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Motivation

Preprocessing Techniques for Quantified Boolean Formulae (QBF)
Failed literals (FL) and quantified blocked clause elimination (QBCE).
Positive effects on search- and elimination-based solvers.
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Overview

Part 1: Preliminaries
From propositional logic (SAT) to QBF.

QBF semantics.

Part 2: Failed Literal Detection (FL)
Paper submitted to SAT’11.

Necessary assignments and QBF models.

Part 3: Quantified Blocked Clause Elimination (QBCE)
Paper submitted to CADE’11.

From BCE for SAT to QBCE for QBF.
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Part 1: Preliminaries
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From SAT to QBF

Propositional Logic (SAT):
Our focus: formulae in conjunctive normal form (CNF).

Set of Boolean variables V := {x1, . . . , xm}.
Literals l := v or l := ¬v for v ∈ V .

Clauses Ci := (l1 ∨ . . . ∨ lki ).

CNF φ :=
V

Ci .

Quantified Boolean Formulae (QBF):
Prenex CNF: quantifier-free CNF over quantified Boolean variables.

PCNF Q1S1 . . .QnSn. φ, where Qi ∈ {∃, ∀}, scopes Si .

Scope Si : set of quantified variables.

QiSi ≤ Qi+1Si+1: scopes are linearly ordered.

Example

Clauses (CNFs) are sets of literals (clauses).
A CNF: {x , y}, {x , y} and a PCNF: ∀x∃y . {x , y}, {x , y}.
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SAT Semantics

Assignment Trees (AT):
Assignment A : V → {true, false} maps variables to truth values.
Paths from root to a leaf in AT represent assignments.
Nodes along path (except root) assign truth values to variables.

CNF-Model:
A path in the assignment tree of a CNF φ which satisfies all clauses.
CNF φ is satisfiable iff it has a CNF-model m: m |= φ.

Example

φ := {e1,¬a2, e3},
{e1,¬a2,¬e3},
{¬e1, a2,¬e3},
{¬e1,¬a2, e3}

¬a2

e1¬e1

a2 a2¬a2

1 1 0 0 1 0 0 1
¬e3/e3
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Semantics: From SAT to QBF

PCNF-Model: ψ := Q1S1 . . .QnSn. φ

An (incomplete) AT where every path is a CNF-model of CNF part φ.

Restriction: nodes which assign ∀-variables have exactly one sibling.

PCNF ψ is satisfiable iff it has a PCNF-model m: m |= ψ.

Example

ψ := ∃e1∀a2∃e3. φ

φ := {e1,¬a2, e3},
{e1,¬a2,¬e3},
{¬e1, a2,¬e3},
{¬e1,¬a2, e3}

¬a2

e1¬e1

a2 a2¬a2

1 1 0 0 1 0 0 1
¬e3/e3
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QBF Inference Rules (1/5)

Definition (Assignments of literals)

Given a PCNF ψ, the assignment of a literal l yields the formula ψ[l] where
clauses Occs(l) and literals ¬l in Occs(¬l) are deleted.

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ := {e1, a2, e3, e4},
{e1, a2,¬e4},
{¬e1, e3,¬e4},
{¬a2,¬e3}

ψ[e4]
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QBF Inference Rules (2/5)

Definition (Universal Reduction)

Given a clause C, UR(C) := C \ {lu ∈ L∀(C) |6 ∃le ∈ L∃(C), lu < le}.

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{e1, a2},
{¬e1, e3},
{¬a2,¬e3}

UR({e1, a2})
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QBF Inference Rules (3/5)

Definition (Pure Literal Rule)

Given a PCNF ψ, a literal l where Occs(l) 6= ∅ and Occs(¬l) = ∅ is pure: if
q(l) = ∃ then ψ ≡ ψ[l], and if q(l) = ∀ then ψ ≡ ψ[¬l].

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{e1},
{¬e1, e3},
{¬a2,¬e3}

Variable a2 is pure: ψ[a2] (shortening clauses).
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QBF Inference Rules (4/5)

Definition (Unit Clause Rule)

Given a PCNF ψ. A clause C ∈ ψ where UR(C) = {l} is unit and ψ ≡ ψ[l].

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{e1},
{¬e1, e3},
{¬e3}

Clauses {e1} and {¬e3} are unit: ψ[e1][¬e3].
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QBF Inference Rules (5/5)

Definition (Boolean Constraint Propagation)

Given a PCNF ψ and a literal x called assumption. Formula BCP(ψ, x) is
obtained from ψ[x ] by applying UR, unit clause and pure literal rule.

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{}

Empty clause derived from assumption e4:
∅ ∈ BCP(ψ, e4).
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Part 2: Failed Literal Detection (FL)
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Models and Necessary Assignments

Definition

Given PCNF ψ and xi ∈ V . Assignment xi 7→ t , where t ∈ {false, true}, is
necessary for satisfiability of ψ iff xi 7→ t is part of every path in every
PCNF-model of ψ.

Example

ψ := ∃e1∀a2∃e3. φ

φ := {e1,¬a2, e3},
{e1,¬a2,¬e3},
{¬e1, a2,¬e3},
{¬e1,¬a2, e3}

e1 7→ true is necessary for
satisfiability of ψ.

¬a2

e1

a2a2¬a2

¬e1

1 1
¬e3/e3

1 1 0 0 0 0

GOAL: Detection of (Subset of) Necessary Assignments in QBFs.
Exponential reduction of search space.
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Motivation

Failed Literal Detection (FL) for SAT:
BCP-based approach to detect subset of necessary assignments.

Def. failed literal x for CNF φ: if ∅ ∈ BCP(φ, x) then φ ≡ φ ∧ {¬x}.
FL based on deriving empty clause from assumption and BCP.

FL for QBF:
Def.: failed literal x for PCNF ψ: if ψ ≡ ψ ∧ {¬x}.
Problem: BCP-based approach like for SAT is unsound due to ∃/∀ prefix.

Example

ψ := ∀x∃y . {x ,¬y}, {¬x , y}. We have ∅ ∈ BCP(ψ, y) but ψ 6≡ ψ ∧ {¬y}.

Our Work:

Two orthogonal FL approaches for QBF.

Soundness established by abstraction and Q-resolution.
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Abstraction-Based FL

Problem: BCP(ψ, x) with assumption x for FL on PCNF ψ is unsound.

Definition (Quantifier Abstraction)

For ψ := Q1S1 . . .Qi−1Si−1QiSi . . . . . .QnSn. φ, the quantifier abstraction of ψ
with respect to Si is Abs(ψ, i) := ∃(S1 ∪ . . . ∪ Si−1)QiSi . . .QnSn. φ.

Idea: carry out BCP on abstraction of ψ.

If x ∈ Si then treat all variables smaller than x as existentially quantified.

Example: Abs(∃x∀y∃z. φ, 3) = ∃x∃y∃z. φ.

Overapproximation: if m |= ψ then m |= Abs(ψ, i).

Theorem

Given PCNF ψ := Q1S1 . . .QnSn. φ and literal x where v(x) ∈ Si . If
∅ ∈ BCP(Abs(ψ, i), x) then ψ ≡ ψ ∧ {¬x}.

Practical Application:
FL using BCP on abstraction is sound and runs in polynomial-time.

Florian Lonsing (joint work with Armin Biere and Martina Seidl) Preprocessing QBF: FL and QBCE



21

BCP-Guided Q-Resolution (1/2)

Definition (Q-resolution)

Let C1,C2 be clauses with v ∈ C1,¬v ∈ C2 and q(v) = ∃ [BKF95].
1 C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v ,¬v}.
2 If {x ,¬x} ⊆ C1 ⊗ C2 (tautology) then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := UR(C1 ⊗ C2) of C1 and C2 on v :
{C1,C2} `∗ C.

Q-Resolution: combination of propositional resolution and UR.

For PCNF ψ, clause C: if ψ `∗ C then ψ ≡ ψ ∧ C.

Idea: (heuristically) validate ∅ ∈ BCP(ψ, x) on original PCNF.

Try to derive the negated assumption {¬x} by Q-resolution.

Resolution candidates are selected from clauses “touched” by BCP.

Like conflict-driven clause learning (CDCL) in search-based solvers.

Florian Lonsing (joint work with Armin Biere and Martina Seidl) Preprocessing QBF: FL and QBCE
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Novel Approach: BCP-Guided Q-Resolution (2/2)

Corollary

Given PCNF ψ := Q1S1 . . .QnSn. φ and literal x where v(x) ∈ Si . If
∅ ∈ BCP(ψ, x) and ψ `∗ {¬x} then ψ ≡ ψ ∧ {¬x}.

Example

ψ := ∃e1,e2∀a3∃e4,e5. {a3, e5}, {¬e2, e4}, {¬e1, e4}, {e1, e2,¬e5}.
With assumption ¬e4 we get ∅ ∈ BCP(ψ,¬e4) since {¬e1}, {¬e2} and {¬e5}
become unit. Finally {a3, e5} is empty by UR.
The negated assumption {e4} is then derived by resolving clauses in
reverse-chronological order as they were affected by assignments:
({a3, e5}, {e1, e2,¬e5}) ` {e1, e2}, ({e1, e2}, {¬e2, e4}) ` {e1, e4},
({e1, e4}, {¬e1, e4}) ` {e4}.

Practical Application:
Advantage: original prefix allows full propagation power in BCP.

BCP-based selection of resolution candidates is only a heuristic.
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Comparing FL Approaches

Proposition

Abstraction-based FL and BCP-guided Q-resolution are orthogonal to each
other with respect to detecting necessary assignments.

Consequences:
There are PCNFs where one approach can detect a necessary
assignment the other one cannot.

No approach can detect all necessary assignments.

Crucial observation: Q-resolution for CDCL is not optimal (see below)!

(How) Can we apply quantifier abstraction for clause learning?

Example

ψ := ∀a1∃e2,e3∀a4∃e5. {a1, e2}, {¬a1, e3}, {e3,¬e5}, {a1, e2,¬e3},
{¬e2, a4, e5}. We have ∅ ∈ BCP(Abs(ψ, 2),¬e3) but ψ 6`∗ {e3}: assignment
{e3} 7→ true is necessary but Q-resolution can not derive clause {e3}.

Florian Lonsing (joint work with Armin Biere and Martina Seidl) Preprocessing QBF: FL and QBCE



24

Experiments

Tool “QxBF”: FL-based preprocessor operating in rounds.
SAT-Based FL: using SAT solver to detect necessary assignments.

QBFEVAL’10: 568 formulae
Preprocessing Solver Solved Time (Preproc.) SAT UNSAT

SAT

DepQBF

379 322.31 (7.17) 167 212
QRES+SAT 378 322.83 (6.22) 167 211
ABS+SAT 378 323.19 (7.21) 167 211

ABS 375 327.64 (3.33) 168 207
QRES 374 327.63 (1.83) 167 207
None 372 334.60 (—) 166 206

ABS+SAT Quantor 229 553.65 (7.21) 112 117

Nenofex 224 553.37 (7.21) 104 120

none 211 573.65 (—) 103 108
Quantor 203 590.15 (—) 99 104

ABS+SAT squolem 154 658.28 (7.21) 63 91
None 124 708.80 (—) 53 71

Table: Solver performance with(out) time-limited failed literal preprocessing.
Search-based solver DepQBF, elimination-based solvers Quantor, squolem, Nenofex.
No preprocessing (“none”), SAT-based FL (“SAT”), abstraction-based FL (“ABS”) and
BCP-guided Q-resolution (“QRES”).
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FL Times Plot
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Part 3: Quantified Blocked Clause Elimination
(QBCE)
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Quantified Blocked Clause Elimination

Blocked Clause Elimination (BCE) for SAT [JBH10]

Allows CNF-level simplifications after circuit-to-CNF transformation.

At least as effective as many circuit-level preprocessing techniques.

Simulates pure literal rule, Plaisted-Greenbaum encoding, . . .

Quantified Blocked Clause Elimination (QBCE) for QBF
Paper submitted to CADE’11 (joint work with Armin Biere, Martina Seidl).

Generalizes BCE to QBF: minor but crucial adaption of BCE definition.

Implementation: tool “bloqqer” combines QBCE and extensions with
variable elimination, self-subsuming resolution, subsumption,. . .

Definition of QBCE: based checking possible Q-resolvents.

Definition

Let C1,C2 be clauses with v ∈ C1,¬v ∈ C2 and q(v) = ∃.
1 Tentative resolvent: C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v ,¬v}.
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QBCE Definition

Definition (Quantified Blocking Literal)

Given PCNF ψ := Q1S1 . . .QnSn. φ, a literal l in a clause C ∈ ψ is called
quantified blocking literal if for every clause C′ with ¬l ∈ C′, there exists a
literal k such that {k ,¬k} ⊆ C ⊗ C′ with k ≤ l .

Definition (Quantified Blocked Clause)

Given PCNF Q1S1 . . .QnSn. (φ ∧ C). Clause C is quantified blocked if it
contains a quantified blocking literal.

Then Q1S1 . . .QnSn. (φ ∧ C)
sat≡ Q1S1 . . .QnSn. φ.

C1 ∈ Occs(l) blocked? C2 ∈ Occs(¬l) C1 ⊗ C2

(x1 ∨ x2 ∨ . . . ∨ xn ∨ . . . ∨ l ∨ . . .)

(. . .¬x1 ∨ . . . ∨ ¬l ∨ . . .) {x1,¬x1} ∈ C1 ⊗ C2
(. . .¬x2 ∨ . . . ∨ ¬l ∨ . . .) {x2,¬x2} ∈ C1 ⊗ C2

. . .
(. . .¬xn ∨ . . . ∨ ¬l ∨ . . .) {xn,¬xn} ∈ C1 ⊗ C2

Example

All clauses blocked: ∀x∃y((x ∨ ¬y) ∧ (¬x ∨ y)).
No clause blocked: ∃x∀y((x ∨ ¬y) ∧ (¬x ∨ y)).
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QBCE Definition

Definition (Quantified Blocking Literal)
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QBCE Definition
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QBCE Definition
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Experiments

Table: Bloqqer (QBCE, extensions and related techniques) combined with search-
(DepQBF, QuBE) and elimination-based (Nenofex, Quantor) solvers.

QBFEVAL’10: 568 formulae
# formulas runtime (sec)

preprocessor
SOLV

ED

SAT
UNSAT

Σ
(1

0
3 )

AVG
MEDIA

N

DepQBF bloqqer 467 224 243 112 198 5
no preprocessing 373 167 206 189 332 26

QuBE bloqqer 444 200 244 139 246 5
no preprocessing 332 135 197 242 426 258

Quantor bloqqer 288 145 143 266 468 34
no preprocessing 206 100 106 333 587 38

Nenofex bloqqer 268 132 136 276 487 23
no preprocessing 221 107 114 319 561 113
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QBCE Times Plot

BL: bloqqer with QBCE, extensions and related techniques.
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Conclusions

Preprocessing QBF:
Positive effects on elimination- and search-based QBF solvers.

Failed Literal Detection (FL):
Detecting a subset of necessary assignments.

Exponential reduction of search-space.

Soundness by abstraction and Q-resolution.

Orthogonality: current CDCL approaches in QBF are not optimal.

Quantified Blocked Clause Elimination (QBCE):
Generalizes BCE for SAT to QBF.

Best performance when combined with variable elimination,. . .

Work in Progress:
Papers submitted to SAT’11 (FL) and CADE’11 (QBCE).

Source code of our preprocessors will be published.

Dynamic applications of FL and QBCE.

.
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QxBF (FL) and bloqqer (QBCE)
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