Practical Aspects of Dependency Schemes in QBF Solving

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at

Alpine Verification Meeting (AVM) October 18 - 19, 2010 Lugano, Switzerland

Questions to be Discussed:

- What is QBF? Propositional logic with quantification.
- How to solve a QBF? Our focus: backtracking search.
- What makes it difficult? Structural property of QBFs: dependent variables.
- Theoretical solution? Identifying variable independence.
- Practical solution? Combining backtracking search with dependency schemes.
- Observable effects? Experiments.
- Conclusions and open problems.

Propositional Logic (SAT):

- Our focus: formulae in conjunctive normal form (CNF).
- Boolean variables $V := \{x_1, \ldots, x_n\}$, literals I := v or $I := \overline{v}$ for $v \in V$.
- Clauses $C_i := (I_1 \vee \ldots \vee I_{k_i})$, CNF $\phi := \bigwedge_{i=1}^n C_i$.

Quantified Boolean Formulae (QBF):

- Prenex CNF: quantifier-free CNF over quantified Boolean variables.
- PCNF $F := Q_1 x_1 \dots Q_n x_n$. ϕ , where $Q_i \in \{\exists, \forall\}$ (i.e. no free variables).
- $Q_i x_i \leq Q_{i+1} x_{i+1}$: variables are linearly ordered.
- Prefix order limits freedom in QBF solving (to be continued!).

Example

A CNF: $(x \lor \overline{y}) \land (\overline{x} \lor y)$, and a PCNF: $\forall x \exists y. (x \lor \overline{y}) \land (\overline{x} \lor y)$.

QBF Applications:

• Compact encodings in verification e.g. bounded model checking (BMC).

Solving QBF by Backtracking Search:

- QDPLL: based on DPLL algorithm for SAT.
- PCNF $Q_1 x_1 \dots Q_n x_n$. ϕ : must branch on variables in prefix order.
 - $\exists a \forall x, y \exists b. \phi$: branching on *b* possible by prefix order only if *x*, *y* assigned.

Respecting Prefix Order is Crucial:

Example

- $\forall x \exists y. (x = y)$ is satisfiable: value of y depends on value of x.
- $\exists y \forall x. (x = y)$ is unsatisfiable: value of y is fixed for all values of x.
- $\forall x \exists y. (x = y)$: branching on y before x was assigned is unsound!

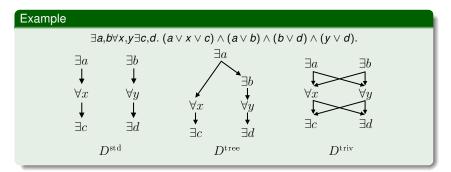
Can Prefix Order be Relaxed to Increase Freedom?

- Set of branching variables depends on prefix order.
- Theoretically: can we go from linear to partial order on the variables?
- Partial order R: $(x, y) \notin R$ allows arbitrary assignment order of x, y.

Independence of Variables: different assignment orders preserve result.

Dependency Schemes: $D \subseteq (V_{\exists} \times V_{\forall}) \cup (V_{\forall} \times V_{\exists}).$

- PCNF-based binary relations based on QBF semantics.
- Conservative (i.e. sound) over-approximations of full independence.
 - $(x, y) \notin D$: y independent from x.
 - $(x, y) \in D$: conservatively regard y as depending on x.
- Trivial (*D*^{triv}), standard dependency scheme (*D*^{std}), quantifier trees (*D*^{tree}).



Improvements Over Prefix: $D^{\text{std}} \subseteq D^{\text{tree}} \subseteq D^{\text{triv}}$ (theoretically).

```
State gdpll ()
while (true)
                                        DecLevel analyze leaf (State s)
  State s = bcp ();
                                          R = get initial reason (s);
  if (s == UNDEF)
                                         // s == UNSAT: 'R' is empty clause.
    // Make decision.
                                          // s == SAT: 'R' is sat. cube...
    v = select branch var ();
                                          // .. or new cube from assignment.
     assign branch var (v);
                                          while (!stop res (R))
   else
                                            p = qet pivot (R);
     // Conflict or solution.
                                           A = get antecedent (p);
     // s == UNSAT or s == SAT.
                                            R = constraint res (R, p, A);
     btlevel = analyze leaf (s);
                                          add to formula (R);
     if (btlevel == INVALID)
                                          assign forced lit (R);
       return s:
                                          return get asserting level (R);
     else
       backtrack (btlevel);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtracking Search with Constraint Learning:

- Classical QDPLL based on quantifier prefix, i.e. D^{triv}.
- bcp: propagate implied (i.e. necessary) assignments.
- select_branch_var: branching.
- analyze_leaf: add learned constraint produced by Q-resolution.

```
State gdpll ()
while (true)
                                      DecLevel analyze leaf (State s)
   State s = bcp ();
                                          R = get initial reason (s);
  if (s == UNDEF)
                                        // s == UNSAT: 'R' is empty clause.
    // Make decision.
                                         // s == SAT: 'R' is sat. cube...
    v = select branch var ():
                                          // ..or new cube from assignment.
    assign branch var (v);
                                          while (!stop_res (R))
   else
                                            p = qet pivot (R);
    // Conflict or solution.
                                           A = get antecedent (p);
    // s == UNSAT or s == SAT.
                                            R = constraint_res (R, p, A);
    btlevel = analyze leaf (s);
                                          add to formula (R);
    if (btlevel == INVALID)
                                          assign forced lit (R);
      return s:
                                          return get asserting level (R):
    else
      backtrack (btlevel);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Replacing D^{triv} with Arbitrary Partial Order $D \subseteq D^{\text{triv}}$:

- Same basic framework: considering D as a parameter of QDPLL.
- Only change: representation of *D* for dependency checking.
- Expecting more implications, shorter learned constraints.
- Expecting more freedom for selecting branching variables.

Definition (Unit Clause Rule)

A clause $C \in F$ is *unit* under a partial assignment iff

- no literal $I \in C$ is assigned true,
- exactly one existential literal $I_e \in L_{\exists}(C)$ is unassigned,
- for all unassigned universal literals $I_u \in L_{\forall}(C)$: $I_u \not\prec I_e$.

If C is unit then assigning *l_e* to true is necessary for *F*-satisfiability.

Example

$\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$

Assign $\overline{x}, \overline{y}$: $\exists x \forall a \exists y, z. \phi' \land (x \lor a \lor y \lor z)$. Given D^{triv} from prefix: $(x \lor a \lor y \lor z)$ not unit since a

Given $D \subseteq D^{mv}$ where $a \not\prec z$: ($X \lor a \lor y \lor z$) unit.

Definition (Unit Clause Rule)

A clause $C \in F$ is *unit* under a partial assignment iff

- no literal $I \in C$ is assigned true,
- exactly one existential literal $I_e \in L_{\exists}(C)$ is unassigned,
- for all unassigned universal literals $I_u \in L_{\forall}(C)$: $I_u \not\prec I_e$.

If C is unit then assigning *l_e* to true is necessary for *F*-satisfiability.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$ Assign $\overline{x}, \overline{y}$: $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$ Given D^{triv} from prefix: $(x \lor a \lor y \lor z)$ not unit since $a \prec z$. Given $D \subseteq D^{\text{triv}}$ where $a \not\prec z$: $(x \lor a \lor y \lor z)$ unit.

Definition (Unit Clause Rule)

A clause $C \in F$ is *unit* under a partial assignment iff

- no literal $I \in C$ is assigned true,
- exactly one existential literal $I_e \in L_{\exists}(C)$ is unassigned,
- for all unassigned universal literals $I_u \in L_{\forall}(C)$: $I_u \not\prec I_e$.

If C is unit then assigning *l_e* to true is necessary for *F*-satisfiability.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$ Assign $\overline{x}, \overline{y}$: $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$ Given D^{triv} from prefix: $(x \lor a \lor y \lor z)$ not unit since $a \prec z$. Given $D \subseteq D^{\text{triv}}$ where $a \not\prec z$: $(x \lor a \lor y \lor z)$ unit.

Definition (Unit Clause Rule)

A clause $C \in F$ is *unit* under a partial assignment iff

- no literal $I \in C$ is assigned true,
- exactly one existential literal $I_e \in L_{\exists}(C)$ is unassigned,
- for all unassigned universal literals $I_u \in L_{\forall}(C)$: $I_u \not\prec I_e$.

If C is unit then assigning *l_e* to true is necessary for *F*-satisfiability.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$ Assign $\overline{x}, \overline{y}$: $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z).$ Given D^{triv} from prefix: $(x \lor a \lor y \lor z)$ not unit since $a \prec z$. Given $D \subseteq D^{\text{triv}}$ where $a \not\prec z$: $(x \lor a \lor y \lor z)$ unit.

Constraint Reduction (CR): universal reduction of clauses.

• Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal $I_u \in L_{\forall}(C)$ can be deleted from a clause $C \in F$ iff

• there is no existential $I_e \in L_{\exists}(C)$ with $I_u \prec I_e$.

The result of saturated universal reduction is denoted by CR(C).

Example

 $\exists x \forall a \exists y. \phi' \land (x \lor a \lor y).$

Given D^{triv} from prefix: *a* is irreducible in $(x \lor a \lor y)$ since $a \prec y$.

Given $D \subseteq D^{triv}$ where $a \not\prec y$: *a* is reducible in $(x \lor a \lor y)$, yielding $(x \lor y)$.

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using $D \subseteq D^{triv}$.

Constraint Reduction (CR): universal reduction of clauses.

• Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal $I_u \in L_{\forall}(C)$ can be deleted from a clause $C \in F$ iff

• there is no existential $I_e \in L_{\exists}(C)$ with $I_u \prec I_e$.

The result of saturated universal reduction is denoted by CR(C).

Example

 $\exists x \forall a \exists y. \phi' \land (x \lor a \lor y).$

Given D^{triv} from prefix: *a* is irreducible in $(x \lor a \lor y)$ since $a \prec y$.

Given $D \subseteq D^{triv}$ where $a \not\prec y$: *a* is reducible in $(x \lor a \lor y)$, yielding $(x \lor y)$.

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using $D \subseteq D^{triv}$.

Constraint Reduction (CR): universal reduction of clauses.

• Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal $I_u \in L_{\forall}(C)$ can be deleted from a clause $C \in F$ iff

• there is no existential $I_e \in L_{\exists}(C)$ with $I_u \prec I_e$.

The result of saturated universal reduction is denoted by CR(C).

Example

 $\exists x \forall a \exists y. \phi' \land (x \lor a \lor y).$ Given D^{triv} from prefix: *a* is irreducible in $(x \lor a \lor y)$ since $a \prec y$. Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y$: *a* is reducible in $(x \lor a \lor y)$, yielding $(x \lor y)$.

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using $D \subseteq D^{triv}$.

Constraint Resolution: Q-resolution for clauses.

- Combining propositional resolution with constraint reduction (CR).
- Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C_1, C_2 be clauses with $v \in L_{\exists}(C_1), \overline{v} \in L_{\exists}(C_2)$.

- 2 If $\{x, \overline{x}\} \subseteq C'$ for some variable x then no Q-resolvent exists.
- **③** Otherwise, Q-resolvent C := CR(C') of C_1 and C_2 on $v: \{C_1, C_2\} \vdash_{v} C$.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z) \land (x \lor a \lor y \lor \overline{z}) \land (x \lor \overline{a} \lor \overline{y} \lor \overline{z}).$ Given D^{triv} from prefix: $\{C_1, C_2\} \vdash_z (x \lor a \lor y)$, but $\{(x \lor a \lor y), C_3\} \nvDash_y.$ Given $D \subseteq D^{triv}$ where $a \not\prec y$: $\{C_1, C_2\} \vdash_z (x \lor y)$, and $\{(x \lor y), C_3\} \vdash_y (x \lor \overline{a} \lor z).$

Constraint Resolution: Q-resolution for clauses.

- Combining propositional resolution with constraint reduction (CR).
- Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C_1, C_2 be clauses with $v \in L_{\exists}(C_1), \overline{v} \in L_{\exists}(C_2)$.

- $C' := (CR(C_1) \cup CR(C_2)) \setminus \{v, \overline{v}\}.$
- 2 If $\{x, \overline{x}\} \subseteq C'$ for some variable x then no Q-resolvent exists.
- **③** Otherwise, Q-resolvent C := CR(C') of C_1 and C_2 on $v: \{C_1, C_2\} \vdash_{v} C$.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z) \land (x \lor a \lor y \lor \overline{z}) \land (x \lor \overline{a} \lor \overline{y} \lor z).$ Given D^{triv} from prefix: $\{C_1, C_2\} \vdash_z (x \lor a \lor y)$, but $\{(x \lor a \lor y), C_3\} \not\vdash_y.$ Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y$: $\{C_1, C_2\} \vdash_z (x \lor y)$, and $\{(x \lor y), C_3\} \vdash_y (x \lor \overline{a} \lor z).$

Constraint Resolution: Q-resolution for clauses.

- Combining propositional resolution with constraint reduction (CR).
- Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C_1, C_2 be clauses with $v \in L_{\exists}(C_1), \overline{v} \in L_{\exists}(C_2)$.

- 2 If $\{x, \overline{x}\} \subseteq C'$ for some variable x then no Q-resolvent exists.
- **③** Otherwise, Q-resolvent C := CR(C') of C_1 and C_2 on $v: \{C_1, C_2\} \vdash_{v} C$.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z) \land (x \lor a \lor y \lor \overline{z}) \land (x \lor \overline{a} \lor \overline{y} \lor z).$ Given D^{triv} from prefix: $\{C_1, C_2\} \vdash_z (x \lor a \lor y)$, but $\{(x \lor a \lor y), C_3\} \not\vdash_y.$ Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y:$ $\{C_1, C_2\} \vdash_z (x \lor y), \text{ and } \{(x \lor y), C_3\} \vdash_y (x \lor \overline{a} \lor z).$

Constraint Resolution: Q-resolution for clauses.

- Combining propositional resolution with constraint reduction (CR).
- Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C_1, C_2 be clauses with $v \in L_{\exists}(C_1), \overline{v} \in L_{\exists}(C_2)$.

- 2 If $\{x, \overline{x}\} \subseteq C'$ for some variable x then no Q-resolvent exists.
- **③** Otherwise, Q-resolvent C := CR(C') of C_1 and C_2 on $v: \{C_1, C_2\} \vdash_{v} C$.

Example

 $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z) \land (x \lor a \lor y \lor \overline{z}) \land (x \lor \overline{a} \lor \overline{y} \lor z).$ Given D^{triv} from prefix: $\{C_1, C_2\} \vdash_z (x \lor a \lor y)$, but $\{(x \lor a \lor y), C_3\} \nvDash_y$. Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y$: $\{C_1, C_2\} \vdash_z (x \lor y)$, and $\{(x \lor y), C_3\} \vdash_y (x \lor \overline{a} \lor z)$.

Constraint Resolution: Q-resolution for clauses.

- Combining propositional resolution with constraint reduction (CR).
- Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C_1, C_2 be clauses with $v \in L_{\exists}(C_1), \overline{v} \in L_{\exists}(C_2)$.

- 2 If $\{x, \overline{x}\} \subseteq C'$ for some variable x then no Q-resolvent exists.
- **③** Otherwise, Q-resolvent C := CR(C') of C_1 and C_2 on $v: \{C_1, C_2\} \vdash_{v} C$.

Example

$$\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z) \land (x \lor a \lor y \lor \overline{z}) \land (x \lor \overline{a} \lor \overline{y} \lor \overline{z}).$$

Given D^{triv} from prefix: $\{C_1, C_2\} \vdash_z (x \lor a \lor y)$, but $\{(x \lor a \lor y), C_3\} \nvDash_y$.
Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y$:
 $\{C_1, C_2\} \vdash_z (x \lor y)$, and $\{(x \lor y), C_3\} \vdash_y (x \lor \overline{a} \lor z)$.

DepQBF: Implementing QDPLL with D^{std}

- Top-ranked solver in QBFEVAL'10.
- Compact representation of *D*^{std} as dependency-DAG.
- Strategies from SAT solving: restarts, assignment caching,...

	All		Solved SAT		Solved UNSAT	
	solved	avg.time	solved	avg.time	solved	avg.time
QuBE7.0-pre⇒DepQBF	424	254.23	197	48.17	227	23.42
QuBE7.0	414	310.29	187	130.52	227	58.33

QBFEVAL'10 main track (568 formulae). DepQBF uses preprocessor integrated in QuBE7.0.

QBFEVAL'08 (solved only)										
	$D^{ ext{triv}} \cap D^{ ext{tree}}$		$D^{triv} \cap D^{std}$		$D^{ ext{tree}} \cap D^{ ext{std}}$					
solved	1172		1196		1206					
time	23.15	26.68	23.73	25.93	25.63	22.37				
implied/assigned	90.4%	90.7%	88.6%	90.5%	90.9%	92.1%				
backtracks	32431	27938	34323	31085	25106	26136				
learnt constr. size	157	99	150	96	102	95				

Observed effects of $D^{\text{std}} \subseteq D^{\text{tree}} \subseteq D^{\text{triv}}$ in DepQBF. Comparing intersections of solved formulae.

Drawbacks of Prenex CNF:

• Linear quantifier order limits freedom of QBF decision procedures.

Dependency Schemes:

- Expressing variable independence based on QBF semantics.
- From linear to partial orders on variables: increased freedom.

Practical Effects:

- Independence allows (implicit) deletion of literals from clauses.
- Shorter Q-resolvents: more unit clauses.
- (Skipped: similar effects for cube learning).
- Combining QDPLL with D^{std} in DepQBF: efficient despite of overhead.

Open Problems and Future Work:

- Theoretical results related to QDPLL with $D \subseteq D^{triv}$.
- Applying more powerful dependency schemes than D^{std}.

DepQBF 0.1 is open source: http://fmv.jku.at/depqbf/

U. Bubeck and H. Kleine Büning.

Bounded Universal Expansion for Preprocessing QBF.

In J. Margues-Silva and K. A. Sakallah, editors, SAT, volume 4501 of LNCS, pages 244–257. Springer, 2007.

M. Benedetti.

Quantifier Trees for OBEs

In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages 378-385. Springer, 2005.

A. Biere.

Resolve and Expand.

In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume 3542 of LNCS, pages 59-70. Springer, 2004.

- H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 117(1):12-18, 1995.

M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In AAAI/IAAI, pages 262-267, 1998.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean Logic Satisfiability. In AAAI/IAAI, pages 649-654, 2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella.

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas.

J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

- E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier Structure in Search-Based Procedures for QBFs. *TCAD*, 26(3):497–507, 2007.
- F. Lonsing and A. Biere.

Integrating Dependency Schemes in Search-Based QBF Solvers. In Ofer Strichman and Stefan Szeider, editors, *SAT*, volume 6175 of *Lecture Notes in Computer Science*, pages 158–171. Springer, 2010.

R. Letz.

Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas.

In U. Egly and C. G. Fermüller, editors, *TABLEAUX*, volume 2381 of *LNCS*, pages 160–175. Springer, 2002.

M. Samer and S. Szeider.

Backdoor Sets of Quantified Boolean Formulas.

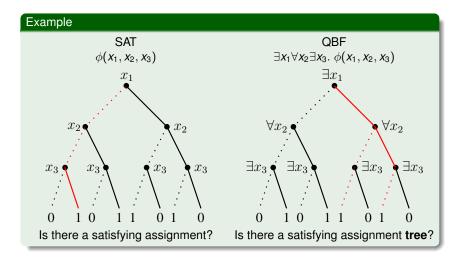
Journal of Automated Reasoning (JAR), 42(1):77-97, 2009.

L. Zhang and S. Malik.

Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation.

In P. Van Hentenryck, editor, *CP*, volume 2470 of *LNCS*, pages 200–215. Springer, 2002.

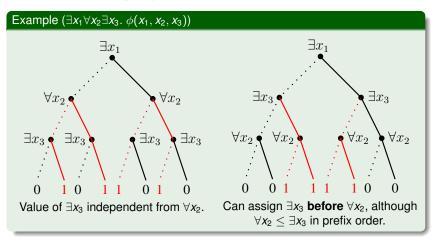
Decision Problems: NP-complete for SAT vs. PSPACE-complete for QBF.



[APPENDIX] Variable Independence

Semantical Definition:

 Given ∀x ≤ ∃y: y independent from x if value change of x does not force value change of y.



Problem: how to detect independence efficiently? (PSPACE-complete!)