Nenofex: Expanding NNF for QBF Solving

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria

Nenofex

- "Negation Normal Form Expansion"
- Solver for Quantified Boolean Formulae (QBF)
 - propositional formula + quantified variables
 - generalizes SAT

Features

- tree-based NNF representation
- NNF expansion: less size increase for ∃-expansion than on CNF
- tight, estimated expansion costs for greedy scheduling
- NNF redundancy removal: techniques from circuit optimization
- Results on QBFEVAL'07 benchmark set
 - less frequently out-of-memory than resolution-based Quantor [Biere-SAT04]
 - important, but expensive redundancy removal on NNF
 - strong performance on instances from adder familiy (QBFLIB, Ayari)

Introduction

QBF

- PSPACE-complete decision problem
- exponentially more succint than SAT
- CNF + quantifier prefix (prenex normal form):

$$\underbrace{S_1 S_2 \dots S_{n-1} S_n}_{\text{quantifier prefix}} \underbrace{\phi}_{\text{CNF}}$$

- S_i: linearly ordered scopes
 - two notions: sets of quantified variables and quantifier scopes (as usual)
 - quantifier scope of $x \in S_i$ in prefix ranges over whole formula ϕ
- Solving QBF by variable elimination:
 - from S_n to S_1
 - expansion, Q-resolution or skolemization
- Our focus: solve by expansion
 - Quantor: CNF-based, ∀-expansion for S_{n-1}, Q-resolution for S_n
 - Nenofex similar to Quantor but NNF-based, expansion only

Motivation (1/2): NNF-expansion vs. CNF-resolution

Given: CNF $\phi \equiv R \land X_0 \land X_1$ with only \exists -variables

• sets X₀, X₁, R: clauses with negative, positive or no literal of variable x

- generally: add $|X_0| \cdot |X_1|$ resolvents
- worst case: quadratic size increase

Expand *x*: $\phi_{exp} \equiv R \land ((X_0 \land X_1)[x/0] \lor (X_0 \land X_1)[x/1])$

- add copy of ϕ by \lor , factor out R and assign x
- worst case: linear size increase

General ∃-expansion on NNF

- ϕ_{exp} grows linearly in the size of the subformula of x
- NNF allows compact representation for expanding ∃-variables
- size increase in ∀-expansions: NNF and CNF equivalent

- Elimination of unit and pure literals (unates)
- Redundancy Removal
 - on small subformula only, cutoff criterion
- Expansion: $S_1 \dots S_{n-1} S_n \phi$
 - from S_n to S_1 , expand cheapest variable in S_{n-1} or S_n by scores
 - score(x): tight upper bound on size increase of NNF when expanding x
 - partial score recomputation
- SAT solving
 - only $\forall(\exists)$ -variables left \rightarrow generate CNF by Tseitin transformation
 - PicoSAT backend

Formula Representation (1/2)

Negation Normal Form: only \lor and \land , \neg applied to literals only

NNF-trees

- internal nodes: operators \vee and \wedge
- leaves: literal occurrence nodes (no sharing)
- Ievel(node) := distance to root

Structural Restrictions: flat and compact NNF-trees (particularly for CNFs)

- number of children $n \ge 2$: operators denote *n*-ary boolean functions
 - n = 1 after deletion: merge nodes

Formula Representation (2/2)

- alternating types: type(parent) ≠ type(child)
 - apply associativity of \vee and \wedge
 - prerequisite: n-ary operators

- one-level simplification: for var. $x, \otimes \in \{\lor, \land\}$, simplify $x \otimes x, x \otimes \neg x$
 - remove trivial redundancy
 - bottom-up recursive effects

Expansion (1/2)

Local Expansion for NNF: copy only relevant parts

- Def.: ers(x) := expansion-relevant subformula of variable x
 - smallest subformula which contains all occurrences of x
- finding *ers*(x) by scope reduction [AyariBasin02] in prenex formulae:

 $Qx(\phi \otimes \psi) \equiv Qx(\phi) \otimes \psi \qquad x \notin Vars(\psi), Q \in \{\forall, \exists\}, \otimes \in \{\lor, \land\}$

In NNF-trees: for ers(x), find expansion-relevant subtree to be copied

correspondence: smallest subformulae and subtrees

Expansion-relevant LCAs of Variables: scope reduction in NNF-tree

- LCA: least common ancestor of set of nodes
- bottom-up approach for computing ers(x) starting from literals of x
- expansion-relevant LCA of x denotes expansion-relevant subtree

Expansion-relevant LCAs of Variables

- Def.: expansion-relevant LCA of x := node lca(x) and set LCA-children
- set LCA-children: (proper) subset of children of node lca(x)
 - LCA-child c: subtree of c contains at least one occurrence of variable x

Expansion: $S_1 \dots S_{n-1} S_n \phi$, $x \in S_n$, $type(S_n) \in \{\forall, \exists\}$

• replace ers(x) by $(ers(x)[x/0] \otimes ers(x)[x/1]), \otimes \in \{\lor, \land\}$

Expansion: $x \in S_{n-1}$, $type(S_{n-1}) = \forall$

• duplicate depending \exists -variables D_x from S_n

$$\begin{array}{lll} D_x^{(0)} & := & \{y \in S_n \mid y \text{ has literals in } ers(x)\}\\ D_x^{(k+1)} & := & \{z \in S_n \mid z \text{ has literals in } ers(y') \text{ for some } y' \in D_x^k\}, k \ge 0\\ D_x & := & \bigcup_k D_x^k \end{array}$$

- D_x: extended from CNF [BubeckKBüning-SAT07] to NNF
- universal expansion-relevant subformula *urs*(*x*)
 - contains all literals of x and of depending variables in D_x

NNF Redundancy Removal

Global Flow (GF): global analysis of logical flow of values

• implications: transform circuit to reduce size

$$x = 0 \rightarrow y = 0$$
: $y \equiv x \land y$ $x = 1 \rightarrow y = 1$: $y \equiv x \lor y$

Redundancy Removal (RR) by Automatic Test Pattern Generation (ATPG)

- ATPG: structural testing of circuits (NP-complete)
- assume fault *f* at single signal *s* in circuit *C*: stuck-at-{0,1} fault model
- find input $v = (pi_0, ..., pi_n)$ such that $C(v) \neq C_f(v)$ uniquely caused by f
- no such v: f is not testable, does not affect C, can remove HW at s

GF+RR implementation: incomplete, polynomial-time

Experimental Results (1/2): QBFEVAL'07

- full benchmark set (1136 instances) from QBFEVAL'07
- Pentium IV 3.0 GHz, Ubuntu Linux, limits 900 seconds and 1.5 GB
- Quantor as reference: CNF-based, similar strategy
 - three versions of Nenofex: GF, RR enabled/disabled

		Nenofex				
	Quantor	GF, RR	no GF, RR	no GF, no RR		
Solved	421	361	352	313		
OOT	32	124	103	83		
OOM	683	651	681	740		
MEM-U	1.10e6	1.15e6	1.17e6	1.23e6		
MEM-∩	10473	18472	19693	28422		

	Quantor only	Both	Nenofex only	Sum
Solved	79	342	19	440
OOT	18	14	110	142
OOM	80	603	48	731

Results

- less space-outs than CNF-based Quantor
 - node implementation in Nenofex not optimized for memory
- redundancy removal expensive but crucial for performance
 - GF, RR cause more time outs
- 19 uniquely solved instances

Experimental Results (2/2): Ayari's adder benchmarks

- equivalence checking of n-bit ripple-carry adders [AyariBasin02]
 - structured QBF-encodings of monadic second order formulae
 - hard instances in previous QBF evaluations

	optimizations enabled				optimizations disabled			
Name	SAT-Vars	SAT-Clauses	Time (Exp.)	Mem	SAT-Vars	SAT-Clauses	Time (Exp.)	Mem
adder-2-unsat	41	94	0.07 (0.07)	<1	46	106	<0.01	<1
adder-4-unsat	240	585	0.37 (0.36)	2.6	284	712	0.06 (0.04)	<1
adder-6-unsat	722	1748	1.32 (1.22)	4.2	892	2241	0.23 (0.10)	4.2
adder-8-unsat	1586	3776	2.89 (2.60)	6.6	2004	5038	0.66 (0.24)	6.6
adder-10-unsat	3098	7277	5.62 (4.67)	10.2	3892	9745	1.88 (0.50)	10.2
adder-12-unsat	5126	12007	9.58 (7.47)	15.1	6644	16552	5.04 (0.89)	15.1
adder-14-unsat	8064	18755	15.48 (11.10)	21.3	10448	25999	13.31 (1.54)	21.3
adder-16-unsat	11921	27565	24.90 (15.35)	29.2	15596	38638	31.13 (2.47)	29.2
adder-2-sat	60	133	0.04 (0.04)	<1	76	118	<0.01	<1
adder-4-sat	236	549	0.39 (0.38)	2.4	550	1386	0.05 (0.04)	<1
adder-6-sat	1358	3259	1.58 (1.42)	3.3	1855	4779	0.39 (0.13)	3.3
adder-8-sat	6016	14663	4.91 (3.23)	5.0	5073	13127	1.64 (0.39)	4.7
adder-10-sat	8563	20901	8.87 (5.86)	6.9	10421	26988	5.94 (1.24)	7.7
adder-12-sat	17099	41795	20.10 (10.24)	11.4	20518	52481	17.86 (3.34)	14.6
adder-14-sat	56947	141095	92.29 (23.45)	67.4	39935	103316	53.32 (9.21)	23.5
adder-16-sat	85836	213038	173.80 (42.94)	46.5	119018	309598	372.58 (41.50)	65.6

Results

- SAT-solving time dominates expansion time in large instances
- no optimizations: less expansion time but larger CNFs
- Quantor, sKizzo, squolem, ebddres:
 - comparable on adder-{2,4}-{sat,unsat}, sKizzo slower on adder-{2,...,10}-sat
 - abort on adder-{12,14,16}-{sat,unsat}, adder-{6,...,16}-unsat

- Expansion-based QBF solver for NNF
 - ∃-expansion: linear vs. quadratic size increase on NNF and CNF
 - NNF-trees: flat formula representation
- Local expansion: scope reduction by quantifier rules
 - expansion-relevant subformulae, subtrees and LCAs
- Variables scores for greedy scheduling
 - tight upper bound on actual size increase of NNF-tree
- Redundancy removal: treat NNF-tree as circuit
 - GF: deriving implications for circuit transformations
 - ATPG-based RR: untestable faults correspond to redundant HW
 - implementation: incomplete, on small subtree only
- Experiments
 - less space-outs than CNF-based solver Quantor
 - GF+RR crucial for performance, although NNF more compact than CNF
 - adder-benchmarks
- Future work
 - optimize for run time and memory
 - incremental maintainance of scores