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Overview

Questions to be Discussed:
What is QBF? Propositional logic with quantification.

How to solve a QBF? Our focus: backtracking search.

What makes it difficult?
Structural property of QBFs: dependent variables.

Theoretical solution? Identifying variable independence.

Practical solution?
Combining backtracking search with dependency schemes.

Observable effects? Experiments.

Conclusions and open problems.
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From SAT to QBF

Propositional Logic (SAT):
Our focus: formulae in conjunctive normal form (CNF).

Boolean variables V := {x1, . . . , xn}, literals l := v or l := v for v ∈ V .

Clauses Ci := (l1 ∨ . . . ∨ lki ), CNF φ :=
Vn

i:=1 Ci .

Quantified Boolean Formulae (QBF):
Prenex CNF: quantifier-free CNF over quantified Boolean variables.

PCNF F := Q1x1 . . .Qnxn. φ, where Qi ∈ {∃,∀} (i.e. no free variables).

Qixi ≤ Qi+1xi+1: variables are linearly ordered.

Prefix order limits freedom in QBF solving (to be continued!).

Example

A CNF: (x ∨ y) ∧ (x ∨ y), and a PCNF: ∀x∃y . (x ∨ y) ∧ (x ∨ y).

QBF Applications:
Compact encodings in verification e.g. bounded model checking (BMC).
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Drawbacks of Prenex CNF

Solving QBF by Backtracking Search:
QDPLL: based on DPLL algorithm for SAT.
PCNF Q1x1 . . .Qnxn. φ: must branch on variables in prefix order.

∃a∀x ,y∃b. φ: branching on b possible by prefix order only if x , y assigned.

Respecting Prefix Order is Crucial:

Example

∀x∃y . (x = y) is satisfiable: value of y depends on value of x .

∃y∀x . (x = y) is unsatisfiable: value of y is fixed for all values of x .

∀x∃y . (x = y): branching on y before x was assigned is unsound!

Can Prefix Order be Relaxed to Increase Freedom?
Set of branching variables depends on prefix order.

Theoretically: can we go from linear to partial order on the variables?

Partial order R: (x , y) 6∈ R allows arbitrary assignment order of x , y .

Independence of Variables: different assignment orders preserve result.
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Dependency Representation

Dependency Schemes: D ⊆ (V∃ × V∀) ∪ (V∀ × V∃).

PCNF-based binary relations based on QBF semantics.
Conservative (i.e. sound) over-approximations of full independence.

(x , y) 6∈ D: y independent from x .
(x , y) ∈ D: conservatively regard y as depending on x .

Trivial (Dtriv), standard dependency scheme (Dstd), quantifier trees (Dtree).

Example

∃a,b∀x ,y∃c,d . (a ∨ x ∨ c) ∧ (a ∨ b) ∧ (b ∨ d) ∧ (y ∨ d).

∃a

∀x

∃c

∃b

∀y

∃d

∃a

∃d

∃b

∀y∀x

∃c

∃a ∃b

∀y∀x

∃c ∃d

Dtree DtrivDstd

Improvements Over Prefix: Dstd ⊆ Dtree ⊆ Dtriv (theoretically).
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QDPLL

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_branch_var ();
assign_branch_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))

p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtracking Search with Constraint Learning:
Classical QDPLL based on quantifier prefix, i.e. Dtriv.

bcp: propagate implied (i.e. necessary) assignments.

select_branch_var: branching.

analyze_leaf: add learned constraint produced by Q-resolution.
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QDPLL with Dependency Schemes

State qdpll ()
while (true)

State s = bcp ();
if (s == UNDEF)

// Make decision.
v = select_branch_var ();
assign_branch_var (v);

else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)

return s;
else

backtrack (btlevel);

DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: ’R’ is empty clause.
// s == SAT: ’R’ is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))
p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);

add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Replacing Dtriv with Arbitrary Partial Order D ⊆ Dtriv:
Same basic framework: considering D as a parameter of QDPLL.

Only change: representation of D for dependency checking.

Expecting more implications, shorter learned constraints.

Expecting more freedom for selecting branching variables.
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D-Aware Unit Literal Detection

Given dependency scheme D for PCNF F . Write x ≺ y if (x , y) ∈ D.

Definition (Unit Clause Rule)

A clause C ∈ F is unit under a partial assignment iff

no literal l ∈ C is assigned true,

exactly one existential literal le ∈ L∃(C) is unassigned,

for all unassigned universal literals lu ∈ L∀(C): lu 6≺ le.

If C is unit then assigning le to true is necessary for F -satisfiability.

Example

∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Assign x , y : ∃x∀a∃y ,z. φ′ ∧ (x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: (x ∨ a ∨ y ∨ z) not unit since a ≺ z.

Given D ⊆ Dtriv where a 6≺ z: (x ∨ a ∨ y ∨ z) unit.

Practical Effect: expecting more units when using D ⊆ Dtriv.
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D-Aware Constraint Reduction

Constraint Reduction (CR): universal reduction of clauses.

Delete literals of universally quantified variables from clauses.

Definition (Universal Reduction of Clauses)

A universal literal lu ∈ L∀(C) can be deleted from a clause C ∈ F iff

there is no existential le ∈ L∃(C) with lu ≺ le.

The result of saturated universal reduction is denoted by CR(C).

Example

∃x∀a∃y . φ′ ∧ (x ∨ a ∨ y).

Given Dtriv from prefix: a is irreducible in (x ∨ a ∨ y) since a ≺ y .

Given D ⊆ Dtriv where a 6≺ y : a is reducible in (x ∨ a ∨ y), yielding (x ∨ y).

CR and Unit Literals: unit literal rule applies CR implicitly.

Practical Effect: expecting shorter learnt constraints when using D ⊆ Dtriv.
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D-Aware Constraint Resolution

Constraint Resolution: Q-resolution for clauses.

Combining propositional resolution with constraint reduction (CR).

Learning: heuristically add Q-resolvents to cut off parts of search space.

Definition (Q-resolution for Clauses)

Let C1,C2 be clauses with v ∈ L∃(C1), v ∈ L∃(C2).
1 C′ := (CR(C1) ∪ CR(C2)) \ {v , v}.
2 If {x , x} ⊆ C′ for some variable x then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := CR(C′) of C1 and C2 on v : {C1,C2} `v C.

Example

∃x∀a∃y ,z. φ′∧
C1

(x ∨ a ∨ y ∨ z) ∧
C2

(x ∨ a ∨ y ∨ z) ∧
C3

(x ∨ a ∨ y ∨ z).

Given Dtriv from prefix: {C1,C2} `z (x ∨ a ∨ y), but {(x ∨ a ∨ y),C3} 6`y .

Given D ⊆ Dtriv where a 6≺ y :
{C1,C2} `z (x ∨ y), and {(x ∨ y),C3} `y (x ∨ a ∨ z).

Practical Effect: enabling “blocked” resolution steps when using D ⊆ Dtriv.
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Experimental Results

DepQBF: Implementing QDPLL with Dstd

Top-ranked solver in QBFEVAL’10.

Compact representation of Dstd as dependency-DAG.

Strategies from SAT solving: restarts, assignment caching,. . .

All Solved SAT Solved UNSAT
solved avg.time solved avg.time solved avg.time

QuBE7.0-pre⇒DepQBF 424 254.23 197 48.17 227 23.42
QuBE7.0 414 310.29 187 130.52 227 58.33

QBFEVAL’10 main track (568 formulae). DepQBF uses preprocessor integrated in QuBE7.0.

QBFEVAL’08 (solved only)

Dtriv ∩ Dtree Dtriv ∩ Dstd Dtree ∩ Dstd

solved 1172 1196 1206
time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%
backtracks 32431 27938 34323 31085 25106 26136

learnt constr. size 157 99 150 96 102 95

Observed effects of Dstd ⊆ Dtree ⊆ Dtriv in DepQBF. Comparing intersections of solved formulae.
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Conclusion

Drawbacks of Prenex CNF:
Linear quantifier order limits freedom of QBF decision procedures.

Dependency Schemes:
Expressing variable independence based on QBF semantics.

From linear to partial orders on variables: increased freedom.

Practical Effects:
Independence allows (implicit) deletion of literals from clauses.

Shorter Q-resolvents: more unit clauses.

(Skipped: similar effects for cube learning).

Combining QDPLL with Dstd in DepQBF: efficient despite of overhead.

Open Problems and Future Work:
Theoretical results related to QDPLL with D ⊆ Dtriv.

Applying more powerful dependency schemes than Dstd.

DepQBF 0.1 is open source: http://fmv.jku.at/depqbf/
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[APPENDIX] QBF Semantics

Decision Problems: NP-complete for SAT vs. PSPACE-complete for QBF.

Example

SAT
φ(x1, x2, x3)

0 1 0 1 1 0 1 0

x3x3

x1

x2x2

x3 x3

Is there a satisfying assignment?

QBF
∃x1∀x2∃x3. φ(x1, x2, x3)

0 1 0 1 1 0 1 0

∀x2

∃x3 ∃x3

∀x2

∃x3 ∃x3

∃x1

Is there a satisfying assignment tree?
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[APPENDIX] Variable Independence

Semantical Definition:
Given ∀x ≤ ∃y : y independent from x if value change of x does not
force value change of y .

Example (∃x1∀x2∃x3. φ(x1, x2, x3))

0 0 0 01 1 1 1

∀x2

∃x3 ∃x3

∀x2

∃x3 ∃x3

∃x1

Value of ∃x3 independent from ∀x2.
0 0 0 01 1 1 1

∃x3

∀x2

∃x1

∀x2 ∀x2 ∀x2

∃x3

Can assign ∃x3 before ∀x2, although
∀x2 ≤ ∃x3 in prefix order.

Problem: how to detect independence efficiently? (PSPACE-complete!)
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