Nenofex: Expanding NNF for QBF Solving

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria

- "Negation Normal Form Expansion"
- Solver for Quantified Boolean Formulae (QBF)
- propositional formula + quantified variables
- generalizes SAT
- Features
- tree-based NNF representation
- NNF expansion: less size increase for \exists-expansion than on CNF
- tight, estimated expansion costs for greedy scheduling
- NNF redundancy removal: techniques from circuit optimization
- Results on QBFEVAL'07 benchmark set
- less frequently out-of-memory than resolution-based Quantor [Biere-SAT04]
- important, but expensive redundancy removal on NNF
- strong performance on instances from adder familiy (QBFLIB, Ayari)
- QBF
- PSPACE-complete decision problem
- exponentially more succint than SAT
- CNF + quantifier prefix (prenex normal form):

- S_{i} : linearly ordered scopes
- two notions: sets of quantified variables and quantifier scopes (as usual)
- quantifier scope of $x \in S_{i}$ in prefix ranges over whole formula ϕ
- Solving QBF by variable elimination:
- from S_{n} to S_{1}
- expansion, Q-resolution or skolemization
- Our focus: solve by expansion
- Quantor: CNF-based, \forall-expansion for S_{n-1}, Q-resolution for S_{n}
- Nenofex similar to Quantor but NNF-based, expansion only

Given: CNF $\phi \equiv R \wedge X_{0} \wedge X_{1}$ with only \exists-variables

- sets X_{0}, X_{1}, R : clauses with negative, positive or no literal of variable x

Resolve x : $\phi_{\text {res }} \equiv R \wedge \bigwedge_{c \in\left(X_{0} \times_{\text {res }} X_{1}\right)} c$

- generally: add $\left|X_{0}\right| \cdot\left|X_{1}\right|$ resolvents
- worst case: quadratic size increase

Expand x : $\phi_{\exp } \equiv R \wedge\left(\left(X_{0} \wedge X_{1}\right)[x / 0] \vee\left(X_{0} \wedge X_{1}\right)[x / 1]\right)$

- add copy of ϕ by \vee, factor out R and assign x
- worst case: linear size increase

General \exists-expansion on NNF

- $\phi_{\text {exp }}$ grows linearly in the size of the subformula of x
- NNF allows compact representation for expanding \exists-variables
- size increase in \forall-expansions: NNF and CNF equivalent

- Elimination of unit and pure literals (unates)
- Redundancy Removal
- on small subformula only, cutoff criterion
- Expansion: $S_{1} \ldots S_{n-1} S_{n} \phi$
- from S_{n} to S_{1}, expand cheapest variable in S_{n-1} or S_{n} by scores
- score(x): tight upper bound on size increase of NNF when expanding x
- partial score recomputation
- SAT solving
- only $\forall(\exists)$-variables left \rightarrow generate CNF by Tseitin transformation
- PicoSAT backend

Negation Normal Form: only \vee and \wedge, \neg applied to literals only

NNF-trees

- internal nodes: operators \vee and \wedge
- leaves: literal occurrence nodes (no sharing)
- level(node) $:=$ distance to root

$$
a \wedge b \wedge(c \vee \neg d)
$$

Structural Restrictions: flat and compact NNF-trees (particularly for CNFs)

- number of children $n \geq 2$: operators denote n-ary boolean functions
- $n=1$ after deletion: merge nodes

- alternating types: type (parent) \neq type(child)
- apply associativity of \vee and \wedge
- prerequisite: n-ary operators

- one-level simplification: for var. $x, \otimes \in\{\vee, \wedge\}$, simplify $x \otimes x, x \otimes \neg x$
- remove trivial redundancy
- bottom-up recursive effects

Local Expansion for NNF: copy only relevant parts

- Def.: ers $(x):=$ expansion-relevant subformula of variable x
- smallest subformula which contains all occurrences of x
- finding ers(x) by scope reduction [AyariBasin02] in prenex formulae:

$$
Q x(\phi \otimes \psi) \equiv Q x(\phi) \otimes \psi \quad x \notin \operatorname{Vars}(\psi), Q \in\{\forall, \exists\}, \otimes \in\{\vee, \wedge\}
$$

In NNF-trees: for ers(x), find expansion-relevant subtree to be copied

- correspondence: smallest subformulae and subtrees

Expansion-relevant LCAs of Variables: scope reduction in NNF-tree

- LCA: least common ancestor of set of nodes
- bottom-up approach for computing ers (x) starting from literals of x
- expansion-relevant LCA of x denotes expansion-relevant subtree

Expansion-relevant LCAs of Variables

- Def.: expansion-relevant LCA of $x:=$ node Ica(x) and set LCA-children
- set LCA-children: (proper) subset of children of node Ica(x)
- LCA-child c : subtree of c contains at least one occurrence of variable x

Expansion: $S_{1} \ldots S_{n-1} S_{n} \phi, x \in S_{n}$, type $\left(S_{n}\right) \in\{\forall, \exists\}$

- replace ers (x) by $(\operatorname{ers}(x)[x / 0] \otimes \operatorname{ers}(x)[x / 1]), \otimes \in\{\vee, \wedge\}$

Expansion: $x \in S_{n-1}$, $\operatorname{type}\left(S_{n-1}\right)=\forall$

- duplicate depending \exists-variables D_{x} from S_{n}

$$
\begin{aligned}
D_{x}^{(0)} & :=\left\{y \in S_{n} \mid y \text { has literals in } \operatorname{ers}(x)\right\} \\
D_{x}^{(k+1)} & :=\left\{z \in S_{n} \mid z \text { has literals in } \operatorname{ers}\left(y^{\prime}\right) \text { for some } y^{\prime} \in D_{x}^{k}\right\}, k \geq 0 \\
D_{x} & :=\bigcup_{k} D_{x}^{k}
\end{aligned}
$$

- D_{x} : extended from CNF [BubeckKBüning-SAT07] to NNF

- universal expansion-relevant subformula urs(x)
- contains all literals of x and of depending variables in D_{x}

Global Flow (GF): global analysis of logical flow of values

- implications: transform circuit to reduce size

$$
x=0 \rightarrow y=0: y \equiv x \wedge y \quad x=1 \rightarrow y=1: y \equiv x \vee y
$$

Redundancy Removal (RR) by Automatic Test Pattern Generation (ATPG)

- ATPG: structural testing of circuits (NP-complete)
- assume fault f at single signal s in circuit C : stuck-at-\{0,1\} fault model
- find input $v=\left(p i_{0}, \ldots, p i_{n}\right)$ such that $C(v) \neq C_{f}(v)$ uniquely caused by f
- no such v : f is not testable, does not affect C, can remove HW at s

GF+RR implementation: incomplete, polynomial-time

- full benchmark set (1136 instances) from QBFEVAL’07
- Pentium IV 3.0 GHz, Ubuntu Linux, limits 900 seconds and 1.5 GB
- Quantor as reference: CNF-based, similar strategy
- three versions of Nenofex: GF, RR enabled/disabled

		Nenofex		
	Quantor	GF, RR	no GF, RR	no GF, no RR
Solved	$\mathbf{4 2 1}$	361	352	313
OOT	$\mathbf{3 2}$	124	103	83
OOM	683	651	681	740
MEM- \cup	1.10 e 6	1.15 e 6	1.17 e 6	1.23 e 6
MEM-	10473	18472	19693	28422

	Quantor only	Both	Nenofex only	Sum
Solved	79	342	19	440
OOT	18	14	110	142
OOM	80	603	48	731

Results

- less space-outs than CNF-based Quantor
- node implementation in Nenofex not optimized for memory
- redundancy removal expensive but crucial for performance
- GF, RR cause more time outs
- 19 uniquely solved instances

Experimental Results (2/2): Ayari's adder benchmarks

- equivalence checking of n-bit ripple-carry adders [AyariBasin02]
- structured QBF-encodings of monadic second order formulae
- hard instances in previous QBF evaluations

	optimizations enabled				optimizations disabled			
Name	SAT-Vars	SAT-Clauses	Time (Exp.)	Mem	SAT-Vars	SAT-Clauses	Time (Exp.)	Mem
adder-2-unsat	41	94	0.07 (0.07)	<1	46	106	<0.01	<1
adder-4-unsat	240	585	0.37 (0.36)	2.6	284	712	0.06 (0.04)	<1
adder-6-unsat	722	1748	1.32 (1.22)	4.2	892	2241	0.23 (0.10)	4.2
adder-8-unsat	1586	3776	2.89 (2.60)	6.6	2004	5038	0.66 (0.24)	6.6
adder-10-unsat	3098	7277	5.62 (4.67)	10.2	3892	9745	1.88 (0.50)	10.2
adder-12-unsat	5126	12007	9.58 (7.47)	15.1	6644	16552	5.04 (0.89)	15.1
adder-14-unsat	8064	18755	15.48 (11.10)	21.3	10448	25999	13.31 (1.54)	21.3
adder-16-unsat	11921	27565	24.90 (15.35)	29.2	15596	38638	31.13 (2.47)	29.2
adder-2-sat	60	133	0.04 (0.04)	<1	76	118	<0.01	<1
adder-4-sat	236	549	0.39 (0.38)	2.4	550	1386	0.05 (0.04)	<1
adder-6-sat	1358	3259	1.58 (1.42)	3.3	1855	4779	0.39 (0.13)	3.3
adder-8-sat	6016	14663	4.91 (3.23)	5.0	5073	13127	1.64 (0.39)	4.7
adder-10-sat	8563	20901	8.87 (5.86)	6.9	10421	26988	5.94 (1.24)	7.7
adder-12-sat	17099	41795	20.10 (10.24)	11.4	20518	52481	17.86 (3.34)	14.6
adder-14-sat	56947	141095	92.29 (23.45)	67.4	39935	103316	53.32 (9.21)	23.5
adder-16-sat	85836	213038	173.80 (42.94)	46.5	119018	309598	372.58 (41.50)	65.6

- Results

- SAT-solving time dominates expansion time in large instances
- no optimizations: less expansion time but larger CNFs
- Quantor, sKizzo, squolem, ebddres:
- comparable on adder-\{2,4\}-\{sat,unsat\}, sKizzo slower on adder-\{2,..,10\}-sat
- abort on adder-\{12,14,16\}-\{sat,unsat\}, adder-\{6,..,16\}-unsat
- Expansion-based QBF solver for NNF
- \exists-expansion: linear vs. quadratic size increase on NNF and CNF
- NNF-trees: flat formula representation
- Local expansion: scope reduction by quantifier rules
- expansion-relevant subformulae, subtrees and LCAs
- Variables scores for greedy scheduling
- tight upper bound on actual size increase of NNF-tree
- Redundancy removal: treat NNF-tree as circuit
- GF: deriving implications for circuit transformations
- ATPG-based RR: untestable faults correspond to redundant HW
- implementation: incomplete, on small subtree only
- Experiments
- less space-outs than CNF-based solver Quantor
- GF+RR crucial for performance, although NNF more compact than CNF
- adder-benchmarks
- Future work
- optimize for run time and memory
- incremental maintainance of scores

