Preprocessing QBF:
 Failed Literals and Quantified Blocked Clause Elimination

Florian Lonsing
(joint work with Armin Biere and Martina Seidl)

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at

Deduction at Scale Seminar
Ringberg Castle, Tegernsee, Germany
March 7-11, 2011

Preprocessing Techniques for Quantified Boolean Formulae (QBF)

- Failed literals (FL) and quantified blocked clause elimination (QBCE).
- Positive effects on search- and elimination-based solvers.

Part 1: Preliminaries

- From propositional logic (SAT) to QBF.
- QBF semantics.

Part 2: Failed Literal Detection (FL)

- Paper submitted to SAT'11.
- Necessary assignments and QBF models.

Part 3: Quantified Blocked Clause Elimination (QBCE)

- Paper submitted to CADE'11.
- From BCE for SAT to QBCE for QBF.

Part 1: Preliminaries

From SAT to QBF

Propositional Logic (SAT):

- Our focus: formulae in conjunctive normal form (CNF).
- Set of Boolean variables $V:=\left\{x_{1}, \ldots, x_{m}\right\}$.
- Literals $I:=v$ or $I:=\neg v$ for $v \in V$.
- Clauses $C_{i}:=\left(I_{1} \vee \ldots \vee I_{k_{i}}\right)$.
- CNF $\phi:=\bigwedge C_{i}$.

Quantified Boolean Formulae (QBF):

- Prenex CNF: quantifier-free CNF over quantified Boolean variables.
- PCNF $Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$, where $Q_{i} \in\{\exists, \forall\}$, scopes S_{i}.
- Scope S_{i} : set of quantified variables.
- $Q_{i} S_{i} \leq Q_{i+1} S_{i+1}$: scopes are linearly ordered.

Example

Clauses (CNFs) are sets of literals (clauses).
A CNF: $\{x, \bar{y}\},\{\bar{x}, y\}$ and a PCNF: $\forall x \exists y .\{x, \bar{y}\},\{\bar{x}, y\}$.

SAT Semantics

Assignment Trees (AT):

- Assignment $A: V \rightarrow\{$ true, false $\}$ maps variables to truth values.
- Paths from root to a leaf in AT represent assignments.
- Nodes along path (except root) assign truth values to variables.

CNF-Model:

- A path in the assignment tree of a CNF ϕ which satisfies all clauses.
- CNF ϕ is satisfiable iff it has a CNF-model $m: m \models \phi$.

Example

$$
\begin{aligned}
\phi:= & \left\{e_{1}, \neg a_{2}, e_{3}\right\}, \\
& \left\{e_{1}, \neg a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, \neg a_{2}, e_{3}\right\}
\end{aligned}
$$

SAT Semantics

Assignment Trees (AT):

- Assignment $A: V \rightarrow\{$ true, false $\}$ maps variables to truth values.
- Paths from root to a leaf in AT represent assignments.
- Nodes along path (except root) assign truth values to variables.

CNF-Model:

- A path in the assignment tree of a CNF ϕ which satisfies all clauses.
- CNF ϕ is satisfiable iff it has a CNF-model $m: m \models \phi$.

Example

$$
\begin{aligned}
\phi:= & \left\{e_{1}, \neg a_{2}, e_{3}\right\}, \\
& \left\{e_{1}, \neg a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, \neg a_{2}, e_{3}\right\}
\end{aligned}
$$

PCNF-Model: $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$

- An (incomplete) AT where every path is a CNF-model of CNF part ϕ.
- Restriction: nodes which assign \forall-variables have exactly one sibling.
- PCNF ψ is satisfiable iff it has a PCNF-model m : $m \models \psi$.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3} . \phi \\
\phi:= & \left\{e_{1}, \neg a_{2}, e_{3}\right\}, \\
& \left\{e_{1}, \neg a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, \neg a_{2}, e_{3}\right\}
\end{aligned}
$$

Semantics: From SAT to QBF

PCNF-Model: $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$

- An (incomplete) AT where every path is a CNF-model of CNF part ϕ.
- Restriction: nodes which assign \forall-variables have exactly one sibling.
- PCNF ψ is satisfiable iff it has a PCNF-model $m: m \vDash \psi$.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3} \cdot \phi \\
\phi:= & \left\{e_{1}, \neg a_{2}, e_{3}\right\}, \\
& \left\{e_{1}, \neg a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, \neg a_{2}, e_{3}\right\}
\end{aligned}
$$

Definition (Assignments of literals)

Given a PCNF ψ, the assignment of a literal / yields the formula $\psi[/]$ where clauses $\operatorname{Occs}(I)$ and literals $\neg /$ in $\operatorname{Occs}(\neg /)$ are deleted.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3}, e_{4} \cdot \phi \\
\phi:= & \left\{e_{1}, a_{2}, e_{3}, e_{4}\right\}, \\
& \left\{e_{1}, a_{2}, \neg e_{4}\right\}, \\
& \left\{\neg e_{1}, e_{3}, \neg e_{4}\right\}, \\
& \left\{\neg a_{2}, \neg e_{3}\right\}
\end{aligned}
$$

Definition (Universal Reduction)

Given a clause $C, U R(C):=C \backslash\left\{I_{u} \in L_{\forall}(C) \mid \nexists I_{e} \in L_{\exists}(C), I_{u}<l_{e}\right\}$.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3}, e_{4} \cdot \phi \\
\phi:= & \\
& \left\{e_{1}, a_{2}\right\}, \\
& \left\{\neg e_{1}, e_{3}\right\}, \\
& \left\{\neg a_{2}, \neg e_{3}\right\}
\end{aligned}
$$

Definition (Pure Literal Rule)

Given a PCNF ψ, a literal $/$ where $\operatorname{Occs}(I) \neq \emptyset$ and $\operatorname{Occs}(\neg /)=\emptyset$ is pure: if $q(I)=\exists$ then $\psi \equiv \psi[/]$, and if $q(I)=\forall$ then $\psi \equiv \psi[\neg /]$.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3}, e_{4} \cdot \phi \\
\phi:= & \\
& \left\{e_{1}\right\}, \\
& \left\{\neg e_{1}, e_{3}\right\}, \\
& \left\{\neg a_{2}, \neg e_{3}\right\}
\end{aligned}
$$

Variable a_{2} is pure: $\psi\left[a_{2}\right]$ (shortening clauses).

Definition (Unit Clause Rule)

Given a PCNF ψ. A clause $C \in \psi$ where $\operatorname{UR}(C)=\{/\}$ is unit and $\psi \equiv \psi[]]$.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3}, e_{4} \cdot \phi \\
\phi:= & \\
& \left\{e_{1}\right\}, \\
& \left\{\neg e_{1}, e_{3}\right\}, \\
& \left\{\neg e_{3}\right\}
\end{aligned}
$$

Definition (Boolean Constraint Propagation)

Given a PCNF ψ and a literal x called assumption. Formula $\operatorname{BCP}(\psi, x)$ is obtained from $\psi[x]$ by applying UR, unit clause and pure literal rule.

Example

$\psi:=\exists e_{1} \forall a_{2} \exists e_{3}, e_{4} . \phi$
$\phi:=\quad$ Empty clause derived from assumption $e_{4}:$

$$
\emptyset \in B C P\left(\psi, e_{4}\right) .
$$

\{\}

Part 2: Failed Literal Detection (FL)

Models and Necessary Assignments

Definition

Given PCNF ψ and $x_{i} \in V$. Assignment $x_{i} \mapsto t$, where $t \in\{$ false, true $\}$, is necessary for satisfiability of ψ iff $x_{i} \mapsto t$ is part of every path in every PCNF-model of ψ.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3} \cdot \phi \\
\phi:= & \left\{e_{1}, \neg a_{2}, e_{3}\right\}, \\
& \left\{e_{1}, \neg a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, \neg a_{2}, e_{3}\right\}
\end{aligned}
$$

- $e_{1} \mapsto t r u e$ is necessary for satisfiability of ψ.

GOAL: Detection of (Subset of) Necessary Assignments in QBFs.

- Exponential reduction of search space.

Definition

Given PCNF ψ and $x_{i} \in V$. Assignment $x_{i} \mapsto t$, where $t \in\{$ false, true $\}$, is necessary for satisfiability of ψ iff $x_{i} \mapsto t$ is part of every path in every PCNF-model of ψ.

Example

$$
\begin{aligned}
\psi:= & \exists e_{1} \forall a_{2} \exists e_{3} \cdot \phi \\
\phi:= & \left\{e_{1}, \neg a_{2}, e_{3}\right\}, \\
& \left\{e_{1}, \neg a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, a_{2}, \neg e_{3}\right\}, \\
& \left\{\neg e_{1}, \neg a_{2}, e_{3}\right\}
\end{aligned}
$$

- $e_{1} \mapsto$ true is necessary for satisfiability of ψ.

GOAL: Detection of (Subset of) Necessary Assignments in QBFs.

- Exponential reduction of search space.

Failed Literal Detection (FL) for SAT:

- BCP-based approach to detect subset of necessary assignments.
- Def. failed literal x for $\operatorname{CNF} \phi$: if $\emptyset \in B C P(\phi, x)$ then $\phi \equiv \phi \wedge\{\neg x\}$.
- FL based on deriving empty clause from assumption and BCP.

FL for QBF:

- Def.: failed literal x for PCNF ψ : if $\psi \equiv \psi \wedge\{\neg x\}$.
- Problem: BCP-based approach like for SAT is unsound due to \exists / \forall prefix.

Example

$$
\psi:=\forall x \exists y .\{x, \neg y\},\{\neg x, y\} . \text { We have } \emptyset \in B C P(\psi, y) \text { but } \psi \not \equiv \psi \wedge\{\neg y\}
$$

Our Work

- Two orthogonal FL approaches for QBF.
- Soundness established by abstraction and Q-resolution.

Failed Literal Detection (FL) for SAT:

- BCP-based approach to detect subset of necessary assignments.
- Def. failed literal x for $\operatorname{CNF} \phi$: if $\emptyset \in B C P(\phi, x)$ then $\phi \equiv \phi \wedge\{\neg x\}$.
- FL based on deriving empty clause from assumption and BCP.

FL for QBF:

- Def.: failed literal x for PCNF ψ : if $\psi \equiv \psi \wedge\{\neg x\}$.
- Problem: BCP-based approach like for SAT is unsound due to \exists / \forall prefix.

Example

$\psi:=\forall x \exists y .\{x, \neg y\},\{\neg x, y\}$. We have $\emptyset \in B C P(\psi, y)$ but $\psi \not \equiv \psi \wedge\{\neg y\}$.

Our Work:

- Two orthogonal FL approaches for QBF.
- Soundness established by abstraction and Q-resolution.

Abstraction-Based FL

Problem: $\operatorname{BCP}(\psi, x)$ with assumption x for FL on $\mathrm{PCNF} \psi$ is unsound.

Definition (Quantifier Abstraction)

For $\psi:=Q_{1} S_{1} \ldots Q_{i-1} S_{i-1} Q_{i} S_{i} \ldots \ldots Q_{n} S_{n} . \phi$, the quantifier abstraction of ψ with respect to S_{i} is $\operatorname{Abs}(\psi, i):=\exists\left(S_{1} \cup \ldots \cup S_{i-1}\right) Q_{i} S_{i} \ldots Q_{n} S_{n} . \phi$.

Idea: carry out BCP on abstraction of ψ.

- If $x \in S_{i}$ then treat all variables smaller than x as existentially quantified.
- Example: $\operatorname{Abs}(\exists x \forall y \exists z . \phi, 3)=\exists x \exists y \exists z$. ϕ.
- Overapproximation: if $m \models \psi$ then $m \models \operatorname{Abs}(\psi, i)$.

Theorem

Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n}$. ϕ and literal x where $v(x) \in S_{i}$. If $\emptyset \in \operatorname{BCP}(\operatorname{Abs}(\psi, i), x)$ then $\psi \equiv \psi \wedge\{\neg x\}$.

Practical Application:

- FL using BCP on abstraction is sound and runs in polynomial-time.

Definition (Q-resolution)

Let C_{1}, C_{2} be clauses with $v \in C_{1}, \neg v \in C_{2}$ and $q(v)=\exists$ [BKF95].
(1) $C_{1} \otimes C_{2}:=\left(U R\left(C_{1}\right) \cup U R\left(C_{2}\right)\right) \backslash\{v, \neg v\}$.
(2) If $\{x, \neg x\} \subseteq C_{1} \otimes C_{2}$ (tautology) then no Q-resolvent exists.
(3) Otherwise, Q -resolvent $C:=U R\left(C_{1} \otimes C_{2}\right)$ of C_{1} and C_{2} on v : $\left\{C_{1}, C_{2}\right\} \vdash^{*} C$.

Q-Resolution: combination of propositional resolution and UR.

- For PCNF ψ, clause \boldsymbol{C} : if $\psi \vdash^{*} \boldsymbol{C}$ then $\psi \equiv \psi \wedge \boldsymbol{C}$.

Idea: (heuristically) validate $\emptyset \in B C P(\psi, x)$ on original PCNF.

- Try to derive the negated assumption $\{\neg x\}$ by Q-resolution.
- Resolution candidates are selected from clauses "touched" by BCP.
- Like conflict-driven clause learning (CDCL) in search-based solvers.

Corollary

Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n}$. ϕ and literal x where $v(x) \in S_{i}$. If $\emptyset \in \operatorname{BCP}(\psi, x)$ and $\psi \vdash^{*}\{\neg x\}$ then $\psi \equiv \psi \wedge\{\neg x\}$.

Example

$\psi:=\exists e_{1}, e_{2} \forall a_{3} \exists e_{4}, e_{5} .\left\{a_{3}, e_{5}\right\},\left\{\neg e_{2}, e_{4}\right\},\left\{\neg e_{1}, e_{4}\right\},\left\{e_{1}, e_{2}, \neg e_{5}\right\}$.
With assumption $\neg e_{4}$ we get $\emptyset \in B C P\left(\psi, \neg e_{4}\right)$ since $\left\{\neg e_{1}\right\},\left\{\neg e_{2}\right\}$ and $\left\{\neg e_{5}\right\}$ become unit. Finally $\left\{a_{3}, e_{5}\right\}$ is empty by UR.
The negated assumption $\left\{e_{4}\right\}$ is then derived by resolving clauses in reverse-chronological order as they were affected by assignments: $\left(\left\{a_{3}, e_{5}\right\},\left\{e_{1}, e_{2}, \neg e_{5}\right\}\right) \vdash\left\{e_{1}, e_{2}\right\},\left(\left\{e_{1}, e_{2}\right\},\left\{\neg e_{2}, e_{4}\right\}\right) \vdash\left\{e_{1}, e_{4}\right\}$, $\left(\left\{e_{1}, e_{4}\right\},\left\{\neg e_{1}, e_{4}\right\}\right) \vdash\left\{e_{4}\right\}$.

Practical Application:

- Advantage: original prefix allows full propagation power in BCP.
- BCP-based selection of resolution candidates is only a heuristic.

Proposition

Abstraction-based FL and BCP-guided Q-resolution are orthogonal to each other with respect to detecting necessary assignments.

Consequences:

- There are PCNFs where one approach can detect a necessary assignment the other one cannot.
- No approach can detect all necessary assignments.
- Crucial observation: Q-resolution for CDCL is not optimal (see below)!
- (How) Can we apply quantifier abstraction for clause learning?

Example

$\psi:=\forall a_{1} \exists e_{2}, e_{3} \forall a_{4} \exists e_{5} .\left\{a_{1}, e_{2}\right\},\left\{\neg a_{1}, e_{3}\right\},\left\{e_{3}, \neg e_{5}\right\},\left\{a_{1}, e_{2}, \neg e_{3}\right\}$, $\left\{\neg e_{2}, a_{4}, e_{5}\right\}$. We have $\emptyset \in B C P\left(\operatorname{Abs}(\psi, 2), \neg e_{3}\right)$ but $\psi \nvdash^{*}\left\{e_{3}\right\}$: assignment $\left\{e_{3}\right\} \mapsto$ true is necessary but Q-resolution can not derive clause $\left\{e_{3}\right\}$.

Tool "QxBF": FL-based preprocessor operating in rounds.
SAT-Based FL: using SAT solver to detect necessary assignments.

QBFEVAL'10: 568 formulae					
Preprocessing	Solver	Solved	Time (Preproc.)	SAT	UNSAT
SAT	DepQBF	379	322.31 (7.17)	167	212
QRES+SAT		378	322.83 (6.22)	167	211
ABS+SAT		378	323.19 (7.21)	167	211
ABS		375	327.64 (3.33)	168	207
QRES		374	327.63 (1.83)	167	207
None		372	334.60 (-)	166	206
ABS+SAT	Quantor	229	553.65 (7.21)	112	117
	Nenofex	224	553.37 (7.21)	104	120
none		211	573.65 (-)	103	108
	Quantor	203	590.15 (-)	99	104
ABS+SAT	squolem	154	658.28 (7.21)	63	91
None		124	708.80 (-)	53	71

Table: Solver performance with(out) time-limited failed literal preprocessing.
Search-based solver DepQBF, elimination-based solvers Quantor, squolem, Nenofex. No preprocessing ("none"), SAT-based FL ("SAT"), abstraction-based FL ("ABS") and BCP-guided Q-resolution ("QRES").

FL Times Plot

Part 3: Quantified Blocked Clause Elimination (QBCE)

Quantified Blocked Clause Elimination

Blocked Clause Elimination (BCE) for SAT [JBH10]

- Allows CNF-level simplifications after circuit-to-CNF transformation.
- At least as effective as many circuit-level preprocessing techniques.
- Simulates pure literal rule, Plaisted-Greenbaum encoding, ...

Quantified Blocked Clause Elimination (QBCE) for QBF

- Paper submitted to CADE'11 (joint work with Armin Biere, Martina Seidl).
- Generalizes BCE to QBF: minor but crucial adaption of BCE definition.
- Implementation: tool "bloqqer" combines QBCE and extensions with variable elimination, self-subsuming resolution, subsumption,...

Definition of QBCE: based checking possible Q-resolvents.

Quantified Blocked Clause Elimination

Blocked Clause Elimination (BCE) for SAT [JBH10]

- Allows CNF-level simplifications after circuit-to-CNF transformation.
- At least as effective as many circuit-level preprocessing techniques.
- Simulates pure literal rule, Plaisted-Greenbaum encoding, ...

Quantified Blocked Clause Elimination (QBCE) for QBF

- Paper submitted to CADE'11 (joint work with Armin Biere, Martina Seidl).
- Generalizes BCE to QBF: minor but crucial adaption of BCE definition.
- Implementation: tool "bloqqer" combines QBCE and extensions with variable elimination, self-subsuming resolution, subsumption,...

Definition of QBCE: based checking possible Q-resolvents.

Definition

Let C_{1}, C_{2} be clauses with $v \in C_{1}, \neg v \in C_{2}$ and $q(v)=\exists$.
(1) Tentative resolvent: $C_{1} \otimes C_{2}:=\left(U R\left(C_{1}\right) \cup U R\left(C_{2}\right)\right) \backslash\{v, \neg v\}$.

QBCE Definition

Definition (Quantified Blocking Literal)

Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$, a literal I in a clause $C \in \psi$ is called quantified blocking literal if for every clause C^{\prime} with $\neg / \in C^{\prime}$, there exists a literal k such that $\{k, \neg k\} \subseteq C \otimes C^{\prime}$ with $k \leq 1$.

Definition (Quantified Blocked Clause)

Given PCNF $Q_{1} S_{1} \ldots Q_{n} S_{n}$. $(\phi \wedge C)$. Clause C is quantified blocked if it contains a quantified blocking literal.
Then $Q_{1} S_{1} \ldots Q_{n} S_{n} .(\phi \wedge C) \stackrel{\text { sat }}{=} Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$.

$C_{1} \in O c c s(I)$ blocked?	$C_{2} \in \operatorname{Occs}(\neg /)$	$C_{1} \otimes C_{2}$
$\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n} \vee \ldots \vee / \vee \ldots\right)$	$\left(\ldots \neg x_{1} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{1}, \neg x_{1}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{2} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{2}, \neg x_{2}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{n} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{n}, \neg x_{n}\right\} \in C_{1} \otimes C_{2}$

Example

All clauses blocked: $\forall x \exists y((x \vee \neg y) \wedge(\neg x \vee y))$.
No clause blocked: $\exists x \forall y((x \vee \neg y) \wedge(\neg x \vee y))$.

QBCE Definition

Definition (Quantified Blocking Literal)

Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$, a literal I in a clause $C \in \psi$ is called quantified blocking literal if for every clause C^{\prime} with $\neg / \in C^{\prime}$, there exists a literal k such that $\{k, \neg k\} \subseteq C \otimes C^{\prime}$ with $k \leq 1$.

Definition (Quantified Blocked Clause)

Given PCNF $Q_{1} S_{1} \ldots Q_{n} S_{n}$. $(\phi \wedge C)$. Clause C is quantified blocked if it contains a quantified blocking literal.
Then $Q_{1} S_{1} \ldots Q_{n} S_{n} \cdot(\phi \wedge C) \stackrel{\text { sat }}{=} Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$.

$C_{1} \in O c c s(I)$ blocked?	$C_{2} \in \operatorname{Occs}(\neg /)$	$C_{1} \otimes C_{2}$
$\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n} \vee \ldots \vee / \vee \ldots\right)$	$\left(\ldots \neg x_{1} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{1}, \neg x_{1}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{2} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{2}, \neg x_{2}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{n} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{n}, \neg x_{n}\right\} \in C_{1} \otimes C_{2}$

Example

All clauses blocked: $\forall x \exists y((x \vee \neg y) \wedge(\neg x \vee y))$.
No clause blocked: $\exists x \forall y((x \vee \neg y) \wedge(\neg x \vee y))$.

QBCE Definition

Definition (Quantified Blocking Literal)

Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$, a literal I in a clause $C \in \psi$ is called quantified blocking literal if for every clause C^{\prime} with $\neg / \in C^{\prime}$, there exists a literal k such that $\{k, \neg k\} \subseteq C \otimes C^{\prime}$ with $k \leq 1$.

Definition (Quantified Blocked Clause)

Given PCNF $Q_{1} S_{1} \ldots Q_{n} S_{n}$. $(\phi \wedge C)$. Clause C is quantified blocked if it contains a quantified blocking literal.
Then $Q_{1} S_{1} \ldots Q_{n} S_{n} .(\phi \wedge C) \stackrel{\text { sat }}{=} Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$.

$C_{1} \in O c c s(I)$ blocked?	$C_{2} \in \operatorname{Occs}(\neg /)$	$C_{1} \otimes C_{2}$
$\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n} \vee \ldots \vee / \vee \ldots\right)$	$\left(\ldots \neg x_{1} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{1}, \neg x_{1}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{2} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{2}, \neg x_{2}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{n} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{n}, \neg x_{n}\right\} \in C_{1} \otimes C_{2}$

Example

All clauses blocked: $\forall x \exists y((x \vee \neg y) \wedge(\neg x \vee y))$.
No clause blocked: $\exists x \forall y((x \vee \neg y) \wedge(\neg x \vee y))$.

QBCE Definition

Definition (Quantified Blocking Literal)

Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$, a literal I in a clause $C \in \psi$ is called quantified blocking literal if for every clause C^{\prime} with $\neg / \in C^{\prime}$, there exists a literal k such that $\{k, \neg k\} \subseteq C \otimes C^{\prime}$ with $k \leq 1$.

Definition (Quantified Blocked Clause)

Given PCNF $Q_{1} S_{1} \ldots Q_{n} S_{n}$. $(\phi \wedge C)$. Clause C is quantified blocked if it contains a quantified blocking literal.
Then $Q_{1} S_{1} \ldots Q_{n} S_{n} \cdot(\phi \wedge C) \stackrel{\text { sat }}{=} Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$.

$C_{1} \in O c c s(I)$ blocked?	$C_{2} \in \operatorname{Occs}(\neg /)$	$C_{1} \otimes C_{2}$
$\left(x_{1} \vee x_{2} \vee \ldots \vee x_{n} \vee \ldots \vee / \vee \ldots\right)$	$\left(\ldots \neg x_{1} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{1}, \neg x_{1}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{2} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{2}, \neg x_{2}\right\} \in C_{1} \otimes C_{2}$
	$\left(\ldots \neg x_{n} \vee \ldots \vee \neg / \vee \ldots\right)$	$\left\{x_{n}, \neg x_{n}\right\} \in C_{1} \otimes C_{2}$

Example

All clauses blocked: $\forall x \exists y((x \vee \neg y) \wedge(\neg x \vee y))$.
No clause blocked: $\exists x \forall y((x \vee \neg y) \wedge(\neg x \vee y))$.

Table: Bloqqer (QBCE, extensions and related techniques) combined with search(DepQBF, QuBE) and elimination-based (Nenofex, Quantor) solvers.

QBFEVAL'10: 568 formulae							
		\# formulas			runtime (sec)		
	preprocessor	$5^{00^{3}}$	$5_{5}^{\text {人 }}$	$4^{55^{5}}$	$2^{20^{3}}$	∇^{6}	$\sqrt[40]{40^{2}}$
DepQBF	bloqqer no preprocessing	$\begin{aligned} & \hline \hline 467 \\ & 373 \end{aligned}$	$\begin{aligned} & \hline \hline 224 \\ & 167 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 243 \\ & 206 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 112 \\ & 189 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 198 \\ & 332 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 5 \\ & 26 \end{aligned}$
QuBE	bloqqer no preprocessing	$\begin{aligned} & \hline 444 \\ & 332 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 135 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 244 \\ & 197 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 139 \\ & 242 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 246 \\ & 426 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 258 \\ & \hline \end{aligned}$
Quantor	bloqqer no preprocessing	$\begin{aligned} & \hline 288 \\ & 206 \end{aligned}$	$\begin{aligned} & \hline \hline 145 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline \hline 143 \\ & 106 \end{aligned}$	$\begin{aligned} & \hline 266 \\ & 333 \end{aligned}$	$\begin{aligned} & \hline \hline 468 \\ & 587 \end{aligned}$	$\begin{aligned} & \hline \hline 34 \\ & 38 \end{aligned}$
Nenofex	bloqqer no preprocessing	$\begin{aligned} & \hline \hline 268 \\ & 221 \end{aligned}$	$\begin{aligned} & \hline 132 \\ & 107 \end{aligned}$	$\begin{aligned} & \hline \hline 136 \\ & 114 \end{aligned}$	$\begin{aligned} & \hline 276 \\ & 319 \end{aligned}$	$\begin{aligned} & \hline \hline 487 \\ & 561 \end{aligned}$	$\begin{aligned} & \hline \hline 23 \\ & 113 \end{aligned}$

QBCE Times Plot

BL: bloqqer with QBCE, extensions and related techniques.

Conclusions

Preprocessing QBF:

- Positive effects on elimination- and search-based QBF solvers.

Failed Literal Detection (FL):

- Detecting a subset of necessary assignments.
- Exponential reduction of search-space.
- Soundness by abstraction and Q-resolution.
- Orthogonality: current CDCL approaches in QBF are not optimal.

Quantified Blocked Clause Elimination (QBCE):

- Generalizes BCE for SAT to QBF.
- Best performance when combined with variable elimination,...

Work in Progress:

- Papers submitted to SAT'11 (FL) and CADE'11 (QBCE).
- Source code of our preprocessors will be published.
- Dynamic applications of FL and QBCE.

QxBF (FL) and bloqqer (QBCE)

References

U．Bubeck and H．Kleine Büning．
Bounded Universal Expansion for Preprocessing QBF．
In J．Marques－Silva and K．A．Sakallah，editors，SAT，volume 4501 of LNCS，pages 244－257．Springer， 2007.
宔
D．Le Berre．
Exploiting the Real Power of Unit Propagation Lookahead．
Electronic Notes in Discrete Mathematics，9：59－80， 2001.
目
A．Biere．
Resolve and Expand．
In H．H．Hoos and D．G．Mitchell，editors，SAT（Selected Papers），volume 3542 of LNCS，pages 59－70．Springer， 2004.

國 H．Kleine Büning，M．Karpinski，and A．Flögel．
Resolution for Quantified Boolean Formulas．
Inf．Comput．，117（1）：12－18， 1995.
官
F．Bacchus and J．Winter．
Effective Preprocessing with Hyper－Resolution and Equality Reduction． In E．Giunchiglia and A．Tacchella，editors，SAT，volume 2919 of LNCS， pages 341－355．Springer， 2003.
E．E．Giunchiglia，P．Marin，and Massimo Narizzano．
sQueezeBF：An Effective Preprocessor for QBFs Based on Equivalence Reasoning．
In O．Strichman and S．Szeider，editors，SAT，volume 6175 of LNCS， pages 85－98．Springer， 2010.
嘈
M．Järvisalo，A．Biere，and M．Heule．
Blocked Clause Elimination．
In J．Esparza and R．Majumdar，editors，TACAS，volume 6015 of LNCS， pages 129－144．Springer， 2010.
圊
I．Lynce and J．P．Marques Silva．
Probing－Based Preprocessing Techniques for Propositional Satisfiability．
In ICTAI，pages 105－．IEEE Computer Society， 2003.

F．Pigorsch and C．Scholl．
An AIG－Based QBF－Solver Using SAT for Preprocessing．
In S．S．Sapatnekar，editor，DAC，pages 170－175．ACM， 2010.
國 J．Rintanen．
Improvements to the Evaluation of Quantified Boolean Formulae．
In T．Dean，editor，IJCAI，pages 1192－1197．Morgan Kaufmann， 1999.
H．Samulowitz and F．Bacchus．
Using SAT in QBF．
In P．van Beek，editor，CP，volume 3709 of LNCS，pages 578－592．
Springer， 2005.
H. Samulowitz and F. Bacchus. Binary Clause Reasoning in QBF.
In A. Biere and C. P. Gomes, editors, SAT, volume 4121 of LNCS, pages 353-367. Springer, 2006.
H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF.
In F. Benhamou, editor, CP, volume 4204 of LNCS, pages 514-529. Springer, 2006.

