Failed Literal Detection for QBF

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at

SAT'11 June 19 - 22, 2011 Ann Arbor, Michigan, USA

Motivation

Failed Literal Detection (FL) for Preprocessing

- Established technique in SAT solving. What about QBF?
- This work: three (two novel) FL strategies for QBF.

Florian Lonsing and Armin Biere

Overview

Part 1: Preliminaries

- From propositional logic (SAT) to QBF.
- QBF semantics: assignment trees.

Part 2: Failed Literal Detection (FL)

- Necessary assignments and QBF models.
- Three FL approaches and related practical aspects.
- Incomparability results.
- Experiments.

Part 1: Preliminaries

Propositional Logic (SAT):

- Our focus: formulae in conjunctive normal form (CNF).
- Set of Boolean variables $V := \{x_1, \ldots, x_m\}$.
- Literals I := v or $I := \neg v$ for $v \in V$.
- Clauses $C_i := (I_1 \vee \ldots \vee I_{k_i}).$
- CNF $\phi := \bigwedge C_i$.

Quantified Boolean Formulae (QBF):

- Prenex CNF: quantifier-free CNF over quantified Boolean variables.
- PCNF $Q_1 S_1 \dots Q_n S_n$. ϕ , where $Q_i \in \{\exists, \forall\}$, scopes S_i .
- Scope *S_i*: set of quantified variables.
- $Q_i S_i \leq Q_{i+1} S_{i+1}$: scopes are linearly ordered.

Example

Clauses (CNFs) are sets of literals (clauses). A CNF: $\{x, \overline{y}\}, \{\overline{x}, y\}$ and a PCNF: $\forall x \exists y. \{x, \overline{y}\}, \{\overline{x}, y\}$.

Assignment Trees (AT):

- Assignment $A: V \rightarrow \{true, false\}$ maps variables to truth values.
- Paths from root to a leaf in AT represent assignments.
- Nodes along path (except root) assign truth values to variables.

CNF-Model:

- A path in the assignment tree of a CNF ϕ which satisfies all clauses.
- CNF ϕ is satisfiable iff it has a CNF-model *m*: $m \models \phi$.

Assignment Trees (AT):

- Assignment $A: V \rightarrow \{true, false\}$ maps variables to truth values.
- Paths from root to a leaf in AT represent assignments.
- Nodes along path (except root) assign truth values to variables.

CNF-Model:

- A path in the assignment tree of a CNF ϕ which satisfies all clauses.
- CNF ϕ is satisfiable iff it has a CNF-model *m*: $m \models \phi$.

PCNF-Model: $\psi := Q_1 S_1 \dots Q_n S_n. \phi$

- An (incomplete) AT where *every* path is a CNF-model of CNF part φ.
- Restriction: nodes which assign ∀-variables have exactly one sibling.
- PCNF ψ is satisfiable iff it has a PCNF-model *m*: $m \models \psi$.

PCNF-Model: $\psi := Q_1 S_1 \dots Q_n S_n. \phi$

- An (incomplete) AT where *every* path is a CNF-model of CNF part ϕ .
- Restriction: nodes which assign ∀-variables have exactly one sibling.
- PCNF ψ is satisfiable iff it has a PCNF-model *m*: $m \models \psi$.

Definition (Assignments of Literals)

Given a PCNF ψ , the *assignment of a literal I* yields the formula $\psi[I]$ where clauses Occs(I) and literals $\neg I$ in $Occs(\neg I)$ are deleted.

Definition (Model-equivalence)

Two PCNFs ψ and ψ' are *model-equivalent*, written as $\psi \equiv_m \psi'$, iff for all assignment trees *t*: $t \models \psi$ iff $t \models \psi'$.

Definition (Universal Reduction)

Given a clause *C*, $UR(C) := C \setminus \{l_u \in L_{\forall}(C) \mid \not\exists l_e \in L_{\exists}(C), l_u < l_e\}$, i.e. deleting universal literals which are "tailing" by quantifier ordering. Given PCNF ψ and clause *C*. Then $\psi \wedge C \equiv_m \psi \wedge UR(C)$ [SDB06].

Example

Definition (Satisfiability-equivalence)

Two PCNFs ψ and ψ' are *satisfiability-equivalent*, written as $\psi \equiv_s \psi'$, iff: if ψ is satisfiable then ψ' is satisfiable and vice versa.

Definition (Pure Literal Rule)

Given a PCNF ψ , a literal *I* where $Occs(I) \neq \emptyset$ and $Occs(\neg I) = \emptyset$ is *pure*: if $q(I) = \exists$ then $\psi \equiv_s \psi[I]$, and if $q(I) = \forall$ then $\psi \equiv_s \psi[\neg I]$.

Example

$$\begin{array}{lll} \psi & := & \exists e_1 \forall a_2 \exists e_3, e_4. \ \phi \\ \phi & := & & \\ & & \{e_1\}, & & \\ & & \{\neg e_1, e_3\}, \\ & & & \{\neg a_2, \neg e_3\} \end{array}$$
 Variable a_2 is pure: $\psi[a_2]$ (shortening clauses).

Definition (Unit Clause Rule)

Given a PCNF ψ . A clause $C \in \psi$ where $UR(C) = \{I\}$ is *unit* and $\psi \equiv_s \psi[I]$.

Example

$$\begin{array}{lll} \psi & := & \exists e_1 \forall a_2 \exists e_3, e_4. \ \phi \\ \phi & := & & \\ & & \{e_1\}, & & \\ & & \{e_1\}, & \\ & & \{\neg e_1, e_3\}, \\ & & \{\neg e_3\} \end{array}$$

Definition (Quantified Boolean Constraint Propagation)

Given a PCNF ψ and a literal *x* called *assumption*. Formula *QBCP*(ψ , *x*) is obtained from ψ [*x*] by applying UR, unit clause and pure literal rule.

Part 2: Failed Literal Detection (FL)

Definition

Given PCNF ψ and $x_i \in V$. Assignment $x_i \mapsto v$, where $v \in \{ false, true \}$, is necessary for satisfiability of ψ iff $x_i \mapsto v$ is part of *every* path in *every* PCNF-model of ψ .

Example

e₁ → true is necessary for satisfiability of ψ.

Goal: Detection of (Subset of) Necessary Assignments in QBFs.

Exponential reduction of search space.

Definition

Given PCNF ψ and $x_i \in V$. Assignment $x_i \mapsto v$, where $v \in \{ false, true \}$, is necessary for satisfiability of ψ iff $x_i \mapsto v$ is part of *every* path in *every* PCNF-model of ψ .

Example

*e*₁ → *true* is necessary for satisfiability of ψ.

Goal: Detection of (Subset of) Necessary Assignments in QBFs.

• Exponential reduction of search space.

Failed Literal Detection (FL) for SAT:

- BCP-based approach to detect subset of necessary assignments.
- Def. failed literal x for CNF ϕ : if $\emptyset \in BCP(\phi, x)$ then $\phi \equiv_m \phi \land \{\neg x\}$.
- FL based on deriving empty clause from assumption and BCP.

FL for QBF:

- Def.: failed literal *x* for PCNF ψ : if $\psi \equiv_m \psi \land \{\neg x\}$.
- QBCP-based approach like for SAT is unsound due to \exists/\forall prefix.

Example

$$\psi := \forall x \exists y. \{x, \neg y\}, \{\neg x, y\}.$$
 We have $\emptyset \in QBCP(\psi, y)$ but $\psi \not\equiv_s \psi \land \{\neg y\}.$

Our Work:

- Three (one known, two novel) FL approaches for QBF.
- Soundness established by SAT-testing, abstraction and Q-resolution.
- QBCP for efficiency.

Failed Literal Detection (FL) for SAT:

- BCP-based approach to detect subset of necessary assignments.
- Def. failed literal x for CNF ϕ : if $\emptyset \in BCP(\phi, x)$ then $\phi \equiv_m \phi \land \{\neg x\}$.
- FL based on deriving empty clause from assumption and BCP.

FL for QBF:

- Def.: failed literal *x* for PCNF ψ : if $\psi \equiv_m \psi \land \{\neg x\}$.
- QBCP-based approach like for SAT is unsound due to \exists/\forall prefix.

Example

$$\psi := \forall x \exists y. \{x, \neg y\}, \{\neg x, y\}.$$
 We have $\emptyset \in QBCP(\psi, y)$ but $\psi \not\equiv_s \psi \land \{\neg y\}.$

Our Work:

- Three (one known, two novel) FL approaches for QBF.
- Soundness established by SAT-testing, abstraction and Q-resolution.
- QBCP for efficiency.

Theorem

- For CNF ϕ and literal $x, \phi \land \{\neg x\}$ is unsatisfiable iff $\phi \equiv_m \phi \land \{x\}$.
- 2 For CNFs ϕ and ϕ' with $\phi \equiv_m \phi'$, $Q_1 S_1 \dots Q_n S_n$. $\phi \equiv_m Q_1 S_1 \dots Q_n S_n$. ϕ' .

Full Propositional Satisfiability Testing: [PS10, SB05]

- PCNF ψ := Q₁S₁...Q_nS_n. φ: find necessary assignments of CNF φ.
- Calling SAT solver: if $\phi \land \{\neg x\}$ is unsatisfiable, then $\psi \equiv_m \psi \land \{x\}$.
- Failed literals learnt (by SAT solver) on CNF can be added to PCNF.
- Drawback: exponential-time.

Example

$$\begin{split} \psi &:= \exists e_1 \forall a_2 \exists e_3. \ \{e_1, a_2, e_3\}, \{e_1, a_2, \neg e_3\}, \{e_1, \neg a_2, e_3\}, \\ \{e_1, \neg a_2, \neg e_3\}. \ A \text{ SAT solver will find out that the CNF part with assumption} \\ \neg e_1 \text{ is unsatisfiable, hence } \{e_1\} \text{ can be learnt.} \end{split}$$

Problems:

- SAT-testing is expensive: use QBCP instead.
- $QBCP(\psi, x)$ with assumption x for FL on PCNF ψ is unsound.

Definition (Quantifier Abstraction)

For $\psi := Q_1 S_1 \dots Q_{i-1} S_{i-1} Q_i S_i \dots Q_n S_n$, ϕ , the quantifier abstraction of ψ with respect to S_i is $Abs(\psi, i) := \exists (S_1 \cup \dots \cup S_{i-1}) Q_i S_i \dots Q_n S_n$. ϕ .

Idea: carry out QBCP on abstraction of ψ .

- If $x \in S_i$ then treat all variables smaller than x as existentially quantified.
- Example: $Abs(\exists x \forall y \exists z. \phi, 3) = \exists x \exists y \exists z. \phi$.
- Overapproximation: if $m \models \psi$ then $m \models Abs(\psi, i)$.

Theorem

Given PCNF $\psi := Q_1 S_1 \dots Q_n S_n$. ϕ and literal x where $v(x) \in S_i$. If $\emptyset \in QBCP(Abs(\psi, i), x)$ then $\psi \equiv_m \psi \land \{\neg x\}$.

Practical Application:

• FL using QBCP on abstraction is sound and runs in polynomial-time.

Example

$$\begin{split} &\psi:=\forall a_1\exists e_2, e_3\forall a_4\exists e_5. \ \{a_1,e_2\}, \{\neg a_1,e_3\}, \{e_3,\neg e_5\}, \{a_1,e_2,\neg e_3\}, \\ &\{\neg e_2,a_4,e_5\}. \text{ We get } \emptyset\in QBCP(Abs(\psi,2),\neg e_3): \neg a_1 \text{ (treated as existential)}, \\ &\neg e_5 \text{ and } \neg e_2 \text{ (due to UR) are unit, } \{a_1,e_2\} \text{ is empty. Unit clause } \{e_3\} \text{ is learnt.} \end{split}$$

Drawback:

- $Abs(\psi, i)$ generally has fewer universal variables than ψ .
- QBCP on $Abs(\psi, i)$ is possibly "weaker" than on ψ (see slide 26).

Definition (Q-resolution)

Let
$$C_1, C_2$$
 be clauses with $v \in C_1, \neg v \in C_2$ and $q(v) = \exists [BKF95]$.

$$C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{v, \neg v\}.$$

- ② If $\{x, \neg x\}$ ⊆ $C_1 \otimes C_2$ (tautology) then no Q-resolvent exists.
- Otherwise, Q-resolvent $C := UR(C_1 \otimes C_2)$ of C_1 and C_2 on v: $\{C_1, C_2\} \vdash^* C$.

Q-Resolution: combination of propositional resolution and UR.

• For PCNF ψ , clause *C*: if $\psi \vdash^* C$ then $\psi \equiv_m \psi \land C$ [BL99, SDB06].

Idea: heuristically validate $\emptyset \in QBCP(\psi, x)$ on *original* PCNF.

- Try to derive the negated assumption $\{\neg x\}$ by Q-resolution.
- Resolution candidates are selected from clauses "touched" by QBCP.
- Like conflict-driven clause learning (CDCL) in search-based solvers.

Corollary

Given PCNF $\psi := Q_1 S_1 \dots Q_n S_n$. ϕ and literal x where $v(x) \in S_i$. If $\emptyset \in QBCP(\psi, x)$ and $\psi \vdash^* \{\neg x\}$ then $\psi \equiv_m \psi \land \{\neg x\}$.

Example

$$\begin{split} \psi &:= \exists e_1, e_2 \forall a_3 \exists e_4, e_5. \ \{a_3, e_5\}, \{\neg e_2, e_4\}, \{\neg e_1, e_4\}, \{e_1, e_2, \neg e_5\}. \\ \text{We get } \emptyset \in \textit{QBCP}(\psi, \neg e_4): \neg e_1, \neg e_2 \text{ and } \neg e_5 \text{ are unit}, \{a_3, e_5\} \text{ is empty.} \\ \text{Unit clause } \{e_4\} \text{ is derived by resolving clauses in reverse-chronological order: } (\{a_3, e_5\}, \{e_1, e_2, \neg e_5\}) \vdash \{e_1, e_2\}, (\{e_1, e_2\}, \{\neg e_2, e_4\}) \vdash \{e_1, e_4\}, \\ (\{e_1, e_4\}, \{\neg e_1, e_4\}) \vdash \{e_4\}. \end{split}$$

Practical Application:

- Advantage: original prefix allows full propagation power in QBCP.
- QBCP-based selection of resolution candidates is only a heuristic.

Proposition

SAT-based FL, abstraction-based FL and QBCP-guided Q-resolution are incomparable to each other with respect to detecting necessary assignments.

Consequences:

- There are PCNFs where one approach can detect a necessary assignment the other one cannot.
- No approach can detect all necessary assignments.
- Crucial: Q-resolution for CDCL is not optimal (see also [SB05]).
- (How) Can we apply quantifier abstraction for clause learning?

Proposition

Abstraction-based FL and QBCP-guided Q-resolution are incomparable to each other with respect to detecting necessary assignments.

(Examples for other combinations may be found in our paper).

Example

$$\begin{split} \psi &:= \forall a_1 \exists e_2, e_3 \forall a_4 \exists e_5. \{a_1, e_2\}, \{\neg a_1, e_3\}, \{e_3, \neg e_5\}, \{a_1, e_2, \neg e_3\}, \\ \{\neg e_2, a_4, e_5\}. \text{ We have } \emptyset \in QBCP(Abs(\psi, 2), \neg e_3) \text{ but } \psi \not\vdash^* \{e_3\}: \\ \text{assignment } \{e_3\} \mapsto \textit{true} \text{ is necessary but Q-resolution } \textit{cannot derive } \{e_3\}. \end{split}$$

Example (same as on slide 24)

$$\begin{split} \psi &:= \exists e_1, e_2 \forall a_3 \exists e_4, e_5. \{a_3, e_5\}, \{\neg e_2, e_4\}, \{\neg e_1, e_4\}, \{e_1, e_2, \neg e_5\}. \\ \text{We get } \emptyset \in QBCP(\psi, \neg e_4) \text{ and also } \psi \vdash^* \{e_4\} \text{ from touched clauses.} \\ \text{But } \emptyset \notin QBCP(Abs(\psi, 3), \neg e_4): \text{ due to abstraction, UR is not applicable to make } \{a_3, e_5\} \text{ empty.} \end{split}$$

Preprocessor "**QxBF**": FL-based preprocessor operating in rounds.

 Abstraction-based FL ("ABS"), QBCP-guided Q-resolution ("QRES"), and SAT-based FL ("SAT"). At most 80 seconds spent on FL.

Preprocessor "bloqqer":

- Joint work with Armin Biere and Martina Seidl: "Blocked Clause Elimination for QBF (QBCE)". In *Proc. CADE 2011*.
- BCE and related techniques [JBH10, HJB10] applied to QBF.

Preprocessor "sQueezeBF": part of QuBE solver [GMN10a, GMN10b].

DepQBF on QBFEVAL'10 (568 formulae, 900 sec. time limit)						
Preprocessing	Solved	Time (Preprocessing)	SAT	UNSAT		
bloqqer+(ABS+SAT)	468	197.31 (16.47)	224	244		
bloqqer	466	198.50 (7.69)	223	243		
sQueezeBF	435	233.28 (36.94)	201	234		
sQueezeBF+(ABS+SAT)	434	239.84 (42.79)	201	233		
SAT	379	322.31 (7.17)	167	212		
ABS+SAT	378	323.19 (7.21)	167	211		
ABS	375	327.64 (3.33)	168	207		
QRES	374	327.63 (1.83)	167	207		
None	372	334.60 (—)	166	206		

DepQBF on QBFEVAL'10 (568 formulae, 900 sec. time limit)				
Preprocessing	Solved	Solved by Preprocessing (% of Solved)		
bloqqer+(ABS+SAT)	468	172 (36.7%)		
bloqqer	466	148 (31.7%)		
sQueezeBF	435	39 (8.9%)		
sQueezeBF+(ABS+SAT)	434	64 (14.7%)		
ABS+SAT	378	30 (7.9%)		

Notes:

- (ABS+SAT) only solved 2 instances which bloqqer did not solve, and 120 in other direction.
- (ABS+SAT) only solved 12 instances which sQueezeBF did not solve, and 21 in other direction.

On formulae not solved by preprocessing:

- (ABS+SAT) only fixed avg. 1348 assignments.
- After sQueezeBF, (ABS+SAT) still fixed avg. 186 assignments.
- After bloqqer, (ABS+SAT) still fixed avg. 16 assignments.

Times Plot: DepQBF with Different Preprocessors

Experiments: Incomparability

QBFEVAL'10: 524 formulae completed by all					
Preprocessing	None	ABS	QRES	SAT	
Avg. Fixed	607.17	730.31	724.10	715.77	
Med. Fixed	103.5	137.00	135.00	181.50	
Avg. Time	0.02	3.19	0.76	10.80	
Med. Time	0.00	0.16	0.02	0.20	
Avg. Props/As	—	118.80	51.08	—	
Med. Props/As	—	40.01	6.68	—	

Table: Average and median run times, fixed assignments, and propagations per assumption for FL approaches. "None" is QBCP on original formula only.

QBFEVAL'10: formulae with different fixed assignments (FAs)							
	ABS vs. QRES		ABS vs. SAT		QRES vs. SAT		
Formulae with Diff. FAs	130		183		220		
Formulae wrt. Unique FAs	121	9	57	126	36	180	
Total Unique FAs	3752	58	24268	16648	24237	19874	
Avg. Unique FAs	28.86	0.44	132.61	90.97	110.16	90.33	
Med. Unique FAs	1	0	0	13	0	5	
Avg. Diff. in Unique FAs	28.41		41.63		19.83		
Med. Diff. in Unique FAs	1		-14		-4.5		

Table: Pairwise comparison of FL approaches (complete runs).

Failed Literal Detection (FL):

- Necessary assignments: exponential reduction of search-space.
- Soundness of FL for QBF: abstraction, Q-resolution, and SAT-testing.
- Future work: dynamic applications of FL.

Incomparability of FL Approaches:

- Not just theory, but also shows up in practice.
- CDCL by Q-resolution in QBF is not optimal, see also [SB05].

Experiments:

- Positive effects of FL on elimination- and search-based QBF solvers.
- FL is complementary to state-of-the-art preprocessing techniques.
- Up to 30% of QBFEVAL'10 formulae solved by preprocessing.
- See also our CADE 2011 paper, and bloqqer: http://fmv.jku.at/bloqqer/

QxBF is Open Source: http://fmv.jku.at/qxbf/

References

U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for Preprocessing QBF. In J. Marques-Silva and K. A. Sakallah, editors, *SAT*, volume 4501 of *LNCS*, pages 244–257. Springer, 2007.

D. Le Berre.

Exploiting the Real Power of Unit Propagation Lookahead. *Electronic Notes in Discrete Mathematics*, 9:59–80, 2001.

A. Biere.

Resolve and Expand.

In H. H. Hoos and D. G. Mitchell, editors, *SAT (Selected Papers)*, volume 3542 of *LNCS*, pages 59–70. Springer, 2004.

- - H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas. *Inf. Comput.*, 117(1):12–18, 1995.

H. Kleine Büning and T. Lettmann. *Propositional Logic: Deduction and Algorithms.* Cambridge University Press, New York, NY, USA, 1999.

F. Bacchus and J. Winter.

Effective Preprocessing with Hyper-Resolution and Equality Reduction.

In E. Giunchiglia and A. Tacchella, editors, *SAT*, volume 2919 of *LNCS*, pages 341–355. Springer, 2003.

- E. Giunchiglia, P. Marin, and M. Narizzano. QuBE7.0 (System Description). JSAT, 7:83–88, 2010.
- E. Giunchiglia, P. Marin, and M. Narizzano.

sQueezeBF: An Effective Preprocessor for QBFs Based on Equivalence Reasoning.

In O. Strichman and S. Szeider, editors, *SAT*, volume 6175 of *LNCS*, pages 85 – 98. Springer, 2010.

M. Heule, M. Järvisalo, and A. Biere. Clause Elimination Procedures for CNF Formulas.

In C. G. Fermüller and A. Voronkov, editors, *LPAR (Yogyakarta)*, volume 6397 of *Lecture Notes in Computer Science*, pages 357–371. Springer, 2010.

M. Järvisalo, A. Biere, and M. Heule.

Blocked Clause Elimination.

In J. Esparza and R. Majumdar, editors, *TACAS*, volume 6015 of *LNCS*, pages 129–144. Springer, 2010.

I. Lynce and J. P. Marques Silva.

Probing-Based Preprocessing Techniques for Propositional Satisfiability.

In ICTAI, pages 105-. IEEE Computer Society, 2003.

F. Pigorsch and C. Scholl.

An AIG-Based QBF-Solver Using SAT for Preprocessing. In S. S. Sapatnekar, editor, *DAC*, pages 170–175. ACM, 2010.

J. Rintanen.

Improvements to the Evaluation of Quantified Boolean Formulae. In T. Dean, editor, *IJCAI*, pages 1192–1197. Morgan Kaufmann, 1999.

- H. Samulowitz and F. Bacchus.

Using SAT in QBF.

In P. van Beek, editor, *CP*, volume 3709 of *LNCS*, pages 578–592. Springer, 2005.

- H. Samulowitz and F. Bacchus.

Binary Clause Reasoning in QBF.

In A. Biere and C. P. Gomes, editors, *SAT*, volume 4121 of *LNCS*, pages 353–367. Springer, 2006.

H. Samulowitz, J. Davies, and F. Bacchus.

Preprocessing QBF.

In F. Benhamou, editor, *CP*, volume 4204 of *LNCS*, pages 514–529. Springer, 2006.