Efficiently Representing Existential Dependency Sets for Expansion-based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria florian.lonsing@jku.at http://fmv.jku.at

> MEMICS'08 November 14 - 16, 2008 Znojmo, Czech Republic

Overview

Quantified Boolean Formulae (QBF)

- propositional formula, \forall/\exists quantification
- PSPACE-completeness: natural modelling language

Variable Dependencies in QBF

- two types: $\forall \exists$ and $\exists \forall$
- influence on decision procedures for QBF
- our focus: expansion-based solvers, case $\forall \exists$

Results

- given: syntactic dependency relation D for case $\forall \exists$
- average-case compact representation for directed variant of D
 - equivalence relation on ∃-variables
 - efficient retrieval of ∃-dependencies for ∀-variables
- experimental results: benchmarks from QBF competitions 2005 2008

Quantified Boolean Formulae (QBF): $S_1 \dots S_n \phi$

- prenex conjunctive normal form (PCNF), e.g. $\forall x_1 \exists x_2 x_3 \phi$
- propositional formula ϕ in CNF over variables $V = V_{\forall} \cup V_{\exists}$
- quantifier prefix $S_1 \dots S_n$
 - scopes S_i , $q(S_i) \in \{\forall, \exists\}$: quantified variables
 - linear orderings: $\delta(S_1) = 1 < \ldots < \delta(S_n) = n$, $\delta(x) = \delta(S_i)$ if $x \in S_i$

Variable Dependencies in QBF

- $\delta(S_1) < \ldots < \delta(S_n)$: often pessimistic
- dependency computation in practice: optimality vs. efficiency
 - polynomial time: syntactic analysis of formula

Example

$$\forall x \exists y \ (\neg x \lor y) \land (x \lor \neg y)$$
 is satisfiable

Value of *y* depends on *x*: $x = \top \rightarrow y = \top$, $x = \bot \rightarrow y = \bot$

Universal Expansion: $\forall x \ \phi \equiv \phi[x/0] \land \phi[x/1]$

• existential dependencies for $x \in V_{\forall} : D(x) \subseteq \{y \in V_{\exists} \mid \delta(x) < \delta(y)\}$

Computing D(x) via Syntactic Connection Relation

- $y, z \in V$: y locally connected to z if $y, z \in C$ for clause $C \in \phi$
- inf.: $y \in D(x)$ if x transitively connected to y via common clauses
- recursive computation: $O(|\phi|)$ for one $x \in V_{\forall}$

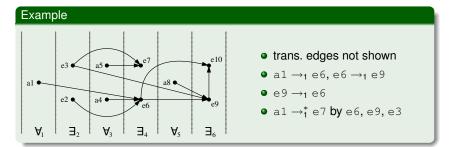
Goal: Avoiding Recomputation of Connection Relation

- building a global connection relation wrt. common clauses
- idea: extract once from ϕ , exploiting shared parts for all $x \in V_{\forall}$
- compact representation and retrieval of D(x), |D(x)|

Definition (local dependence/connection)

For $x, y \in V$: $x \to_i y \iff q(y) = \exists$ and $x, y \in C, C \in \phi$ and $\delta(y) \ge i$. Connecting sets of variables and clauses by refl. and trans. closure \to_i^* .

"connection": write $x \sim_i y$ if $q(x) = q(y) = \exists$ and $x \rightarrow_i^* y$.



(Application) For $x \in V_{\forall}$, $i = \delta(x) : D(x) = \{y \in V_{\exists} \mid x \rightarrow_{i}^{*} y\}$.

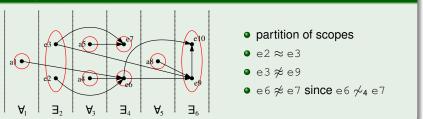
Definition (equivalence relation)

For $x, y \in V$: $x \approx y \iff x = y$ and $q(x) = \forall$ or $\delta(x) = \delta(y) = i, q(x) = q(y) = \exists$ and $x \sim_i y$. [x] denotes the class of x.

Theorem (compatibility of \rightarrow_i^* with \approx)

For
$$x, y \in V$$
: $x \rightarrow_i^* y \iff \forall x' \in [x], y' \in [y] : x' \rightarrow_i^* y'$.

Example (continued)



(Application) For $x \in V_{\forall}$, $i = \delta(x) : D(x) = \{y \in V_{\exists} \mid [x] \rightarrow_i^* [y]\}$.

Towards a Directed Dependency Relation (3/3)

Definition (directed dependence/connection)

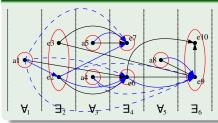
For $x, y \in V$: $[x] \rightsquigarrow^* [y] \iff \delta(x) \le \delta(y)$ and $x \rightarrow_i^* y$ for $i = \delta(x)$.

(Application) For $x \in V_{\forall}$, $i = \delta(x) : D(x) = \{y \in V_{\exists} \mid [x] \rightsquigarrow^* [y]\}$.

Theorem (computing dependency sets)

For $x \in V_{\forall}$, $i = \delta(x)$: $D(x) = \{y \in V_{\exists} \mid x \to_i^* y\} = \{y \in V_{\exists} \mid [x] \to_i^* [y]\} = \{y \in V_{\exists} \mid [x] \rightsquigarrow^* [y]\}.$

Example (continued)



- $\bullet \, \rightsquigarrow^*$ defined on classes
- e2 ~→* e9, but e9 ≁ e2
- dashed: transitive edges
- solid: transitive reduction

Lemma

For \rightsquigarrow^* on V_∃, the transitive reduction \rightsquigarrow can be represented as forest.

Connection Forest of a QBF

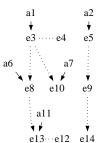
- representation of global, shared connection relation for V_{\exists}
- for $y, z \in V_{\exists}$: edge $([y], [z]) \iff [y] \rightsquigarrow [z]$
- for $y, z \in V_{\exists}$: path from [y] to $[z] \Longleftrightarrow [y] \rightsquigarrow^* [z]$

Augmented Connection Forest

- additionally: set of "entry points" H(x) for all $x \in V_{\forall}$
- *H*(*x*) derived from clauses containing literals of *x*

Computing D(x) by Connection Forest

- collect descendant classes: $H^*(x) := \{[y] \mid [z] \rightsquigarrow^* [y], [z] \in H(x)\}$
- 3 collect members of descendants: $D(x) = \{z \mid z \in [y], [y] \in H^*(x)\}$



	QBFEVAL'05	QBFEVAL'06	QBFEVAL'07	QBFEVAL'08
size	211	216	1136	3328
max. $ H^*(x) $	797	5	797	1872
avg. H*(x)	19.51	1.21	39.07	8.24
max. $ D(x) $	256535	9993	2177280	2177280
avg. D(x)	82055.87	4794.60	33447.6	19807
avg. $\frac{ H^*(x) }{ D(x) }$	3.44 %	0.04 %	6.42 %	1.21 %
≈∃	3.08 %	3.95 %	2.20 %	7.37 %

- structured QBF formulae from QBF competitions 2005 2008
- comparing forest representation with |D(x)|
- number of successors $|H^*(x)|$ much smaller than |D(x)|
- line \approx_{\exists} : number of \exists -classes per \exists -variable in whole formula set
- compression by \approx : few, but large classes for S_i , $q(S_i) = \exists$

Conclusion

Variable Dependencies in QBF

- influence solver performance
- common approach: syntactic connection relation (connecting clauses)
- focus: expansion-based solvers, ∀∃ dependencies

Augmented Connection Forests

- directed version of connection relation, equivalence relation on V_{\exists}
- average-case compact representation
- sharing connection information between all $x \in V_{\forall}$
- computation of D(x), |D(x)| for all $x \in V_{\forall}$

Future Work

- dynamic vs. static version
- extension to ∃∀ dependencies
- combination with search-based solvers