{D, I}=\underline{\text { true }} \\
& \text { - } \llbracket \exists y: x+y=z \rrbracket_{a[x \mapsto o n e]}^{D, I}=\text { true } \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \mapsto o n e, y \mapsto z e r o]}^{D, l}=\text { false } \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \rightarrow \text { one, } y \mapsto o n e]}^{D, I}=\underline{\text { true }} \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \mapsto o n e, y \mapsto t w o]}^{D, I}=\text { false } \\
& \text { • } \llbracket \exists y: x+y=z \rrbracket_{a[x \mapsto t w o]}^{D, I}=\text { true } \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \mapsto t w o, y \mapsto z e r o]}^{D, I}=\underline{\text { true }} \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \mapsto t w o, y \mapsto o n e]}^{D, l}=\text { false } \\
& \text { - } \llbracket x+y=z \rrbracket_{a[x \mapsto t w o, y \mapsto t w o]}^{D, I}=\text { false }
\end{aligned}
$$

The systematic investigation of respectively search for assignments.

Semantic Notions

Let F denote formulas, M structures, a assignments.

- F is satisfiable, if $\llbracket F \rrbracket_{a}^{M}=$ true for some M and a.

$$
p(0, x) \text { is satisfiable; } q(x) \wedge \neg q(x) \text { is not. }
$$

- M is a model of F (short: $M \models F)$, if $\llbracket F \rrbracket_{a}^{M}=$ true for all a.

$$
(\mathbb{N},[0 \mapsto \text { zero }, p \mapsto \text { less-equal }]) \models p(0, x)
$$

- F is valid (short: $\models F$), if $M \models F$ for all M.

$$
\vDash p(x) \wedge(p(x) \rightarrow q(x)) \rightarrow q(x)
$$

- F is satisfiable, if $\neg F$ is not valid.
- F is valid, if $\neg F$ is not satisfiable.
- F is a logical consequence of formula set Γ (short: $\Gamma \models F$), if for all M and a, the following is true:

$$
\begin{aligned}
& \text { If } \llbracket G \rrbracket_{a}^{M}=\text { true for every } G \text { in } \Gamma \text {, then also } \llbracket F \rrbracket_{a}^{M}=\text { true. } \\
& p(x), p(x) \rightarrow q(x) \models q(x)
\end{aligned}
$$

- F_{1} is a logical consequence of formula F_{2}, if $\left\{F_{2}\right\} \models F_{1}$.

Logical Equivalence

We are now going to address the first question stated in the beginning.

- Definition: two formulas F_{1} and F_{2} are logically equivalent (short: $\left.F_{1} \Leftrightarrow F_{2}\right)$, if $F_{1} \models F_{2}$ and $F_{2} \models F_{1}$.
- Lemma: if $F \Leftrightarrow F^{\prime}$ and $G \Leftrightarrow G^{\prime}$, then

$$
\begin{aligned}
\neg F & \Leftrightarrow \neg F^{\prime} \\
F \wedge G & \Leftrightarrow F^{\prime} \wedge G^{\prime} \\
F \vee G & \Leftrightarrow F^{\prime} \vee G^{\prime} \\
F \rightarrow G & \Leftrightarrow F^{\prime} \rightarrow G^{\prime} \\
F \leftrightarrow G & \Leftrightarrow F^{\prime} \leftrightarrow G^{\prime} \\
\forall x: F & \Leftrightarrow \forall x: F^{\prime} \\
\exists x: F & \Leftrightarrow \exists x: F^{\prime}
\end{aligned}
$$

Logically equivalent formulas can be substituted in any context without affecting the logical equivalence of the result (since $F \Leftrightarrow G$ iff $F \leftrightarrow G$ is valid, this justifies the proof rule $A-\leftrightarrow$).

Expressiveness of First-Order Logic

- Variables denote elements of the domain, thus no quantification is possible over functions and predicates of the domain.

This would require second-order predicate logic.

- Nevertheless we express in first-order logic statements such as $\forall A, B, f \in A \rightarrow B: f$ is bijective $\rightarrow \exists g \in B \rightarrow A: \forall x \in B: f(g(x))=x$
- This is possible because formulas are usually interpreted over the domain of sets, i.e., all variables denote sets:

$$
\begin{aligned}
A \rightarrow B:=\{S & \underset{C}{ }(\forall \times B \mid \\
& (\forall a \in A: \exists b \in B:(a, b) \in S) \wedge \\
& \left.\left(\forall a, a^{\prime}, b:(a, b) \in S \wedge\left(a^{\prime}, b\right) \in S \rightarrow a=a^{\prime}\right)\right\}
\end{aligned}
$$

- Terms like $f(g(x))$ involve a hidden binary function "apply"

$$
f(g(x)) \rightsquigarrow \operatorname{apply}(f, \operatorname{apply}(g, x))
$$

which denotes "function application":

$$
\operatorname{apply}(f, x):=\text { the } y:(x, y) \in f
$$

First-order predicate logic over the domain of sets is the "working horse" of mathematics; virtually all of mathematics is formulated in this framework.

Soundness and Completeness of First-Order Logic

Now we turn our attention to the second question.
Completeness Theorem (Kurt Gödel, 1929): First order predicate logic has a proof calculus for which the following holds:

- Soundness: if by the rules of the calculus a conclusion F can be derived from a set of assumptions $\Gamma(\Gamma \vdash F)$, then F is a logical consequence of $\Gamma(\Gamma \models F)$.
- Completeness: if F is a logical consequence of $\Gamma(\Gamma \models F)$, then by the rules of the calculus F can be derived from $\Gamma(\Gamma \vdash F)$.
No logic that is stronger (more expressive) than first order predicate logic has a proof calculus that also enjoys both soundness and completeness.

Undecidability of First-Order Logic

The existence of a complete proof calculus does not mean that the truth of every formula is algorithmically decidable.

- Undecidability (Church/Turing, 1936/1937): there does not exist any algorithm that for given formula set Γ and formula F always terminates and says whether $\Gamma \models F$ holds or not.
- Semidecidability: but there exists an algorithm, that for given Γ and F, if $\Gamma \models F$, detects this fact in a finite amount of time.

This algorithm searches for a proof of $\Gamma \vdash F$ in a complete proof calculus; if such a proof exists, it will eventually detect it; however, if no such proof exists, the search runs forever.

Automatic proof search is not able to detect that a formula is not true.

Limits of First-Order Logic

Not every structure can be completely described by a finite set of formulas.

- Incompleteness Theorem (Kurt Gödel, 1931): it is in no sound logic possible to prove all true arithmetic statements (i.e., all statements about natural numbers with addition and multiplication).
- To adequately characterize \mathbb{N}, the (infinite) axiom scheme of mathematical induction has to be added.
- Corollary: in every sound formal system that is sufficiently rich there are statements that can neither be proved nor disproved.
In practice, complete reasoners for first-order logic are often supported by (complete or incomplete) reasoners for special theories.

