Integrating Dependency Schemes in Search-Based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria
http://fmv.jku.at

SAT'10
July 11 - July 14, 2010
Edinburgh, Scotland, United Kingdom

JOHANNES KEPLER UNIVERSITY LINZ

JKU

Overview

Search-based QBF Solving for Prenex-CNF (PCNF): QDPLL

- Classical approach relies on linear quantifier prefix: $Q_{1} Q_{2} \ldots Q_{n} . \phi$.
- Analyzing variable dependencies: can prefix order be relaxed?

Example (Dependencies: quantifier ordering matters)

- $\forall x \exists y$. $(x=y)$ is satisfiable: value of y depends on value of x.
- $\exists y \forall x .(x=y)$ is unsatisfiable: value of y is fixed for all values of x.

This Talk:

- Making QDPLL aware of dependencies.
- Identifying independence.
- Search-based QBF solving + dependency analysis.
- Implementation: DepQBF.

Solver	Score
DepQBF	$\mathbf{2 8 9 6 . 6 8}$
DepQBF-pre	2508.96
aqme-10	2467.96
qmaiga	2117.55
AlGSolve	2037.22
quantor-3.1	1235.14
struqs-10	947.83
nenofex-qbfeval10	829.11

QBFEVAL'10: score-based ranking.

Dependency Schemes: $D \subseteq\left(V_{\exists} \times V_{\forall}\right) \cup\left(V_{\forall} \times V_{\exists}\right)$.

- General framework for expressing (in)dependence in PCNFs.
- $(x, y) \notin D$: y independent from x.
- $(x, y) \in D$: conservatively regard y as depending on x.

D as Directed-Acyclic Graph (Dependency-DAG):

- Edges $x \rightarrow y$ iff $(x, y) \in D$.

Syntactic Approaches:

- Trivial dependency scheme $D^{\text {triv }}$ (given prefix).
- Quantifier trees $D^{\text {tree }}$.
- Standard dependency scheme $D^{\text {std }}$.
- Theory: $D^{\text {std }} \subseteq D^{\text {tree }} \subseteq D^{\text {triv }}$.

Example

Goal: dependency-DAG for $D^{\text {std }}$ in QDPLL \Rightarrow expecting more freedom.

Related Work:

- Classical result: description of QDPLL with $D^{\text {triv }}$.
- First generalization: QDPLL with $D^{\text {tree }}$.

Our Results:

- Description of QDPLL for arbitrary dependency schemes.
- Solver DepQBF: implementation of QDPLL with $D^{\text {std }}$.
- Previous work: compact dependency-DAG representation for $D^{\text {std }}$.
- Experimental evaluation.

```
```

State qdpll ()

```
```

State qdpll ()
while (true)
while (true)
State s = bcp ();
State s = bcp ();
if (s == UNDEF)
if (s == UNDEF)
// Make decision.
// Make decision.
v = select_dec_var ();
v = select_dec_var ();
assign_dec_var (v);
assign_dec_var (v);
else
else
// Conflict or solution.
// Conflict or solution.
// s == UNSAT or }\textrm{s}==\mathrm{ SAT.
// s == UNSAT or }\textrm{s}==\mathrm{ SAT.
btlevel = analyze_leaf (s);
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
if (btlevel == INVALID)
return s;
return s;
else
else
backtrack (btlevel);

```
```

 backtrack (btlevel);
    ```
```

```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    assign_forced_lit (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

QDPLL with Dependency Schemes

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

```
State qdpll ()
    while (true)
        State s = bcp ();
        if (s == UNDEF)
            // Make decision.
            v = select_dec_var ();
            assign_dec_var (v);
    else
        // Conflict or solution.
        // s == UNSAT or s == SAT.
        btlevel = analyze_leaf (s);
        if (btlevel == INVALID)
            return s;
        else
            backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    assign_forced_lit (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Parts to be Generalized from $D^{\text {triv }}$ to Arbitrary $D \subseteq D^{\text {triv }}$:

- Unit literal detection: expecting more units.
- Learning: expecting shorter constraints and "enabled" resolution steps.
- Stop criterion/asserting level: expecting longer backjumps.
- Selection of decision variables: expecting more freedom.

Focus: Decision Making

Decisions and Dependency-Order:

- Out-of-order decisions: generally unsound \Rightarrow must branch in " D-order".

Example

$\exists a \forall x, y \exists b . \phi$: branching on b possible by $D^{\text {triv }}$ only if x, y assigned.

Decision Candidates (DC):

- Def.: unassigned variables x where all $y \in \bar{D}(x)$ are assigned.
- Candidate has all "preconditions" wrt. D assigned, i.e. is enabled.

Example

$\exists a \forall x, y \exists b . \phi$: assigning a enables x and y by $D^{\text {triv }}$.

Lazy DC-Maintenance:

- DCs needed exactly before making a decision and not e.g. during BCP.
- Defer updating set of DCs as long as possible.
- Exploit DAG structure for incremental updates.

Decision Making: Compact Dependency-DAG for $D^{\text {std }}$

- For simplicity: ignoring dependencies of the form $\exists x \rightarrow \forall y$.
- DAG: edges $x \rightarrow y$ iff $(x, y) \in D$.
- Construct dependency-DAG over equivalence classes of variables.

Decision Making: Compact Dependency-DAG for $D^{\text {std }}$

- Merge $\forall x$ and $\forall y$ if have same outgoing pointers, i.e. $D(x)=D(y)$.

Decision Making: Compact Dependency-DAG for $D^{\text {std }}$

- Merge $\exists x$ and $\exists y$ if have same incoming pointers, i.e. $\bar{D}(x)=\bar{D}(y)$.

Decision Making: Compact Dependency-DAG for $D^{\text {std }}$

- Add non-transitive edges $[\exists x] \rightarrow[\exists y]$ if $\bar{D}(x) \subseteq \bar{D}(y)$.
- Delete redundant $\forall \rightarrow \exists$ edges.

Decision Making: Compact Dependency-DAG for $D^{\text {std }}$

- Only fully assigned classes possibly enable new candidates.
- Counters c in \forall-classes: number of unassigned variables in class.
- Relevant cases: $c=1 \rightarrow c=0$ and $c=0 \rightarrow c=1$.

Decision Making: Example

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned [M]-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edg̣es.
- $\left[\exists y_{1}, y_{2}\right]$ new DC: no unassigned $[\forall]$-refs.
- $\left[\exists y_{5}\right]$ not DC, has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ new DC: parent $\left[\exists y_{1}, y_{2}\right]$ DC and no unassigned $[\forall]$-refs.
- [$\left.\exists y_{6}\right]$ new DC: parent $\left[\exists y_{3}, y_{4}\right]$ DC and no unassigned [$\forall]$-refs.

Decision Making: Example

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assian $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- $\left[\exists y_{1}, y_{2}\right]$ new DC: no unassigned $[\forall]$-refs.
- $\left[\exists y_{5}\right]$ not $D C$, has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ new DC: parent $\left[\exists y_{1}, y_{2}\right]$ DC and no unassigned $[\forall]$-refs.
- $\left[\exists y_{6}\right]$ new DC: parent $\left[\exists y_{3}, y_{4}\right]$ DC and no unassigned [\forall]-refs.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- $\left[\exists y_{1}, y_{2}\right]$ new DC: no unassigned $[\forall]$-refs.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- $\left[\exists y_{1}, y_{2}\right]$ new DC: no unassigned $[\forall]$-refs.
- $\left[\exists y_{5}\right]$ not DC, has unassigned $[\forall]$-refs.
no unassigned [8]-refs.
- $\left[\exists y_{6}\right]$ new DC: parent $\left[\exists y_{3}, y_{4}\right]$ DC and no
unassigned [\forall]-refs.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow$ [$[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- $\left[\exists y_{1}, y_{2}\right]$ new DC: no unassigned $[\forall]$-refs.
- $\left[\exists y_{5}\right]$ not DC, has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ new DC: parent $\left[\exists y_{1}, y_{2}\right]$ DC and no unassigned $[\forall]$-refs.
[-y6] new DC: parent $\left[=y_{3}, y_{4}\right] D C$ and no unassigned [\forall]-refs.

- Assign $x_{3}: c=2 \rightarrow c=1$.
- No change, x_{4} still unassigned.
- Assign $x_{4}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- Parent $\left[\exists y_{1}, y_{2}\right]$ of $\left[\exists y_{3}, y_{4}\right]$ not DC.
- $\left[\exists y_{1}, y_{2}\right]$ has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ also ref'd by $\left[\forall x_{1}, x_{2}\right]$.
- $\Rightarrow\left[\exists y_{3}, y_{4}\right]$ not DC.
- Assign $x_{1}: c=2 \rightarrow c=1$.
- No change, x_{2} still unassigned.
- Assign $x_{2}: c=1 \rightarrow c=0$.
- Follow $[\forall] \rightarrow[\exists] \rightarrow^{*}[\exists]$ edges.
- $\left[\exists y_{1}, y_{2}\right]$ new DC: no unassigned $[\forall]$-refs.
- $\left[\exists y_{5}\right]$ not DC, has unassigned $[\forall]$-refs.
- $\left[\exists y_{3}, y_{4}\right]$ new DC: parent $\left[\exists y_{1}, y_{2}\right]$ DC and no unassigned $[\forall]$-refs.
- $\left[\exists y_{6}\right]$ new DC: parent $\left[\exists y_{3}, y_{4}\right]$ DC and no unassigned $[\forall]$-refs.

Decision Making: Backtracking Example

| QBFEVAL’08 (3326 formulae) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $D^{\text {triv }}$ | $D^{\text {tree }}$ | $D^{\text {std }}$ | QuBE6.6-np | QuBE6.6 |
| solved | 1223 | 1221 | $\mathbf{1 2 5 2}$ | 1106 | $\mathbf{2 2 7 7}$ |
| avg. time | 579.94 | 580.64 | $\mathbf{5 7 2 . 3 1}$ | 608.97 | $\mathbf{3 0 2 . 4 9}$ |
| QBFEVAL'07(1136 formulae) | | | | | |
| solved | 533 | 548 | $\mathbf{5 6 7}$ | 458 | $\mathbf{7 3 4}$ |
| avg. time | 497.12 | 484.69 | $\mathbf{4 6 9 . 9 7}$ | 549.29 | $\mathbf{3 4 8 . 0 5}$ |

Table: Comparison of DepQBF with $D^{\text {std }} \subseteq D^{\text {tree }} \subseteq D^{\text {triv }}$ and QuBE6.6.

DepQBF:

- QDPLL for PCNF with with clause- and cube-learning.
- Dependency-DAG for $D^{\text {std }}$ (primary), and $D^{\text {tree }}, D^{\text {triv }}$ (experimentally).
- No preprocessing.
- $D^{\text {std }}$ pays off despite DAG-overhead.
- More solved instances in less time.
- But: preprocessing is important.
- Reference: QuBE6.6 with(out) preprocessing (QuBE6.6-np) [GNT01].

| QBFEVAL'10 main track (568 formulae) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Solved+Unsolved | | Solved SAT | Solved UNSAT | | |
| | solved | avg.time | solved | avg.time | solved | avg.time |
| QuBE7.0-pre \Rightarrow DepQBF | $\mathbf{4 2 4}$ | $\mathbf{2 5 4 . 2 3}$ | $\mathbf{1 9 7}$ | $\mathbf{4 8 . 1 7}$ | $\mathbf{2 2 7}$ | $\mathbf{2 3 . 4 2}$ |
| QuBE7 | 414 | 310.29 | 187 | 130.52 | 227 | 58.33 |
| QuBE6.6 | 387 | 341.91 | 168 | 98.97 | 219 | 67.03 |
| without preprocessing | | | | | | |
| DepQBF | $\mathbf{3 7 0}$ | $\mathbf{3 3 7 . 1 0}$ | $\mathbf{1 6 5}$ | $\mathbf{5 4 . 5 8}$ | $\mathbf{2 0 5}$ | $\mathbf{2 0 . 8 2}$ |
| QuBE7.0-np | 332 | 425.44 | 135 | 147.71 | 197 | 47.27 |
| QuBE6.6-np | 301 | 468.51 | 113 | 136.48 | 188 | 55.27 |

Table: Comparison of DepQBF with $D^{\text {std }}$ and state-of-the-art QBF solvers. Ranking by number of solved formulae. Statistics include time for preprocessing.

Preprocessing:

- DepQBF with $D^{\text {std }}$: best both with and without preprocessing.
- QuBE7.0-pre: preprocessor integrated in QuBE7.0 [GMN10].

Experimental Results 3/5: QBFEVAL’10

Experimental Results 4/5: QBFEVAL'10

Experimental Results 5/5: QBFEVAL'10

QDPLL with Dependency Schemes:

- $D \subseteq D^{\text {triv }}$ relaxes prefix order to allow more freedom in QDPLL.

Implementation: QDPLL-based solver DepQBF.

- Compact dependency-DAG for $D^{\text {std }}$ over equivalence classes.
- Top-ranked solver in QBFEVAL'10: $D^{\text {std }}$ pays off despite DAG-overhead.
- See also Pragmatics of SAT 2010 (POS'10) workshop: "DepQBF: A Dependency-Aware QBF Solver (System Description)".

Future Work:

- Preprocessing,...

DepQBF 0.1 is open source: http://fmv.jku.at/depqbf/

[APPENDIX] - QDPLL 1/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

```
```

State qdpll ()

```
```

State qdpll ()
while (true)
while (true)
State s = bcp ();
State s = bcp ();
if (s == UNDEF)
if (s == UNDEF)
// Make decision.
// Make decision.
v = select_dec_var ();
v = select_dec_var ();
assign_dec_var (v);
assign_dec_var (v);
else
else
// Conflict or solution.
// Conflict or solution.
// s == UNSAT or }\textrm{s}==\mathrm{ SAT.
// s == UNSAT or }\textrm{s}==\mathrm{ SAT.
btlevel = analyze_leaf (s);
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
if (btlevel == INVALID)
return s;
return s;
else
else
backtrack (btlevel);

```
```

 backtrack (btlevel);
    ```
```

```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    assign_forced_lit (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

[APPENDIX] - QDPLL 2/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

```
State qdpll ()
    while (true)
        State s = bcp ();
        if (s == UNDEF)
            // Make decision.
            v = select_dec_var ();
            assign_dec_var (v);
        else
            // Conflict or solution.
            // s == UNSAT or s == SAT.
            btlevel = analyze_leaf (s);
            if (btlevel == INVALID)
                return s;
            else
                backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    assign_forced_lit (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Boolean Constraint Propagation (BCP):

- Assigning unit and pure literals.
- Augmented CNF: $\phi:=\phi_{O C L} \wedge \phi_{L C L} \vee \phi_{O C U}$.
- Original clauses $\phi_{O C L}$, learnt clauses $\phi_{L C L}$ and learnt cubes $\phi_{L C U}$.

[APPENDIX] - QDPLL 3/6

```
State qdpll ()
    while (true)
        State s = bcp ();
        if (s == UNDEF)
            // Make decision.
            v = select_dec_var ();
            assign_dec_var (v);
        else
            // Conflict or solution.
            // s == UNSAT or s == SAT.
            btlevel = analyze_leaf (s);
            if (btlevel == INVALID)
                return s;
            else
                backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    assign_forced_lit (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Decision Making:

- BCP saturated without detecting conflict/solution.
- Select and assign one decision candidate.
- Candidates: according to dependency scheme and partial assignment.

[APPENDIX] - QDPLL 4/6

```
State qdpll ()
    while (true)
        State s = bcp ();
        if (s == UNDEF)
            // Make decision.
            v = select_dec_var ();
            assign_dec_var (v);
        else
            // Conflict or solution.
            // s == UNSAT or s == SAT.
            btlevel = analyze_leaf (s);
            if (btlevel == INVALID)
                return s;
            else
                backtrack (btlevel);
```

DecLevel analyze_leaf (State s)
$\mathrm{R}=$ get_initial_reason (s);
// s == UNSAT: ' R ' is empty clause.
// s == SAT: 'R' is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))
p = get_pivot (R);
$\mathrm{A}=$ get_antecedent (p);
$R=$ constraint_res ($R, ~ p, A$);
add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Result Analysis:

- BCP detected conflict/solution.
- Conflict: empty clause.
- Solution: satisfying assignment or satisfied learnt cube.

[APPENDIX] - QDPLL 5/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

```
State qdpll ()
    while (true)
        State s = bcp ();
        if (s == UNDEF)
            // Make decision.
            v = select_dec_var ();
            assign_dec_var (v);
        else
            // Conflict or solution.
            // s == UNSAT or }\textrm{s}==\mathrm{ SAT.
            btlevel = analyze_leaf (s);
            if (btlevel == INVALID)
            else
            backtrack (btlevel);
```

 return s; assign_forced_lit (R);
    ```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Constraint Learning:

- Init. from conflict: empty clause.
- Init. from solution: sat. cube or new cube from satisfying assignment.
- Resolution/consensus: antecedents of units in current clause/cube.
- First-UIP: generalized stop criterion.

[APPENDIX] - QDPLL 6/6

[GNT02, Let02, ZM02, CGS98, GNT06, BKF95]

```
State qdpll ()
    while (true)
        State s = bcp ();
        if (s == UNDEF)
            // Make decision.
            v = select_dec_var ();
            assign_dec_var (v);
        else
            // Conflict or solution.
            // s == UNSAT or }\textrm{s}==\mathrm{ SAT.
            btlevel = analyze_leaf (s);
            if (btlevel == INVALID)
                return s;
            else
                backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
    R = get_initial_reason (s);
    // s == UNSAT: 'R' is empty clause.
    // s == SAT: 'R' is sat. cube...
    // ..or new cube from assignment.
    while (!stop_res (R))
        p = get_pivot (R);
        A = get_antecedent (p);
        R = constraint_res (R, p, A);
    add_to_formula (R);
    assign_forced_lit (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtrack:

- Assumption: learning always produces asserting constraints.
- Backtrack to asserting level.

[APPENDIX] - Unit Literal Detection

[CGS98, GNT02, ZM02, GNT07]
Given dependency scheme D for PCNF. Write $x \prec v$ if $(x, y) \in D$.

Definition (Unit Clause Rule)

A clause C is unit iff

- no literal $I \in C$ is assigned true,
- exactly one existential literal $l_{e} \in L_{\exists}(C)$ is unassigned,
- for all unassigned universal literals $I_{u} \in L_{\forall}(C): I_{u} \nprec l_{e}$.

Example: $\exists x \forall a \exists y, z . \phi^{\prime} \wedge(x \vee a \vee y \vee z)$.
Assign $\bar{x}, \bar{y}: \exists x \forall a \exists y, z . \phi^{\prime} \wedge(x \vee a \vee y \vee z)$.
Given $D^{\text {triv }}$ from prefix: $(x \vee a \vee y \vee z)$ not unit since $a \prec z$ (because $\forall a$ before $\exists z$).
Given $D \subseteq D^{\text {triv }}$ where $a \nprec z:(x \vee a \vee y \vee z)$ unit.

Practical Effects:

- Expecting more units when using $D \subseteq D^{\text {triv }}$.
- Combining two-literal watching with dependency checking.

[APPENDIX] - Constraint Reduction

Constraint Reduction: universal/existential reduction of clauses/cubes.

Definition (Universal Reduction of Clauses)

A universal literal $I_{U} \in L_{\forall}(C)$ can be deleted from a clause C iff

- there is no $I_{e} \in L_{\exists}(C)$ with $I_{u} \prec I_{e}$.
- The result of saturated universal reduction is denoted by $C R(C)$.
(Dual definition of existential reduction for cubes.)

Example: $\exists x \forall a \exists y . \phi^{\prime} \wedge(x \vee a \vee y)$.
Given $D^{\text {triv }}$ from prefix: a is irreducible in $(x \vee a \vee y)$ since $a \prec y$.
Given $D \subseteq D^{\text {triv }}$ where $a \nprec y$: a is reducible in ($x \vee a \vee y$), yielding $(x \vee y)$.

Practical Effects:

- Expecting shorter learnt constraints when using $D \subseteq D^{\text {triv }}$.
- Combining constraint reduction with dependency checks.

[APPENDIX] - Constraint Resolution

Constraint Resolution: Q-resolution/consensus of clauses/cubes.

Definition (Q-resolution for Clauses)

Clarifies Def. 7 in paper.
Let C_{1}, C_{2} be clauses with $v \in L_{\exists}\left(C_{1}\right), \bar{v} \in L_{\exists}\left(C_{2}\right)$.
(1) $C:=\left(C R\left(C_{1}\right) \cup C R\left(C_{2}\right)\right) \backslash\{v, \bar{v}\}$.
(2) If C contains complementary literals then no resolvent exists.
(3) Otherwise, resolvent $C^{\prime}:=C R(C)$ of C_{1} and C_{2} on $v:\left\{C_{1}, C_{2}\right\} \vdash{ }_{v} C^{\prime}$.
(Dual definition of consensus for cubes.)

Example: $\exists x \forall a \exists y, z . \phi^{\prime} \wedge(x \vee a \vee y \vee z) \wedge(x \vee a \vee y \vee \bar{z}) \wedge\left(x \vee \overline{C_{1}} \vee \overline{C_{3}} \vee z\right)$.
Given $D^{\text {triv }}$ from prefix: $\left\{C_{1}, C_{2}\right\} \vdash_{z}(x \vee a \vee y)$, but $\left\{(x \vee a \vee y), C_{3}\right\} \nvdash y$.
Given $D \subseteq D^{\text {triv }}$ where $a \nprec y:\left\{C_{1}, C_{2}\right\} \vdash_{z}(x \vee y)$, and $\left\{(x \vee y), C_{3}\right\} \vdash_{y}(x \vee \bar{a} \vee z)$.

Practical Effects:

- Possible reductions of "resolution-blocking" literals when using $D \subseteq D^{\text {triv }}$.

[APPENDIX] - Stop Criterion

Definition (Asserting Clause/Level)

Clarifies Def. 8 from paper. See also function get_reason_asserting_level in DepQBF 0.1 source code.
Let R be a resolvent i.e. $\{\ldots\} \vdash^{*} R$. Let $d:=\max \left(\left\{d /(I) \mid I \in L_{\exists}(R)\right\}\right)$. R is asserting at $a:=\max \left(\left\{d I(I)<d \mid I \in L_{\exists}(R)\right.\right.$ or $I \in L_{\forall}(R)$ with $\left.\left.I \prec d\right\}\right)$ iff
(1) the decision variable at level d is existential,
(2) there is exactly one $I \in L_{\exists}(R)$ with $d l(I)=d$,
(3) for all $I_{u} \in L_{\forall}(R)$ where $I_{u} \prec I_{\text {: }} I_{u}$ must be assigned false with $d l\left(I_{u}\right)<d$. (Dual definition for asserting cubes.)

Example: $\ldots \exists x \ldots \forall a \ldots \exists y, z \ldots \phi^{\prime} \wedge(x \vee a \vee y \vee z)$.
Given $D^{\text {triv }}$ from prefix: in $(\stackrel{\oplus 1}{x} \vee \stackrel{@ 3}{a} \vee \stackrel{\varrho 2}{y} \vee \stackrel{\varrho 4}{z}), z$ is unit at level 3 .
Given $D \subseteq D^{\text {triv }}$ where $a \nprec z$: in $\left(\stackrel{\oplus 1}{x} \vee \stackrel{\varrho 3}{a} \vee \frac{\varrho 2}{y} \vee \frac{\oplus 4}{z}\right), z$ is unit at level 2.

Practical Effects:

- Possibly longer backjumps when using $D \subseteq D^{\text {triv }}$.

U．Bubeck and H．Kleine Büning．
Bounded Universal Expansion for Preprocessing QBF．
In J．Marques－Silva and K．A．Sakallah，editors，SAT，volume 4501 of LNCS，pages 244－257．Springer， 2007.
圊
M．Benedetti．
Quantifier Trees for QBFs．
In F．Bacchus and T．Walsh，editors，SAT，volume 3569 of LNCS，pages 378－385．Springer， 2005.
目
A．Biere．
Resolve and Expand．
In H．H．Hoos and D．G．Mitchell，editors，SAT（Selected Papers），volume 3542 of LNCS，pages 59－70．Springer， 2004.
囯 H．Kleine Büning，M．Karpinski，and A．Flögel．
Resolution for Quantified Boolean Formulas．
Inf．Comput．，117（1）：12－18， 1995.
（ M．Cadoli，A．Giovanardi，and M．Schaerf．
An Algorithm to Evaluate Quantified Boolean Formulae．
In AAAI／IAAI，pages 262－267， 1998.
R
E．Giunchiglia，P．Marin，and M．Narizzano．
sQueezeBF：An Effective Preprocessor for QBFs．

In O. Strichman and S. Szeider, editors, SAT (accepted for publication), LNCS. Springer, 2010.
R
E. Giunchiglia, M. Narizzano, and A. Tacchella.

QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability.
In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of LNCS, pages 364-369. Springer, 2001.
圊
E. Giunchiglia, M. Narizzano, and A. Tacchella.

Learning for Quantified Boolean Logic Satisfiability.
In AAAI/IAAI, pages 649-654, 2002.
E. E. Giunchiglia, M. Narizzano, and A. Tacchella.

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas.
J. Artif. Intell. Res. (JAIR), 26:371-416, 2006.
E. E. Giunchiglia, M. Narizzano, and A. Tacchella.

Quantifier Structure in Search-Based Procedures for QBFs. TCAD, 26(3):497-507, 2007.
國 F. Lonsing and A. Biere.
A Compact Representation for Syntactic Dependencies in QBFs.
In O. Kullmann, editor, SAT, volume 5584 of LNCS, pages 398-411.
Springer, 2009.
F. Lonsing and A. Biere.

DepQBF: A Dependency-Aware QBF Solver (System Description).
In A. Van Gelder and D. Le Berre, editors, Pragmatics of SAT Workshop (POS), accepted for publication, 2010.
宔
R. Letz.

Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas.
In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of LNCS, pages 160-175. Springer, 2002.M. Samer and S. Szeider.

Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning (JAR), 42(1):77-97, 2009.
䔍
L. Zhang and S. Malik.

Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages 200-215. Springer, 2002.

