
1

Practical Aspects of Dependency Schemes in QBF Solving

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria

http://fmv.jku.at

Alpine Verification Meeting (AVM)
October 18 - 19, 2010
Lugano, Switzerland

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving

http://fmv.jku.at


2

Overview

Questions to be Discussed:
What is QBF? Propositional logic with quantification.

How to solve a QBF? Our focus: backtracking search.

What makes it difficult?
Structural property of QBFs: dependent variables.

Theoretical solution? Identifying variable independence.

Practical solution?
Combining backtracking search with dependency schemes.

Observable effects? Experiments.

Conclusions and open problems.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



3

From SAT to QBF

Propositional Logic (SAT):
Our focus: formulae in conjunctive normal form (CNF).

Boolean variables V := {x1, . . . , xn}, literals l := v or l := v for v ∈ V .

Clauses Ci := (l1 ∨ . . . ∨ lki ), CNF φ :=
Vn

i:=1 Ci .

Quantified Boolean Formulae (QBF):
Prenex CNF: quantifier-free CNF over quantified Boolean variables.

PCNF F := Q1x1 . . .Qnxn. φ, where Qi ∈ {∃,∀} (i.e. no free variables).

Qixi ≤ Qi+1xi+1: variables are linearly ordered.

Prefix order limits freedom in QBF solving (to be continued!).

Example

A CNF: (x ∨ y) ∧ (x ∨ y), and a PCNF: ∀x∃y . (x ∨ y) ∧ (x ∨ y).

QBF Applications:
Compact encodings in verification e.g. bounded model checking (BMC).

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



4

Drawbacks of Prenex CNF

Solving QBF by Backtracking Search:
QDPLL: based on DPLL algorithm for SAT.
PCNF Q1x1 . . .Qnxn. φ: must branch on variables in prefix order.

∃a∀x ,y∃b. φ: branching on b possible by prefix order only if x , y assigned.

Respecting Prefix Order is Crucial:

Example

∀x∃y . (x = y) is satisfiable: value of y depends on value of x .

∃y∀x . (x = y) is unsatisfiable: value of y is fixed for all values of x .

∀x∃y . (x = y): branching on y before x was assigned is unsound!

Can Prefix Order be Relaxed to Increase Freedom?
Set of branching variables depends on prefix order.

Theoretically: can we go from linear to partial order on the variables?

Partial order R: (x , y) 6∈ R allows arbitrary assignment order of x , y .

Independence of Variables: different assignment orders preserve result.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



5

Dependency Representation

Dependency Schemes: D ⊆ (V∃ × V∀) ∪ (V∀ × V∃).

PCNF-based binary relations based on QBF semantics.
Conservative (i.e. sound) over-approximations of full independence.

(x , y) 6∈ D: y independent from x .
(x , y) ∈ D: conservatively regard y as depending on x .

Trivial (Dtriv), standard dependency scheme (Dstd), quantifier trees (Dtree).

Example

∃a,b∀x ,y∃c,d . (a ∨ x ∨ c) ∧ (a ∨ b) ∧ (b ∨ d) ∧ (y ∨ d).

∃a

∀x

∃c

∃b

∀y

∃d

∃a

∃d

∃b

∀y∀x

∃c

∃a ∃b

∀y∀x

∃c ∃d

Dtree DtrivDstd

Improvements Over Prefix: Dstd ⊆ Dtree ⊆ Dtriv (theoretically).

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



6

QDPLL

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_branch_var ();
assign_branch_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtracking Search with Constraint Learning:
Classical QDPLL based on quantifier prefix, i.e. Dtriv.

bcp: propagate implied (i.e. necessary) assignments.

select_branch_var: branching.

analyze_leaf: add learned constraint produced by Q-resolution.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



7

QDPLL with Dependency Schemes

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_branch_var ();
assign_branch_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))
p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Replacing Dtriv with Arbitrary Partial Order D ⊆ Dtriv:
Same basic framework: considering D as a parameter of QDPLL.

Only change: representation of D for dependency checking.

Expecting more implications, shorter learned constraints.

Expecting more freedom for selecting branching variables.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



8

D-Aware Unit Literal Detection

Given dependency scheme D for PCNF F . Write x ≺ y if (x , y) ∈ D.

Definition (Unit Clause Rule)

A clause C ∈ F is unit under a partial assignment iff

no literal l ∈ C is assigned true,

exactly one existential literal le ∈ L∃(C) is unassigned,

for all unassigned universal literals lu ∈ L∀(C): lu 6≺ le.

If C is unit then assigning le to true is necessary for F -satisfiability.

Example

∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Assign x , y : ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: (x ∨ a ∨ y ∨ z) not unit since a ≺ z.

Given D ⊆ Dtriv where a 6≺ z: (x ∨ a ∨ y ∨ z) unit.

Practical Effect: expecting more units when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



9

D-Aware Unit Literal Detection

Given dependency scheme D for PCNF F . Write x ≺ y if (x , y) ∈ D.

Definition (Unit Clause Rule)

A clause C ∈ F is unit under a partial assignment iff

no literal l ∈ C is assigned true,

exactly one existential literal le ∈ L∃(C) is unassigned,

for all unassigned universal literals lu ∈ L∀(C): lu 6≺ le.

If C is unit then assigning le to true is necessary for F -satisfiability.

Example

∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Assign x , y : ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: (x ∨ a ∨ y ∨ z) not unit since a ≺ z.

Given D ⊆ Dtriv where a 6≺ z: (x ∨ a ∨ y ∨ z) unit.

Practical Effect: expecting more units when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



10

D-Aware Unit Literal Detection

Given dependency scheme D for PCNF F . Write x ≺ y if (x , y) ∈ D.

Definition (Unit Clause Rule)

A clause C ∈ F is unit under a partial assignment iff

no literal l ∈ C is assigned true,

exactly one existential literal le ∈ L∃(C) is unassigned,

for all unassigned universal literals lu ∈ L∀(C): lu 6≺ le.

If C is unit then assigning le to true is necessary for F -satisfiability.

Example

∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Assign x , y : ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: (x ∨ a ∨ y ∨ z) not unit since a ≺ z.

Given D ⊆ Dtriv where a 6≺ z: (x ∨ a ∨ y ∨ z) unit.

Practical Effect: expecting more units when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



11

D-Aware Unit Literal Detection

Given dependency scheme D for PCNF F . Write x ≺ y if (x , y) ∈ D.

Definition (Unit Clause Rule)

A clause C ∈ F is unit under a partial assignment iff

no literal l ∈ C is assigned true,

exactly one existential literal le ∈ L∃(C) is unassigned,

for all unassigned universal literals lu ∈ L∀(C): lu 6≺ le.

If C is unit then assigning le to true is necessary for F -satisfiability.

Example

∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Assign x , y : ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: (x ∨ a ∨ y ∨ z) not unit since a ≺ z.

Given D ⊆ Dtriv where a 6≺ z: (x ∨ a ∨ y ∨ z) unit.

Practical Effect: expecting more units when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



12

D-Aware Constraint Reduction

Constraint Reduction (CR): universal reduction of clauses.

Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal lu ∈ L∀(C) can be deleted from a clause C ∈ F iff

there is no existential le ∈ L∃(C) with lu ≺ le.

The result of saturated universal reduction is denoted by CR(C).

Example

∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since a ≺ y .

Given D ⊆ Dtriv where a 6≺ y : a is reducible in (x ∨ a ∨ y), yielding (x ∨ y).

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



13

D-Aware Constraint Reduction

Constraint Reduction (CR): universal reduction of clauses.

Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal lu ∈ L∀(C) can be deleted from a clause C ∈ F iff

there is no existential le ∈ L∃(C) with lu ≺ le.

The result of saturated universal reduction is denoted by CR(C).

Example

∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since a ≺ y .

Given D ⊆ Dtriv where a 6≺ y : a is reducible in (x ∨ a ∨ y), yielding (x ∨ y).

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



14

D-Aware Constraint Reduction

Constraint Reduction (CR): universal reduction of clauses.

Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal lu ∈ L∀(C) can be deleted from a clause C ∈ F iff

there is no existential le ∈ L∃(C) with lu ≺ le.

The result of saturated universal reduction is denoted by CR(C).

Example

∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since a ≺ y .

Given D ⊆ Dtriv where a 6≺ y : a is reducible in (x ∨ a ∨ y), yielding (x ∨ y).

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



15

D-Aware Constraint Resolution

Constraint Resolution: Q-resolution for clauses.

Combining propositional resolution with constraint reduction (CR).

Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C′ := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If {x , x} ⊆ C′ for some variable x then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := CR(C′) of C1 and C2 on v : {C1,C2} `v C.

Example

∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y :
{C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effect: enabling “blocked” resolution steps when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



16

D-Aware Constraint Resolution

Constraint Resolution: Q-resolution for clauses.

Combining propositional resolution with constraint reduction (CR).

Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C′ := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If {x , x} ⊆ C′ for some variable x then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := CR(C′) of C1 and C2 on v : {C1,C2} `v C.

Example

∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y :
{C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effect: enabling “blocked” resolution steps when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



17

D-Aware Constraint Resolution

Constraint Resolution: Q-resolution for clauses.

Combining propositional resolution with constraint reduction (CR).

Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C′ := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If {x , x} ⊆ C′ for some variable x then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := CR(C′) of C1 and C2 on v : {C1,C2} `v C.

Example

∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y :
{C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effect: enabling “blocked” resolution steps when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



18

D-Aware Constraint Resolution

Constraint Resolution: Q-resolution for clauses.

Combining propositional resolution with constraint reduction (CR).

Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C′ := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If {x , x} ⊆ C′ for some variable x then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := CR(C′) of C1 and C2 on v : {C1,C2} `v C.

Example

∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y :
{C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effect: enabling “blocked” resolution steps when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



19

D-Aware Constraint Resolution

Constraint Resolution: Q-resolution for clauses.

Combining propositional resolution with constraint reduction (CR).

Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C′ := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If {x , x} ⊆ C′ for some variable x then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := CR(C′) of C1 and C2 on v : {C1,C2} `v C.

Example

∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y :
{C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effect: enabling “blocked” resolution steps when using D ⊆ Dtriv.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



20

Experimental Results

DepQBF: Implementing QDPLL with Dstd

Top-ranked solver in QBFEVAL’10.

Compact representation of Dstd as dependency-DAG.

Strategies from SAT solving: restarts, assignment caching,. . .

All Solved SAT Solved UNSAT
solved avg.time solved avg.time solved avg.time

QuBE7.0-pre⇒DepQBF 424 254.23 197 48.17 227 23.42
QuBE7.0 414 310.29 187 130.52 227 58.33

QBFEVAL’10 main track (568 formulae). DepQBF uses preprocessor integrated in QuBE7.0.

QBFEVAL’08 (solved only)

Dtriv ∩ Dtree Dtriv ∩ Dstd Dtree ∩ Dstd

solved 1172 1196 1206
time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%
backtracks 32431 27938 34323 31085 25106 26136

learnt constr. size 157 99 150 96 102 95

Observed effects of Dstd ⊆ Dtree ⊆ Dtriv in DepQBF. Comparing intersections of solved formulae.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



21

Conclusion

Drawbacks of Prenex CNF:
Linear quantifier order limits freedom of QBF decision procedures.

Dependency Schemes:
Expressing variable independence based on QBF semantics.

From linear to partial orders on variables: increased freedom.

Practical Effects:
Independence allows (implicit) deletion of literals from clauses.

Shorter Q-resolvents: more unit clauses.

(Skipped: similar effects for cube learning).

Combining QDPLL with Dstd in DepQBF: efficient despite of overhead.

Open Problems and Future Work:
Theoretical results related to QDPLL with D ⊆ Dtriv.

Applying more powerful dependency schemes than Dstd.

DepQBF 0.1 is open source: http://fmv.jku.at/depqbf/

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving

http://fmv.jku.at/depqbf/


22

U. Bubeck and H. Kleine Büning.
Bounded Universal Expansion for Preprocessing QBF.
In J. Marques-Silva and K. A. Sakallah, editors, SAT, volume 4501 of
LNCS, pages 244–257. Springer, 2007.

M. Benedetti.
Quantifier Trees for QBFs.
In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages
378–385. Springer, 2005.

A. Biere.
Resolve and Expand.
In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume
3542 of LNCS, pages 59–70. Springer, 2004.

H. Kleine Büning, M. Karpinski, and A. Flögel.
Resolution for Quantified Boolean Formulas.
Inf. Comput., 117(1):12–18, 1995.

M. Cadoli, A. Giovanardi, and M. Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAI, pages 262–267, 1998.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Learning for Quantified Boolean Logic Satisfiability.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



23

In AAAI/IAAI, pages 649–654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified
Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Quantifier Structure in Search-Based Procedures for QBFs.
TCAD, 26(3):497–507, 2007.

F. Lonsing and A. Biere.
Integrating Dependency Schemes in Search-Based QBF Solvers.
In Ofer Strichman and Stefan Szeider, editors, SAT, volume 6175 of
Lecture Notes in Computer Science, pages 158–171. Springer, 2010.

R. Letz.
Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas.
In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160–175. Springer, 2002.

M. Samer and S. Szeider.
Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning (JAR), 42(1):77–97, 2009.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



24

L. Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in
Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages
200–215. Springer, 2002.

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



25

[APPENDIX] QBF Semantics

Decision Problems: NP-complete for SAT vs. PSPACE-complete for QBF.

Example

SAT
φ(x1, x2, x3)

0 1 0 1 1 0 1 0

x3x3

x1

x2x2

x3 x3

Is there a satisfying assignment?

QBF
∃x1∀x2∃x3. φ(x1, x2, x3)

0 1 0 1 1 0 1 0

∀x2

∃x3 ∃x3

∀x2

∃x3 ∃x3

∃x1

Is there a satisfying assignment tree?

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving



26

[APPENDIX] Variable Independence

Semantical Definition:
Given ∀x ≤ ∃y : y independent from x if value change of x does not
force value change of y .

Example (∃x1∀x2∃x3. φ(x1, x2, x3))

0 0 0 01 1 1 1

∀x2

∃x3 ∃x3

∀x2

∃x3 ∃x3

∃x1

Value of ∃x3 independent from ∀x2.
0 0 0 01 1 1 1

∃x3

∀x2

∃x1

∀x2 ∀x2 ∀x2

∃x3

Can assign ∃x3 before ∀x2, although
∀x2 ≤ ∃x3 in prefix order.

Problem: how to detect independence efficiently? (PSPACE-complete!)

Florian Lonsing and Armin Biere Practical Aspects of Dependency Schemes in QBF Solving


