
Efficiently Representing Existential Dependency Sets
for Expansion-based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria

florian.lonsing@jku.at
http://fmv.jku.at

MEMICS’08
November 14 - 16, 2008
Znojmo, Czech Republic

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

florian.lonsing@jku.at
http://fmv.jku.at

Overview

Quantified Boolean Formulae (QBF)
propositional formula, ∀/∃ quantification

PSPACE-completeness: natural modelling language

Variable Dependencies in QBF
two types: ∀∃ and ∃∀
influence on decision procedures for QBF

our focus: expansion-based solvers, case ∀∃

Results
given: syntactic dependency relation D for case ∀∃
average-case compact representation for directed variant of D

equivalence relation on ∃-variables
efficient retrieval of ∃-dependencies for ∀-variables

experimental results: benchmarks from QBF competitions 2005 - 2008

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Preliminaries

Quantified Boolean Formulae (QBF): S1 . . .Sn φ

prenex conjunctive normal form (PCNF), e.g. ∀x1∃x2x3 φ

propositional formula φ in CNF over variables V = V∀ ∪ V∃
quantifier prefix S1 . . .Sn

scopes Si , q(Si) ∈ {∀, ∃}: quantified variables
linear orderings: δ(S1) = 1 < . . . < δ(Sn) = n, δ(x) = δ(Si) if x ∈ Si

Variable Dependencies in QBF
δ(S1) < . . . < δ(Sn): often pessimistic
dependency computation in practice: optimality vs. efficiency

polynomial time: syntactic analysis of formula

Example

∀x∃y (¬x ∨ y) ∧ (x ∨ ¬y) is satisfiable

Value of y depends on x : x = > → y = >, x = ⊥ → y = ⊥

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Motivation

Universal Expansion: ∀x φ ≡ φ[x/0] ∧ φ[x/1]

existential dependencies for x ∈ V∀ : D(x) ⊆ {y ∈ V∃ | δ(x) < δ(y)}

Computing D(x) via Syntactic Connection Relation
y , z ∈ V : y locally connected to z if y , z ∈ C for clause C ∈ φ
inf.: y ∈ D(x) if x transitively connected to y via common clauses

recursive computation: O(|φ|) for one x ∈ V∀

Goal: Avoiding Recomputation of Connection Relation
building a global connection relation wrt. common clauses

idea: extract once from φ, exploiting shared parts for all x ∈ V∀
compact representation and retrieval of D(x), |D(x)|

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Towards a Directed Dependency Relation (1/3)

Definition (local dependence/connection)

For x , y ∈ V : x →i y ⇐⇒ q(y) = ∃ and x , y ∈ C,C ∈ φ and δ(y) ≥ i .
Connecting sets of variables and clauses by refl. and trans. closure→∗i .

“connection”: write x ∼i y if q(x) = q(y) = ∃ and x →∗i y .

Example

A E A E A E

2 4 61 3 5

a1

e2

e3 a5

a4
e6

e7

a8

e9

e10
trans. edges not shown

a1→1 e6, e6→1 e9

e9→1 e6

a1→∗1 e7 by e6, e9, e3

(Application) For x ∈ V∀, i = δ(x) : D(x) = {y ∈ V∃ | x →∗i y}.

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Towards a Directed Dependency Relation (2/3)

Definition (equivalence relation)

For x , y ∈ V : x ≈ y ⇐⇒ x = y and q(x) = ∀ or
δ(x) = δ(y) = i, q(x) = q(y) = ∃ and x ∼i y . [x] denotes the class of x .

Theorem (compatibility of→∗i with ≈)

For x , y ∈ V: x →∗i y ⇐⇒ ∀x ′ ∈ [x], y ′ ∈ [y] : x ′ →∗i y ′.

Example (continued)

A E A E A E

2 4 61 3 5

a1

e2

e3 a5

a4
e6

e7

a8

e9

e10 partition of scopes

e2 ≈ e3

e3 6≈ e9

e6 6≈ e7 since e6 6∼4 e7

(Application) For x ∈ V∀, i = δ(x) : D(x) = {y ∈ V∃ | [x]→∗i [y]}.

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Towards a Directed Dependency Relation (3/3)

Definition (directed dependence/connection)

For x , y ∈ V : [x] ∗ [y]⇐⇒ δ(x) ≤ δ(y) and x →∗i y for i = δ(x).

(Application) For x ∈ V∀, i = δ(x) : D(x) = {y ∈ V∃ | [x] ∗ [y]}.

Theorem (computing dependency sets)

For x ∈ V∀, i = δ(x):
D(x) = {y ∈ V∃ | x →∗i y} = {y ∈ V∃ | [x]→∗i [y]} = {y ∈ V∃ | [x] ∗ [y]}.

Example (continued)

A E A E A E

2 4 61 3 5

a1

e2

e3 a5

a4
e6

e7

a8

e9

e10 ∗ defined on classes

e2 ∗ e9, but e9 6 ∗ e2
dashed: transitive edges

solid: transitive reduction

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

An Efficient Tree Representation for ∗

Lemma

For ∗ on V∃, the transitive reduction can be represented as forest.

Connection Forest of a QBF
representation of global, shared connection relation for V∃
for y , z ∈ V∃: edge ([y], [z])⇐⇒ [y] [z]

for y , z ∈ V∃: path from [y] to [z]⇐⇒ [y] ∗ [z]

Augmented Connection Forest
additionally: set of “entry points” H(x) for all x ∈ V∀
H(x) derived from clauses containing literals of x

a1

e3

a2

e5e4

a6

e8 e10 e9

a7

a11

e13 e14e12

Computing D(x) by Connection Forest
1 collect descendant classes: H∗(x) := {[y] | [z] ∗ [y], [z] ∈ H(x)}
2 collect members of descendants: D(x) = {z | z ∈ [y], [y] ∈ H∗(x)}

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Experimental Results

QBFEVAL’05 QBFEVAL’06 QBFEVAL’07 QBFEVAL’08
size 211 216 1136 3328

max. |H∗(x)| 797 5 797 1872
avg. |H∗(x)| 19.51 1.21 39.07 8.24
max. |D(x)| 256535 9993 2177280 2177280
avg. |D(x)| 82055.87 4794.60 33447.6 19807
avg. |H

∗(x)|
|D(x)| 3.44 % 0.04 % 6.42 % 1.21 %
≈∃ 3.08 % 3.95 % 2.20 % 7.37 %

structured QBF formulae from QBF competitions 2005 - 2008

comparing forest representation with |D(x)|
number of successors |H∗(x)| much smaller than |D(x)|
line ≈∃: number of ∃-classes per ∃-variable in whole formula set

compression by ≈: few, but large classes for Si , q(Si) = ∃

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

Conclusion

Variable Dependencies in QBF
influence solver performance

common approach: syntactic connection relation (connecting clauses)

focus: expansion-based solvers, ∀∃ dependencies

Augmented Connection Forests
directed version of connection relation, equivalence relation on V∃
average-case compact representation

sharing connection information between all x ∈ V∀
computation of D(x), |D(x)| for all x ∈ V∀

Future Work
dynamic vs. static version

extension to ∃∀ dependencies

combination with search-based solvers

Florian Lonsing and Armin Biere Efficiently Representing Existential Dependency Sets

