Integrating Dependency Schemes in Search-Based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at

SAT'10

July 11 - July 14, 2010 Edinburgh, Scotland, United Kingdom

Overview

Search-based QBF Solving for Prenex-CNF (PCNF): QDPLL

- Classical approach relies on linear quantifier prefix: $Q_1 Q_2 \dots Q_n$. ϕ .
- Analyzing variable dependencies: can prefix order be relaxed?

Example (Dependencies: quantifier ordering matters)

- $\forall x \exists y. (x = y)$ is satisfiable: value of y depends on value of x.
- $\exists y \forall x. (x = y)$ is unsatisfiable: value of y is fixed for all values of x.

This Talk:

- Making QDPLL aware of dependencies.
- Identifying independence.
- Search-based QBF solving + dependency analysis.
- Implementation: DepQBF.

Solver	Score		
DepQBF	2896.68		
DepQBF-pre	2508.96		
aqme-10	2467.96		
qmaiga	2117.55		
AIGSolve	2037.22		
quantor-3.1	1235.14		
struqs-10	947.83		
nenofex-qbfeval10	829.11		

QBFEVAL'10: score-based ranking.

[SS09, Bie04, BB07, Ben05]

Dependency Schemes: $D \subseteq (V_{\exists} \times V_{\forall}) \cup (V_{\forall} \times V_{\exists}).$

- General framework for expressing (in)dependence in PCNFs.
- $(x, y) \notin D$: y independent from x.
- $(x, y) \in D$: *conservatively* regard y as depending on x.

D as Directed-Acyclic Graph (Dependency-DAG):

• Edges
$$x \rightarrow y$$
 iff $(x, y) \in D$.

Syntactic Approaches:

- Trivial dependency scheme D^{triv} (given prefix).
- Quantifier trees D^{tree}.
- Standard dependency scheme D^{std}.
- Theory: $D^{\text{std}} \subseteq D^{\text{tree}} \subseteq D^{\text{triv}}$.

Example

Goal: dependency-DAG for D^{std} in QDPLL \Rightarrow expecting more freedom.

[CGS98, GNT07, LB09, LB10]

Related Work:

- Classical result: description of QDPLL with D^{triv}.
- First generalization: QDPLL with D^{tree}.

Our Results:

- Description of QDPLL for *arbitrary* dependency schemes.
- Solver DepQBF: implementation of QDPLL with D^{std}.
- Previous work: compact dependency-DAG representation for D^{std}.
- Experimental evaluation.

```
State qdpll ()
while (true) Decl
State s = bcp (); R
if (s == UNDEF) // Make decision. ///
v = select_dec_var (); ///
assign_dec_var (v); ///
else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID) as
return s; re
backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: 'R' is empty clause.
// s == SAT: 'R' is sat. cube...
// ..or new cube from assignment.
while (lstop_res (R))
p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);
add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

6

```
State gdpll ()
 while (true)
                                         DecLevel analyze leaf (State s)
    State s = bcp ();
                                           R = get_initial_reason (s);
   if (s == UNDEF)
                                           // s == UNSAT: 'R' is empty clause.
     // Make decision.
                                           // s == SAT: 'R' is sat. cube...
     v = select dec var ();
                                           // .. or new cube from assignment.
      assign dec var (v);
                                           while (!stop res (R))
    else
                                             p = qet pivot (R);
      // Conflict or solution.
                                             A = get antecedent (p);
      // s == UNSAT or s == SAT.
                                             R = constraint_res (R, p, A);
      btlevel = analyze leaf (s);
                                           add to formula (R);
      if (btlevel == INVALID)
                                            assign forced lit (R);
        return s;
                                            return get_asserting_level (R);
      else
       backtrack (btlevel);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Parts to be Generalized from D^{triv} to Arbitrary $D \subseteq D^{triv}$:

- Unit literal detection: expecting more units.
- Learning: expecting shorter constraints and "enabled" resolution steps.
- Stop criterion/asserting level: expecting longer backjumps.
- Selection of decision variables: expecting more freedom.

Decisions and Dependency-Order:

● Out-of-order decisions: generally unsound ⇒ must branch in "D-order".

Example

 $\exists a \forall x, y \exists b. \phi$: branching on *b* possible by D^{triv} only if *x*, *y* assigned.

Decision Candidates (DC):

- Def.: unassigned variables x where all $y \in \overline{D}(x)$ are assigned.
- Candidate has all "preconditions" wrt. D assigned, i.e. is enabled.

Example

 $\exists a \forall x, y \exists b. \phi$: assigning *a* enables *x* and *y* by D^{triv} .

Lazy DC-Maintenance:

- DCs needed exactly before making a decision and not e.g. during BCP.
- Defer updating set of DCs as long as possible.
- Exploit DAG structure for incremental updates.

Decision Making: Compact Dependency-DAG for D^{std}

[LB09]

- For simplicity: ignoring dependencies of the form $\exists x \rightarrow \forall y$.
- DAG: edges $x \rightarrow y$ iff $(x, y) \in D$.
- Construct dependency-DAG over equivalence classes of variables.

Decision Making: Compact Dependency-DAG for Dstd

• Merge $\forall x$ and $\forall y$ if have same *outgoing* pointers, i.e. D(x) = D(y).

Decision Making: Compact Dependency-DAG for Dstd

• Merge $\exists x$ and $\exists y$ if have same *incoming* pointers, i.e. $\overline{D}(x) = \overline{D}(y)$.

11

Decision Making: Compact Dependency-DAG for D^{std}

- Add non-transitive edges $[\exists x] \rightarrow [\exists y]$ if $\overline{D}(x) \subseteq \overline{D}(y)$.
- Delete redundant $\forall \rightarrow \exists$ edges.

Decision Making: Compact Dependency-DAG for Dstd

- Only fully assigned *classes* possibly enable new candidates.
- Counters *c* in \forall -classes: number of unassigned variables in class.
- Relevant cases: $c = 1 \rightarrow c = 0$ and $c = 0 \rightarrow c = 1$.

• Assign x_3 : $c = 2 \rightarrow c = 1$. • Assign x_4 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. DC • Assign x_1 : $c = 2 \rightarrow c = 1$. $[\forall x_3, x_4]_{c=2}$ • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. $[\exists y_3, y_4]$ • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ new DC: parent $[\exists y_1, y_2]$ DC and • $[\exists y_6]$ new DC: parent $[\exists y_3, y_4]$ DC and no $[\exists y_6]$

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assian x_{4} : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists v_3, v_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. • Assign x_1 : $c = 2 \rightarrow c = 1$. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ new DC: parent $[\exists y_1, y_2]$ DC and • $[\exists y_6]$ new DC: parent $[\exists y_3, y_4]$ DC and no

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assign x_4 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • \Rightarrow [$\exists y_3, y_4$] not DC. • Assign x_1 : $c = 2 \rightarrow c = 1$. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists v_3, v_4]$ new DC: parent $[\exists v_1, v_2]$ DC and • $[\exists v_6]$ new DC: parent $[\exists v_3, v_4]$ DC and no

DC • Assign x_3 : $c = 2 \rightarrow c = 1$. $[\forall x_1, x_2]_{c=1}$ No change, x₄ still unassigned. • Assign x_4 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. $[\exists y_1, y_2]$ • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • \Rightarrow [$\exists v_3, v_4$] not DC. DC • Assign x_1 : $c = 2 \rightarrow c = 1$. $[\forall x_3, x_4]_{c=0}$ No change, x₂ still unassigned. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. $[\exists y_3, y_4]$ • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists v_3, v_4]$ new DC: parent $[\exists v_1, v_2]$ DC and • $[\exists v_6]$ new DC: parent $[\exists v_3, v_4]$ DC and no $[\exists y_6]$

DC

 $[\exists y_5]$

 $[\forall x_5]_{c=1}$

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assign x_4 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. • Assign x_1 : $c = 2 \rightarrow c = 1$. No change, x₂ still unassigned. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists v_3, v_4]$ new DC: parent $[\exists v_1, v_2]$ DC and • $[\exists v_6]$ new DC: parent $[\exists v_3, v_4]$ DC and no

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assian x_1 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. DC • Assign x_1 : $c = 2 \rightarrow c = 1$. No change, x₂ still unassigned. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists v_3, v_4]$ new DC: parent $[\exists v_1, v_2]$ DC and • $[\exists v_6]$ new DC: parent $[\exists v_3, v_4]$ DC and no $[\exists y_6]$

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assian x_1 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. DC • Assign x_1 : $c = 2 \rightarrow c = 1$. No change, x₂ still unassigned. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ new DC: parent $[\exists y_1, y_2]$ DC and • $[\exists v_6]$ new DC: parent $[\exists v_3, v_4]$ DC and no

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assign x_4 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. DC • Assign x_1 : $c = 2 \rightarrow c = 1$. $[\forall x_3, x_4]_{c=0}$ No change, x₂ still unassigned. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ new DC: parent $[\exists y_1, y_2]$ DC and no unassigned $[\forall]$ -refs. • $[\exists y_6]$ new DC: parent $[\exists y_3, y_4]$ DC and no

• Assign x_3 : $c = 2 \rightarrow c = 1$. No change, x₄ still unassigned. • Assign x_4 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • Parent $[\exists y_1, y_2]$ of $[\exists y_3, y_4]$ not DC. • $[\exists y_1, y_2]$ has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ also ref'd by $[\forall x_1, x_2]$. • $\Rightarrow [\exists v_3, v_4]$ not DC. DC • Assign x_1 : $c = 2 \rightarrow c = 1$. No change, x₂ still unassigned. • Assign x_2 : $c = 1 \rightarrow c = 0$. • Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges. • $[\exists y_1, y_2]$ new DC: no unassigned $[\forall]$ -refs. • $[\exists y_5]$ not DC, has unassigned $[\forall]$ -refs. • $[\exists y_3, y_4]$ new DC: parent $[\exists y_1, y_2]$ DC and no unassigned $[\forall]$ -refs. • $[\exists y_6]$ new DC: parent $[\exists y_3, y_4]$ DC and no unassigned [V]-refs.

• Unassign x_3 : $c = 0 \rightarrow c = 1$.

- Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges.
- Disabling $[\exists y_3, y_4]$, ref'd by $[\forall x_3, x_4]$.
- Disabling $[\exists y_6]$, ref'd by $[\exists y_3, y_4]$.
- Unassign x_4 : $c = 1 \rightarrow c = 2$.
 - No additional work done.

- Unassign x_3 : $c = 0 \rightarrow c = 1$.
 - Follow $[\forall] \rightarrow [\exists] \rightarrow^* [\exists]$ edges.
 - Disabling [∃y₃, y₄], ref'd by [∀x₃, x₄].
 Disabling [∃y₆], ref'd by [∃y₃, y₄].
- Unassign x_4 : $c = 1 \rightarrow c = 2$.
 - No additional work done.

QBFEVAL'08 (3326 formulae)								
	D ^{triv}	D ^{tree}	D ^{std}	QuBE6.6-np	QuBE6.6			
solved	1223	1221	1252	1106	2277			
avg. time	579.94	580.64	608.97 572.31		302.49			
QBFEVAL'07 (1136 formulae)								
solved	533	548	567	458	734			
avg. time	497.12	484.69	469.97	549.29	348.05			

Table: Comparison of DepQBF with $D^{\text{std}} \subseteq D^{\text{tree}} \subseteq D^{\text{triv}}$ and QuBE6.6.

DepQBF:

- QDPLL for PCNF with with clause- and cube-learning.
- Dependency-DAG for *D*^{std} (primary), and *D*^{tree}, *D*^{triv} (experimentally).
- No preprocessing.
- *D*^{std} pays off despite DAG-overhead.
- More solved instances in less time.
- But: preprocessing is important.
- Reference: QuBE6.6 with(out) preprocessing (QuBE6.6-np) [GNT01].

QBFEVAL'10 main track (568 formulae)									
	Solved+Unsolved		Solved SAT		Solved UNSAT				
	solved	avg.time	solved	avg.time	solved	avg.time			
QuBE7.0-pre⇒DepQBF	424	254.23	197	48.17	227	23.42			
QuBE7	414	310.29	187	130.52	227	58.33			
QuBE6.6	387	341.91	168	98.97	219	67.03			
without preprocessing									
DepQBF	370	337.10	165	54.58	205	20.82			
QuBE7.0-np	332	425.44	135	147.71	197	47.27			
QuBE6.6-np	301	468.51	113	136.48	188	55.27			

Table: Comparison of DepQBF with *D*^{std} and state-of-the-art QBF solvers. Ranking by number of solved formulae. Statistics include time for preprocessing.

Preprocessing:

- DepQBF with *D*^{std}: best both with and without preprocessing.
- QuBE7.0-pre: preprocessor integrated in QuBE7.0 [GMN10].

Experimental Results 3/5: QBFEVAL'10

Experimental Results 5/5: QBFEVAL'10

QDPLL with Dependency Schemes:

• $D \subseteq D^{\text{triv}}$ relaxes prefix order to allow more freedom in QDPLL.

Implementation: QDPLL-based solver DepQBF.

- Compact dependency-DAG for *D*^{std} over equivalence classes.
- Top-ranked solver in QBFEVAL'10: *D*^{std} pays off despite DAG-overhead.
- See also *Pragmatics of SAT 2010 (POS'10)* workshop: "DepQBF: A Dependency-Aware QBF Solver (System Description)".

Future Work:

• Preprocessing,...

DepQBF 0.1 is open source: http://fmv.jku.at/depqbf/

```
State qdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)
    // Make decision.
    v = select_dec_var ();
    assign_dec_var (v);
else
    // Conflict or solution.
    // s == UNSAT or s == SAT.
    btlevel = analyze_leaf (s);
    if (btlevel == INVALID)
      return s;
else
      backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
R = get_initial_reason (s);
// s == UNSAT: 'R' is empty clause.
// s == SAT: 'R' is sat. cube...
// ..or new cube from assignment.
while (!stop_res (R))
p = get_pivot (R);
A = get_antecedent (p);
R = constraint_res (R, p, A);
add_to_formula (R);
assign_forced_lit (R);
return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

```
State gdpll ()
 while (true)
                                         DecLevel analyze leaf (State s)
   State s = bcp ();
                                           R = get initial reason (s);
   if (s == UNDEF)
                                           // s == UNSAT: 'R' is empty clause.
     // Make decision.
                                           // s == SAT: 'R' is sat. cube...
     v = select dec var ();
                                           // ..or new cube from assignment.
      assign dec var (v);
                                           while (!stop_res (R))
    else
                                             p = qet pivot (R);
      // Conflict or solution.
                                             A = get antecedent (p);
      // s == UNSAT or s == SAT.
                                             R = constraint_res (R, p, A);
      btlevel = analyze leaf (s);
                                            add to formula (R);
      if (btlevel == INVALID)
                                            assign forced lit (R);
        return s;
                                            return get asserting level (R);
      else
        backtrack (btlevel);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Boolean Constraint Propagation (BCP):

- Assigning unit and pure literals.
- Augmented CNF: $\phi := \phi_{OCL} \land \phi_{LCL} \lor \phi_{OCU}$.
- Original clauses ϕ_{OCL} , learnt clauses ϕ_{LCL} and learnt cubes ϕ_{LCU} .

```
State gdpll ()
 while (true)
                                         DecLevel analyze leaf (State s)
   State s = bcp ();
                                            R = get initial reason (s);
   if (s == UNDEF)
                                           // s == UNSAT: 'R' is empty clause.
     // Make decision.
                                           // s == SAT: 'R' is sat. cube...
      v = select dec var ();
                                            // .. or new cube from assignment.
      assign dec var (v);
                                            while (!stop_res (R))
    else
                                             p = qet pivot (R);
      // Conflict or solution.
                                             A = get antecedent (p);
      // s == UNSAT or s == SAT.
                                             R = constraint_res (R, p, A);
      btlevel = analyze leaf (s);
                                            add to formula (R);
      if (btlevel == INVALID)
                                            assign forced lit (R);
        return s;
                                            return get asserting level (R);
      else
        backtrack (btlevel);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Decision Making:

- BCP saturated without detecting conflict/solution.
- Select and assign one *decision candidate*.
- Candidates: according to dependency scheme and partial assignment.

```
State gdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)
// Make decision.
v = select_dec_var ();
d) // conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
return s;
else
backtrack (btlevel);
DecLevel analy
R = get_in
add_to_form
assign_forc
return get_in
```

DecLevel analyze_leaf (State s)
 R = get_initial_reason (s);
 // s == UNSAT: 'R' is empty clause.
 // s == SAT: 'R' is sat. cube...
 // ..or new cube from assignment.
 while (!stop_res (R))
 p = get_pivot (R);
 A = get_antecedent (p);
 R = constraint_res (R, p, A);
 add_to_formula (R);
 assign_forced_lit (R);
 return get asserting level (R);

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Result Analysis:

- BCP detected conflict/solution.
- Conflict: empty clause.
- Solution: satisfying assignment or satisfied learnt cube.

```
State gdpll ()
 while (true)
                                         DecLevel analyze leaf (State s)
   State s = bcp ();
                                            R = get initial reason (s);
   if (s == UNDEF)
                                           // s == UNSAT: 'R' is empty clause.
     // Make decision.
                                            // s == SAT: 'R' is sat. cube...
     v = select dec var ();
                                            // .. or new cube from assignment.
      assign dec var (v);
                                            while (!stop_res (R))
    else
                                             p = qet pivot (R);
      // Conflict or solution.
                                             A = get antecedent (p);
      // s == UNSAT or s == SAT.
                                             R = constraint_res (R, p, A);
      btlevel = analyze leaf (s);
                                            add to formula (R);
      if (btlevel == INVALID)
                                            assign forced lit (R);
        return s;
                                            return get asserting level (R);
      else
        backtrack (btlevel);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Constraint Learning:

- Init. from conflict: empty clause.
- Init. from solution: sat. cube or new cube from satisfying assignment.
- Resolution/consensus: antecedents of units in current clause/cube.
- First-UIP: generalized stop criterion.

```
State qdpll ()
while (true)
State s = bcp ();
if (s == UNDEF)
// Make decision.
//
v = select_dec_var ();
else
// Conflict or solution.
// s == UNSAT or s == SAT.
btlevel = analyze_leaf (s);
if (btlevel == INVALID)
return s;
else
backtrack (btlevel);
```

```
DecLevel analyze_leaf (State s)
  R = get_initial_reason (s);
  // s == UNSAT: 'R' is empty clause.
  // s == SAT: 'R' is sat. cube...
  // ..or new cube from assignment.
  while (!stop_res (R))
    p = get_pivot (R);
    A = get_antecedent (p);
    R = constraint_res (R, p, A);
    add_to_formula (R);
    return get_asserting_level (R);
```

Figure: QDPLL with conflict-driven clause and solution-driven cube learning.

Backtrack:

- Assumption: learning always produces asserting constraints.
- Backtrack to asserting level.

[CGS98, GNT02, ZM02, GNT07]

Given dependency scheme *D* for PCNF. Write $x \prec v$ if $(x, y) \in D$.

Definition (Unit Clause Rule)

A clause C is unit iff

(Dual definition for cubes.)

- no literal $I \in C$ is assigned true,
- exactly one existential literal $l_e \in L_{\exists}(C)$ is unassigned,
- for all unassigned universal literals $I_u \in L_{\forall}(C)$: $I_u \not\prec I_e$.

Example: $\exists x \forall a \exists y, z. \phi' \land (x \lor a \lor y \lor z).$

Assign $\overline{x}, \overline{y}$: $\exists x \forall a \exists y, z. \phi' \land (x \lor a \lor y \lor z)$.

Given D^{triv} from prefix: $(x \lor a \lor y \lor z)$ not unit since $a \prec z$ (because $\forall a \text{ before } \exists z$).

Given $D \subseteq D^{\text{triv}}$ where $a \not\prec z$: $(x \lor a \lor y \lor z)$ unit.

Practical Effects:

- Expecting more units when using $D \subseteq D^{triv}$.
- Combining two-literal watching with dependency checking.

[BKF95, GNT02, ZM02]

Constraint Reduction: universal/existential reduction of clauses/cubes.

Definition (Universal Reduction of Clauses)

A universal literal $I_u \in L_{\forall}(C)$ can be deleted from a clause C iff

• there is no $I_e \in L_{\exists}(C)$ with $I_u \prec I_e$.

• The result of saturated universal reduction is denoted by CR(C).

(Dual definition of existential reduction for cubes.)

Example: $\exists x \forall a \exists y. \phi' \land (x \lor a \lor y).$

Given D^{triv} from prefix: *a* is irreducible in $(x \lor a \lor y)$ since $a \prec y$.

Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y$: *a* is reducible in $(x \lor a \lor y)$, yielding $(x \lor y)$.

Practical Effects:

- Expecting shorter learnt constraints when using $D \subseteq D^{triv}$.
- Combining constraint reduction with dependency checks.

[BKF95, GNT02, ZM02, Let02, GNT06]

Constraint Resolution: Q-resolution/consensus of clauses/cubes.

Definition (Q-resolution for Clauses)

Clarifies Def. 7 in paper.

Let C_1, C_2 be clauses with $v \in L_{\exists}(C_1), \overline{v} \in L_{\exists}(C_2)$.

- If C contains complementary literals then no resolvent exists.
- Otherwise, resolvent C' := CR(C) of C_1 and C_2 on $v: \{C_1, C_2\} \vdash_v C'$.

(Dual definition of consensus for cubes.)

Example: $\exists x \forall a \exists y, z. \ \phi' \land (x \lor a \lor y \lor z) \land (x \lor a \lor y \lor \overline{z}) \land (x \lor \overline{a} \lor \overline{y} \lor z).$ Given D^{triv} from prefix: $\{C_1, C_2\} \vdash_z (x \lor a \lor y), \text{but } \{(x \lor a \lor y), C_3\} \not\models_y.$ Given $D \subseteq D^{\text{triv}}$ where $a \not\prec y: \{C_1, C_2\} \vdash_z (x \lor y), \text{and } \{(x \lor y), C_3\} \vdash_y (x \lor \overline{a} \lor z).$

Practical Effects:

• Possible reductions of "resolution-blocking" literals when using $D \subseteq D^{triv}$.

[ZM02, GNT06]

Definition (Asserting Clause/Level)

Clarifies Def. 8 from paper. See also function get_reason_asserting_level in DepQBF 0.1 source code.

Let *R* be a resolvent i.e. $\{\ldots\} \vdash^* R$. Let $d := max(\{dl(l) \mid l \in L_{\exists}(R)\})$. *R* is asserting at $a := max(\{dl(l) < d \mid l \in L_{\exists}(R) \text{ or } l \in L_{\forall}(R) \text{ with } l \prec d\})$ iff

the decision variable at level d is existential,

2 there is exactly one $l \in L_{\exists}(R)$ with dl(l) = d,

③ for all $I_u \in L_{\forall}(R)$ where $I_u \prec I$: I_u must be assigned false with $dI(I_u) < d$.

(Dual definition for asserting cubes.)

Example: ... $\exists x ... \forall a ... \exists y, z ... \phi' \land (x \lor a \lor y \lor z).$

Given D^{triv} from prefix: in $\begin{pmatrix} @1 \\ x & \lor & a \\ \end{pmatrix} \lor \begin{pmatrix} @2 \\ y & \lor & z \\ \end{pmatrix} \lor \lor \begin{pmatrix} @4 \\ z \end{pmatrix}$, *z* is unit at level 3.

Given $D \subseteq D^{\text{triv}}$ where $a \not\prec z$: in $\begin{pmatrix} @1 \\ x \\ & \vee \end{pmatrix} \begin{pmatrix} @2 \\ a \\ & y \end{pmatrix} \begin{pmatrix} @2 \\ & y \\ & z \end{pmatrix}$, *z* is unit at level 2.

Practical Effects:

• Possibly longer backjumps when using $D \subseteq D^{triv}$.

U. Bubeck and H. Kleine Büning.

Bounded Universal Expansion for Preprocessing QBF.

In J. Margues-Silva and K. A. Sakallah, editors, SAT, volume 4501 of LNCS, pages 244–257. Springer, 2007.

M. Benedetti.

Quantifier Trees for OBEs

In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS, pages 378-385. Springer, 2005.

A. Biere.

Resolve and Expand.

In H. H. Hoos and D. G. Mitchell, editors, SAT (Selected Papers), volume 3542 of LNCS, pages 59-70. Springer, 2004.

- H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 117(1):12-18, 1995.

M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In AAAI/IAAI, pages 262-267, 1998.

E. Giunchiglia, P. Marin, and M. Narizzano. sQueezeBF: An Effective Preprocessor for QBFs. In O. Strichman and S. Szeider, editors, *SAT (accepted for publication)*, LNCS. Springer, 2010.

E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability.

In R. Goré, A. Leitsch, and T. Nipkow, editors, *IJCAR*, volume 2083 of *LNCS*, pages 364–369. Springer, 2001.

- E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean Logic Satisfiability. In *AAAI/IAAI*, pages 649–654, 2002.
- E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas.

J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

- E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier Structure in Search-Based Procedures for QBFs. *TCAD*, 26(3):497–507, 2007.
- F. Lonsing and A. Biere. A Compact Representation for Syntactic Dependencies in QBFs. In O. Kullmann, editor, *SAT*, volume 5584 of *LNCS*, pages 398–411. Springer, 2009.

F. Lonsing and A. Biere.

DepQBF: A Dependency-Aware QBF Solver (System Description). In A. Van Gelder and D. Le Berre, editors, *Pragmatics of SAT Workshop* (*POS*), accepted for publication, 2010.

R. Letz.

Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas.

In U. Egly and C. G. Fermüller, editors, *TABLEAUX*, volume 2381 of *LNCS*, pages 160–175. Springer, 2002.

M. Samer and S. Szeider.

Backdoor Sets of Quantified Boolean Formulas. Journal of Automated Reasoning (JAR), 42(1):77–97, 2009.

L. Zhang and S. Malik.

Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation.

In P. Van Hentenryck, editor, *CP*, volume 2470 of *LNCS*, pages 200–215. Springer, 2002.