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Motivation

Failed Literal Detection (FL) for Preprocessing
Established technique in SAT solving. What about QBF?
This work: three (two novel) FL strategies for QBF.
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QBFEVAL 2010: 524 formulae where each strategy completed

FL Strategy 1
FL Strategy 2
FL Strategy 3

QBCP only
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Overview

Part 1: Preliminaries
From propositional logic (SAT) to QBF.

QBF semantics: assignment trees.

Part 2: Failed Literal Detection (FL)
Necessary assignments and QBF models.

Three FL approaches and related practical aspects.

Incomparability results.

Experiments.
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Part 1: Preliminaries
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From SAT to QBF

Propositional Logic (SAT):
Our focus: formulae in conjunctive normal form (CNF).

Set of Boolean variables V := {x1, . . . , xm}.
Literals l := v or l := ¬v for v ∈ V .

Clauses Ci := (l1 ∨ . . . ∨ lki ).

CNF φ :=
V

Ci .

Quantified Boolean Formulae (QBF):
Prenex CNF: quantifier-free CNF over quantified Boolean variables.

PCNF Q1S1 . . .QnSn. φ, where Qi ∈ {∃, ∀}, scopes Si .

Scope Si : set of quantified variables.

QiSi ≤ Qi+1Si+1: scopes are linearly ordered.

Example

Clauses (CNFs) are sets of literals (clauses).
A CNF: {x , y}, {x , y} and a PCNF: ∀x∃y . {x , y}, {x , y}.
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SAT Semantics

Assignment Trees (AT):
Assignment A : V → {true, false} maps variables to truth values.
Paths from root to a leaf in AT represent assignments.
Nodes along path (except root) assign truth values to variables.

CNF-Model:
A path in the assignment tree of a CNF φ which satisfies all clauses.
CNF φ is satisfiable iff it has a CNF-model m: m |= φ.

Example

φ := {e1,¬a2, e3},
{e1,¬a2,¬e3},
{¬e1, a2,¬e3},
{¬e1,¬a2, e3}

¬a2

e1¬e1

a2 a2¬a2

1 1 0 0 1 0 0 1
¬e3/e3
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Semantics: From SAT to QBF

PCNF-Model: ψ := Q1S1 . . .QnSn. φ

An (incomplete) AT where every path is a CNF-model of CNF part φ.

Restriction: nodes which assign ∀-variables have exactly one sibling.

PCNF ψ is satisfiable iff it has a PCNF-model m: m |= ψ.

Example

ψ := ∃e1∀a2∃e3. φ

φ := {e1,¬a2, e3},
{e1,¬a2,¬e3},
{¬e1, a2,¬e3},
{¬e1,¬a2, e3}

¬a2

e1¬e1

a2 a2¬a2

1 1 0 0 1 0 0 1
¬e3/e3
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QBF Propagation Rules (1/5)

Definition (Assignments of Literals)

Given a PCNF ψ, the assignment of a literal l yields the formula ψ[l] where
clauses Occs(l) and literals ¬l in Occs(¬l) are deleted.

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ := {e1, a2, e3, e4},
{e1, a2,¬e4},
{¬e1, e3,¬e4},
{¬a2,¬e3}

ψ[e4]
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QBF Propagation Rules (2/5)

Definition (Model-equivalence)

Two PCNFs ψ and ψ′ are model-equivalent, written as ψ ≡m ψ′, iff for all
assignment trees t : t |= ψ iff t |= ψ′.

Definition (Universal Reduction)

Given a clause C, UR(C) := C \ {lu ∈ L∀(C) |6 ∃le ∈ L∃(C), lu < le}, i.e.
deleting universal literals which are “tailing” by quantifier ordering.
Given PCNF ψ and clause C. Then ψ ∧ C ≡m ψ ∧ UR(C) [SDB06].

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{e1, a2},
{¬e1, e3},
{¬a2,¬e3}

UR({e1, a2})
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QBF Propagation Rules (3/5)

Definition (Satisfiability-equivalence)

Two PCNFs ψ and ψ′ are satisfiability-equivalent, written as ψ ≡s ψ
′, iff: if ψ

is satisfiable then ψ′ is satisfiable and vice versa.

Definition (Pure Literal Rule)

Given a PCNF ψ, a literal l where Occs(l) 6= ∅ and Occs(¬l) = ∅ is pure: if
q(l) = ∃ then ψ ≡s ψ[l], and if q(l) = ∀ then ψ ≡s ψ[¬l].

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{e1},
{¬e1, e3},
{¬a2,¬e3}

Variable a2 is pure: ψ[a2] (shortening clauses).
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QBF Propagation Rules (4/5)

Definition (Unit Clause Rule)

Given a PCNF ψ. A clause C ∈ ψ where UR(C) = {l} is unit and ψ ≡s ψ[l].

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{e1},
{¬e1, e3},
{¬e3}

Clauses {e1} and {¬e3} are unit: ψ[e1][¬e3].
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QBF Propagation Rules (5/5)

Definition (Quantified Boolean Constraint Propagation)

Given a PCNF ψ and a literal x called assumption. Formula QBCP(ψ, x) is
obtained from ψ[x ] by applying UR, unit clause and pure literal rule.

Example

ψ := ∃e1∀a2∃e3,e4. φ

φ :=

{}

Empty clause derived from assumption e4:
∅ ∈ QBCP(ψ, e4).
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Part 2: Failed Literal Detection (FL)
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Models and Necessary Assignments

Definition

Given PCNF ψ and xi ∈ V . Assignment xi 7→ v , where v ∈ {false, true}, is
necessary for satisfiability of ψ iff xi 7→ v is part of every path in every
PCNF-model of ψ.

Example

ψ := ∃e1∀a2∃e3. φ

φ := {e1,¬a2, e3},
{e1,¬a2,¬e3},
{¬e1, a2,¬e3},
{¬e1,¬a2, e3}

e1 7→ true is necessary for
satisfiability of ψ.

¬a2

e1

a2a2¬a2

¬e1

1 1
¬e3/e3

1 1 0 0 0 0

Goal: Detection of (Subset of) Necessary Assignments in QBFs.
Exponential reduction of search space.
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Motivation

Failed Literal Detection (FL) for SAT:
BCP-based approach to detect subset of necessary assignments.

Def. failed literal x for CNF φ: if ∅ ∈ BCP(φ, x) then φ ≡m φ ∧ {¬x}.
FL based on deriving empty clause from assumption and BCP.

FL for QBF:
Def.: failed literal x for PCNF ψ: if ψ ≡m ψ ∧ {¬x}.
QBCP-based approach like for SAT is unsound due to ∃/∀ prefix.

Example

ψ := ∀x∃y . {x ,¬y}, {¬x , y}. We have ∅ ∈ QBCP(ψ, y) but ψ 6≡s ψ ∧ {¬y}.

Our Work:

Three (one known, two novel) FL approaches for QBF.

Soundness established by SAT-testing, abstraction and Q-resolution.

QBCP for efficiency.
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Known Approach: SAT-Based FL for QBF

Theorem

1 For CNF φ and literal x, φ ∧ {¬x} is unsatisfiable iff φ ≡m φ ∧ {x}.
2 For CNFs φ and φ′ with φ ≡m φ′, Q1S1 . . .QnSn. φ ≡m Q1S1 . . .QnSn. φ

′.

Full Propositional Satisfiability Testing: [PS10, SB05]

PCNF ψ := Q1S1 . . .QnSn. φ: find necessary assignments of CNF φ.

Calling SAT solver: if φ ∧ {¬x} is unsatisfiable, then ψ ≡m ψ ∧ {x}.
Failed literals learnt (by SAT solver) on CNF can be added to PCNF.

Drawback: exponential-time.

Example

ψ := ∃e1∀a2∃e3. {e1, a2, e3}, {e1, a2,¬e3}, {e1,¬a2, e3},
{e1,¬a2,¬e3}. A SAT solver will find out that the CNF part with assumption
¬e1 is unsatisfiable, hence {e1} can be learnt.
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Abstraction-Based FL (1/2)

Problems:
SAT-testing is expensive: use QBCP instead.

QBCP(ψ, x) with assumption x for FL on PCNF ψ is unsound.

Definition (Quantifier Abstraction)

For ψ := Q1S1 . . .Qi−1Si−1QiSi . . . . . .QnSn. φ, the quantifier abstraction of ψ
with respect to Si is Abs(ψ, i) := ∃(S1 ∪ . . . ∪ Si−1)QiSi . . .QnSn. φ.

Idea: carry out QBCP on abstraction of ψ.

If x ∈ Si then treat all variables smaller than x as existentially quantified.

Example: Abs(∃x∀y∃z. φ, 3) = ∃x∃y∃z. φ.

Overapproximation: if m |= ψ then m |= Abs(ψ, i).
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Abstraction-Based FL (2/2)

Theorem

Given PCNF ψ := Q1S1 . . .QnSn. φ and literal x where v(x) ∈ Si . If
∅ ∈ QBCP(Abs(ψ, i), x) then ψ ≡m ψ ∧ {¬x}.

Practical Application:
FL using QBCP on abstraction is sound and runs in polynomial-time.

Example

ψ := ∀a1∃e2,e3∀a4∃e5. {a1, e2}, {¬a1, e3}, {e3,¬e5}, {a1, e2,¬e3},
{¬e2, a4, e5}. We get ∅ ∈ QBCP(Abs(ψ, 2),¬e3): ¬a1 (treated as existential),
¬e5 and ¬e2 (due to UR) are unit, {a1, e2} is empty. Unit clause {e3} is learnt.

Drawback:
Abs(ψ, i) generally has fewer universal variables than ψ.

QBCP on Abs(ψ, i) is possibly “weaker” than on ψ (see slide 26).
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QBCP-Guided Q-Resolution (1/2)

Definition (Q-resolution)

Let C1,C2 be clauses with v ∈ C1,¬v ∈ C2 and q(v) = ∃ [BKF95].
1 C1 ⊗ C2 := (UR(C1) ∪ UR(C2)) \ {v ,¬v}.
2 If {x ,¬x} ⊆ C1 ⊗ C2 (tautology) then no Q-resolvent exists.
3 Otherwise, Q-resolvent C := UR(C1 ⊗ C2) of C1 and C2 on v :
{C1,C2} `∗ C.

Q-Resolution: combination of propositional resolution and UR.

For PCNF ψ, clause C: if ψ `∗ C then ψ ≡m ψ ∧ C [BL99, SDB06].

Idea: heuristically validate ∅ ∈ QBCP(ψ, x) on original PCNF.

Try to derive the negated assumption {¬x} by Q-resolution.

Resolution candidates are selected from clauses “touched” by QBCP.

Like conflict-driven clause learning (CDCL) in search-based solvers.
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QBCP-Guided Q-Resolution (2/2)

Corollary

Given PCNF ψ := Q1S1 . . .QnSn. φ and literal x where v(x) ∈ Si . If
∅ ∈ QBCP(ψ, x) and ψ `∗ {¬x} then ψ ≡m ψ ∧ {¬x}.

Example

ψ := ∃e1,e2∀a3∃e4,e5. {a3, e5}, {¬e2, e4}, {¬e1, e4}, {e1, e2,¬e5}.
We get ∅ ∈ QBCP(ψ,¬e4): ¬e1, ¬e2 and ¬e5 are unit, {a3, e5} is empty.
Unit clause {e4} is derived by resolving clauses in reverse-chronological
order: ({a3, e5}, {e1, e2,¬e5}) ` {e1, e2}, ({e1, e2}, {¬e2, e4}) ` {e1, e4},
({e1, e4}, {¬e1, e4}) ` {e4}.

Practical Application:
Advantage: original prefix allows full propagation power in QBCP.

QBCP-based selection of resolution candidates is only a heuristic.
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Comparing FL Approaches (1/2)

Proposition

SAT-based FL, abstraction-based FL and QBCP-guided Q-resolution are
incomparable to each other with respect to detecting necessary assignments.

Consequences:
There are PCNFs where one approach can detect a necessary
assignment the other one cannot.

No approach can detect all necessary assignments.

Crucial: Q-resolution for CDCL is not optimal (see also [SB05]).

(How) Can we apply quantifier abstraction for clause learning?

Florian Lonsing and Armin Biere Failed Literal Detection for QBF
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Comparing FL Approaches (2/2) – Example

Proposition

Abstraction-based FL and QBCP-guided Q-resolution are incomparable to
each other with respect to detecting necessary assignments.

(Examples for other combinations may be found in our paper).

Example

ψ := ∀a1∃e2,e3∀a4∃e5. {a1, e2}, {¬a1, e3}, {e3,¬e5}, {a1, e2,¬e3},
{¬e2, a4, e5}. We have ∅ ∈ QBCP(Abs(ψ, 2),¬e3) but ψ 6`∗ {e3}:
assignment {e3} 7→ true is necessary but Q-resolution cannot derive {e3}.

Example (same as on slide 24)

ψ := ∃e1,e2∀a3∃e4,e5. {a3, e5}, {¬e2, e4}, {¬e1, e4}, {e1, e2,¬e5}.
We get ∅ ∈ QBCP(ψ,¬e4) and also ψ `∗ {e4} from touched clauses.
But ∅ 6∈ QBCP(Abs(ψ, 3),¬e4): due to abstraction, UR is not applicable to
make {a3, e5} empty.
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Experiments: Solver Performance

Preprocessor “QxBF”: FL-based preprocessor operating in rounds.

Abstraction-based FL (“ABS”), QBCP-guided Q-resolution (“QRES”),
and SAT-based FL (“SAT”). At most 80 seconds spent on FL.

Preprocessor “bloqqer”:
Joint work with Armin Biere and Martina Seidl:
“Blocked Clause Elimination for QBF (QBCE)”. In Proc. CADE 2011.

BCE and related techniques [JBH10, HJB10] applied to QBF.

Preprocessor “sQueezeBF”: part of QuBE solver [GMN10a, GMN10b].

DepQBF on QBFEVAL’10 (568 formulae, 900 sec. time limit)
Preprocessing Solved Time (Preprocessing) SAT UNSAT

bloqqer+(ABS+SAT) 468 197.31 (16.47) 224 244
bloqqer 466 198.50 (7.69) 223 243

sQueezeBF 435 233.28 (36.94) 201 234
sQueezeBF+(ABS+SAT) 434 239.84 (42.79) 201 233

SAT 379 322.31 (7.17) 167 212
ABS+SAT 378 323.19 (7.21) 167 211

ABS 375 327.64 (3.33) 168 207
QRES 374 327.63 (1.83) 167 207
None 372 334.60 (—) 166 206
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Experiments: FL and other Preprocessors

DepQBF on QBFEVAL’10 (568 formulae, 900 sec. time limit)
Preprocessing Solved Solved by Preprocessing (% of Solved)

bloqqer+(ABS+SAT) 468 172 (36.7%)
bloqqer 466 148 (31.7%)

sQueezeBF 435 39 (8.9%)
sQueezeBF+(ABS+SAT) 434 64 (14.7%)

ABS+SAT 378 30 (7.9%)

Notes:
(ABS+SAT) only solved 2 instances which bloqqer did not solve, and 120
in other direction.

(ABS+SAT) only solved 12 instances which sQueezeBF did not solve,
and 21 in other direction.

On formulae not solved by preprocessing:
(ABS+SAT) only fixed avg. 1348 assignments.

After sQueezeBF, (ABS+SAT) still fixed avg. 186 assignments.

After bloqqer, (ABS+SAT) still fixed avg. 16 assignments.
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Times Plot: DepQBF with Different Preprocessors
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Experiments: Incomparability

QBFEVAL’10: 524 formulae completed by all
Preprocessing None ABS QRES SAT

Avg. Fixed 607.17 730.31 724.10 715.77
Med. Fixed 103.5 137.00 135.00 181.50
Avg. Time 0.02 3.19 0.76 10.80
Med. Time 0.00 0.16 0.02 0.20

Avg. Props/As — 118.80 51.08 —
Med. Props/As — 40.01 6.68 —

Table: Average and median run times, fixed assignments, and propagations per
assumption for FL approaches. “None” is QBCP on original formula only.

QBFEVAL’10: formulae with different fixed assignments (FAs)
ABS vs. QRES ABS vs. SAT QRES vs. SAT

Formulae with Diff. FAs 130 183 220
Formulae wrt. Unique FAs 121 9 57 126 36 180

Total Unique FAs 3752 58 24268 16648 24237 19874
Avg. Unique FAs 28.86 0.44 132.61 90.97 110.16 90.33
Med. Unique FAs 1 0 0 13 0 5

Avg. Diff. in Unique FAs 28.41 41.63 19.83
Med. Diff. in Unique FAs 1 -14 -4.5

Table: Pairwise comparison of FL approaches (complete runs).
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Conclusions

Failed Literal Detection (FL):
Necessary assignments: exponential reduction of search-space.

Soundness of FL for QBF: abstraction, Q-resolution, and SAT-testing.

Future work: dynamic applications of FL.

Incomparability of FL Approaches:
Not just theory, but also shows up in practice.

CDCL by Q-resolution in QBF is not optimal, see also [SB05].

Experiments:
Positive effects of FL on elimination- and search-based QBF solvers.

FL is complementary to state-of-the-art preprocessing techniques.

Up to 30% of QBFEVAL’10 formulae solved by preprocessing.

See also our CADE 2011 paper, and bloqqer:
http://fmv.jku.at/bloqqer/

QxBF is Open Source: http://fmv.jku.at/qxbf/
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