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Abstract

The satisfiability problem (SAT) can be used to encode many problems of other domains

since it is the first one to be proven NP-complete. Powerful SAT solvers have been devel-

oped in the last years which can handle large real-world problems in a reasonable amount

of time. Today’s significant challenges on SAT solvers include the transition to parallel

computer architectures. Various techniques have been developed to utilize multiple cores,

but those are limited to multi-core CPU systems.

This thesis evaluates another concept of parallelism than what is state-of-the-art today.

An algorithm is developed that is based on a ‘streaming’ principle, like it is optimal for

massively parallel systems, including modern graphics cards. To take advantage of this

principle, major changes to existing algorithms are necessary, first of all to avoid branches

whenever possible. This also gives the opportunity to add parallelism in the sense of

bit-parallelism.

As the evaluation will show, there is a good chance that the implemented algorithm

will perform well on massively parallel systems. Even on regular computer systems further

optimization potential is conceivable.
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Zusammenfassung

Das “Satisfiability Problem (SAT)” bietet die Möglichkeit, auch viele Probleme aus an-

deren Problemklassen abzubilden. Der Grund dafür liegt darin, dass es das erste Problem

war, das nachweislich der Klasse “NP-vollständig” zugeordnet werden konnte. In den

letzten Jahren konnten leistungsstarke Algorithmen zur Lösung dieser Probleme (“SAT

solver”) entwickelt werden, welche für viele reelle Aufgaben eingesetzt werden können.

Neue Entwicklungen im Bereich von Multiprozessoren stellen die Forschung heutzutage

vor neue Herausforderungen. Neue, parallele Algorithmen wurden entwickelt, um die

neu gewonnenen Ressourcen ausnützen zu können, jedoch sind diese meist auf Mehrkern-

Prozessoren ausgelegt.

Diese Arbeit versucht die Parallelisierung auf einem alternativen Weg anzugehen, ent-

gegen dem aktuellen Stand der Technik. Zu diesem Zweck wird ein Algorithmus entwick-

elt, der nach einem “streaming”-Konzept arbeitet und so besonders für massiv-parallele

Systeme wie Grafikprozessoren gut geeignet sein soll. Um diesen Algorithmus umzuset-

zen, sind grundlegende Änderungen im Kern üblicher Algorithmen notwendig. Diese

Änderungen ermöglichen außerdem den Einsatz von Bit-Parallelismus als zweite Paral-

lelisierungstechnik.

Wie in der Evaluierungsphase der Arbeit zu sehen sein wird, hat der entwickelte Algo-

rithmus durchaus Potential um auf massiv-parallelen Systemen gute Ergebnisse zu erzielen.

Die Arbeit zeigt außerdem noch andere Optimierungsmöglichkeiten für die Grundzüge des

Algorithmus auf.
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selbstverständlich gehalten, die volle Freiheit über meinen Weg im Leben zu haben. Wie

sich aber herausstellte, haben nicht alle dasselbe Glück und müssen in vielen Bereichen

des Lebens Abstriche machen.

Ich bin unendlich dankbar, dass ihr mich in jedem meiner Schritte ermutigt und
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1 Introduction

There exist many problems that can be encoded as propositional satisfiability (SAT) prob-

lems. The fields of applications are diverse, including formal verification of hardware and

software design ([12, 33]). There even exist compilers that generate SAT problems au-

tomatically from a higher abstraction level (e.g. [8]). There are hundreds of applications

for SAT solving, for more examples there exists a really comprehensive survey by Gu

et al. [18]. A historically interesting fact is that SAT problems were the first to be clas-

sified as NP-complete by Cook in 1971 [10], hence theoretically all other problems in NP

can be translated into a SAT problem (e.g. quasigroup problems [40]).

As already mentioned, deciding satisfiability is NP-complete and therefore really hard

to implement efficiently. In theory you have to check every possible assignment of each

variable if it satisfies the given propositional formula, which leads to 2n checks. It is totally

clear that there is no effective way to find a solution for large problems with such a naive

approach.

Martin Davis and Hilary Putnam made the first step in a more sophisticated way of

computing the satisfiability of a problem in 1960 [14]. The problem at that time was the

very limited computational power - especially in terms of limited main memory. Only

very small instances were solvable with the available systems, also because algorithms

were very memory-intense. Nevertheless many improvements have been made to this very

basic algorithm until now - state-of-the-art SAT solvers still use the basic principles of

Davis and Putnam.

SAT solvers nowadays can handle real-world problems not only by improved computational

power, but also because of extensive research results in the past 20 years. New algorithms

have been developed that utilize powerful techniques like machine learning or probability

theory applied to new developed heuristics.

Another significant issue today concerns multiprocessing and in general parallelism,

this is a very recent topic in SAT solving research. There exist different approaches of

utilizing new multiprocessor architectures, which can be found in Sect. 3. This work deals

with a rather unconventional type of parallelism which is discussed at the beginning of

Sect. 1.1.

This thesis will give a general overview of SAT solving starting with a history including

the basic types of SAT solvers in Sect. 2. It also introduces current techniques of parallel

SAT solving in the subsequent Sect. 3. Failed literal probing - the algorithm that has been

implemented in this thesis - is one kind of probing-based simplification techniques, which

are described in Sect. 4. Related work regarding bit-parallel SAT algorithms is discussed

in Sect. 5. Sections 6 and 7 show details of how the algorithm is implemented followed

by the experiments section including benchmarks and their evaluation. The last Sect. 8

subsumes the results of the thesis and gives a short outlook on future work to improve the

developed algorithm.
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1.1 Motivation

The motivation of this work is to go a different way of implementing a parallel SAT solving

algorithm. Research concentrates on enhancing heuristics and the usage of high-level

parallelism. These algorithms are heavily based on random memory accesses and many

complex procedures. This is acceptable for current CPU architectures although caches are

generally not utilized well. Other processor architectures like graphics processing units

(GPUs) do not allow such a programming paradigm (at least they do not work efficiently

with them).

Different from a CPU which works kind of control-flow based, a GPU works with data-

flows. The difference is that a GPU works massively parallel and executes the same action

(e.g. pixel transformation) on distinct data (pixels). Originally these operations were very

simple or even fixed. By introducing modern real-time computer graphics it was necessary

to handle more complex operations (so-called shaders). These small programs were the

preliminary stage of today’s ’General Purpose GPUs’ (GPGPUs).

These GPGPUs made it possible to use the processing power of the highly parallel

GPU for many other non-graphic applications. The task of porting an existing algorithm

to work efficiently on a graphics card still is a very challenging task.

The most challenging one when developing GPGPU algorithms is to avoid branch di-

vergence. A graphics card executes blocks of threads exactly in parallel (exactly means

that the same instructions are executed on different data at the same time; also called

SIMD - single instruction multiple data). If these instructions contain branches, differ-

ent data can lead to different paths, which slows parallel execution down. This effect

occurs because threads have to execute different code which violates the need to have

same instructions for all threads. We will see later in this thesis how this influences the

development of the targeted algorithm.

Contrary to what the reader might expect, this work does not result in a GPGPU algo-

rithm, but should be an evaluation and a first step into that direction. This idea of a

’streaming’ algorithm is also applicable for CPUs because caches may be better utilized

and result in good performance. The development of a branch-less algorithm as well as the

enhancement to utilize bit-parallelism itself is a challenging task. Since a fully functional

SAT solving algorithm is very stochastic in its nature, a more deterministic and simple

algorithm has been chosen for this work: failed literal probing. The core functionality

which takes most of the execution time is equal for both algorithms.

This work should result in an algorithm that can be ported to a GPGPU implemen-

tation without having much troubles related to branch divergence. Another aim is to

evaluate if the use of bit-parallelism can obtain good results compared to a basic im-

plementation. Other optimizations should also be evaluated for their effectiveness (e.g.

multi-threading, cache optimizations, SSE operations).

1.2 Contribution

This thesis answers the following questions:

• Is it possible to develop a failed literal probing algorithm that behaves in a data

streaming manner?
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• Can the use of bit-parallelism speed-up this algorithm and to which extent?

• Does this approach have potential to perform well on massively parallel systems?

• Which optimizations are conceivable regarding prospects of a modern computing

system?

• What are the possible drawbacks of the targeted algorithm?

• Are there potential optimizations and additional functionality which are not part of

this work?
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2 SAT Solving History

When speaking of satisfying a CNF formula it means to find a set of variable assignments

so that the whole formula is satisfied (resolves to true). SAT solving algorithms can be

split in two top-level categories: incomplete and complete SAT solvers. Both of them

are well researched and are recent topics but differ in a major property: incomplete SAT

solvers only try to prove satisfiability whereas complete SAT solvers are able to prove sat-

isfiability as well as unsatisfiability. This work concentrates on complete SAT algorithms

that originate from the Davis-Putnam procedure but a short insight in incomplete SAT is

given nevertheless.

2.1 Preliminaries

SAT problems are generally encoded as propositional formulas in conjunctive normal form

(CNF). The only symbols used in a formula are ∧ for conjunction, ∨ for disjunction and ¬

for negation (which is only allowed directly in front of literals). The following definitions

show how a CNF formula is built and which properties it can have.

Definition 1. A CNF formula is a conjunction of clauses
∧

i ci. A CNF formula is

satisfied if all containing clauses ci are satisfied.

Definition 2. A clause is a disjunction of literals
∨

j lj.

Definition 3. A literal is a propositional variable x or its negation ¬x.

Definition 4. A propositional variable can be assigned a value 1 which represents the

boolean value true (positive) or 0 which represents false (negative).

Definition 5. An assignment is a mapping from a propositional variable to a truth value.

If a mapping exists for all propositional variables the assignment is called complete assign-

ment, otherwise it is called partial assignment.

Definition 6. A clause can be in one of the following four states:

• satisfied - at least one literal resolves to true

• falsified - all literals resolve to false

• undefined - at least one literal is unassigned and all assigned literals resolve to false

• unit - exactly one literal is unassigned whereas all others resolve to false

2.2 Incomplete SAT Solving

Incomplete SAT algorithms are designed to find a satisfying assignment in a given time

period, but are not able to determine if a problem is unsatisfiable. It just terminates

reporting an error that no satisfying assignment can be found. The basis for almost all

incomplete SAT algorithms is stochastic local search. Starting back in 1990 two papers by

Adorf and Johnston [1] and Minton et al. [34] revealed that applying local search algorithms

to large problems (n-queens) performs better than complete (systematic) algorithms. The
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success of these two applications were the motivation for Selman et al. to develop GSAT,

the reference algorithm when speaking of incomplete SAT solvers.

The principle of GSAT can be explained easily: A random truth assignment for all

variables is generated initially. Then the algorithm ’flips’ single assignments (inverts the

assigned truth value) that promise to satisfy most clauses. This step is repeated until

a satisfying assignment is found or a threshold of maximum flips is reached. The whole

process, including a new randomly generated initial assignment, is repeated until another

threshold is reached.

The decision which assignment to flip is - as already mentioned above - based on a

simple local heuristic, namely the number of additionally satisfied clauses. With this

heuristic it is possible to move towards a ’better’, more likely solution. The drawback of

this strategy is that several problems tend to be only satisfiable with a specific assignment

whereas the heuristic tends to flip it because it often occurs inverse. Another consideration

they made is called sideways moves, which describes the case that flipping an assignment

only satisfies as much clauses as not flipping the assignment. It was observed that taking

sideways moves into account yields much better results for many problems. An interesting

fact about GSAT is that the authors are not able to explain why it performs so well on

chosen problems.

There are many optimizations to the basic algorithm of GSAT, which actually gain

performance by introducing diverse heuristics and additional randomizations (often called

noise in the literature). A good overview of optimizations on incomplete SAT solving is

given in [27].

More information on incomplete SAT solvers can be found in Sect. 5, where UnitWalk,

an incomplete SAT solver introduced by Hirsch and Kojevnikov in [26] is modified to

utilize bit-parallel operations. The modified version UnitMarch of Heule and van Maaren

has been introduced in [23].

2.3 Resolution-Based Procedure

From this section on this work focuses on complete SAT solvers, where two algorithms build

the basis for SAT solvers nowadays – resolution-based and learning-based procedures. The

first resolution-based one that actually revealed significantly improved performance over a

naive guessing algorithm was the Davis-Putnam procedure (DP) [14] and its enhancement

by Davis, Loveland and Logemann called DLL-algorithm [13]. DP and DLL only differ in

one point of the algorithm that defines the way the formula is traversed. DLL saves main

memory by introducing recursion by splitting up the formula in contrast to just adding

clauses like DP does. The DLL-algorithm generally utilizes four rules (the first three are

identical to DP ; names are not exactly original ones):

1. Unit-clause rule: A unit clause is a clause that contains only a single literal l. To

satisfy the formula this literal has to be assigned to true. All other clauses in the

formula which contain l are removed, all occurrences of ¬l are also removed.

2. Pure-literal rule: If literal l is present in one or more clauses but ¬l is never used,

then every clause containing l can be removed.

3. Eliminating atomic formulas rule: If a formula is in the form
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(A ∨ l) ∧ (B ∨ ¬l) ∧R where {l,¬l} /∈ A,B,R

where A and B are parts of a clause and R is the rest of a formula (none, one or

multiple clauses) it can be replaced by

(A ∨B) ∧R

or

(A ∧R) ∨ (B ∧R)

The first replacement is used by DP whereas the second one is used in the DLL-

algorithm. The advantage of DLL is the capability to save memory by splitting the

problem and handle the resulting parts separately.

The result of choosing the literal that is used to resolve the formula to new ones is

called decision. This decision determines how fast a result is found. This was the

initial reason why heuristics had to be found to perform well.

4. Splitting rule: The resulting clauses from rule 3. are handled recursively one after

the other, equivalent to solving two subproblems. One subproblem refers to the

assignment l while the other one refers to ¬l.

The algorithm applies these four rules as follows: Apply rule 1 until no unit clauses can

be found, if no clauses are left, the formula is satisfied. If an inconsistent clause is found

the formula is unsatisfied. The next step is to apply rule 2 to eliminate pure literals, if

unit clauses are found, step back to applying rule 1 again, then check satisfiability of the

formula again.

After all unit clauses and pure literals are resolved, rule 3 is applied (DLL version):

A literal l of the clause with maximum size is chosen which breaks up the work in two

paths. The algorithm is called recursively with first l and, if it returns unsatisfied, ¬l. If

a recursion path returns the sub-problem to be satisfied this holds for the whole problem

and the algorithm terminates.

If both recursive calls on the highest level (the first decision) return unsatisfied, the

problem is UNSAT and the algorithm terminates. The process of finding a conflict and

backtrack the recursion hierarchy until a level is reached where the inverse is still to be

tried is called chronological backtracking. From another perspective DLL can be seen as a

depth-first search, where decisions are the different branches in a binary search tree.

A very important point regarding this work is the following: when applying the first rule

that handles unit-clauses, it often happens that another clause in the formula becomes

candidate for the rule again. Application of the unit-clause rule until no new unit-clauses

are found is called unit propagation or boolean constraint propagation (BCP), a term that

was introduced by Zabih in [39]. BCP is described in more detail in Sect. 4.2 as it is the

main part of failed literal probing.

2.4 Learning-Based Procedure

The next fundamental step to more powerful SAT solvers was done in 1996 by Silva and

Sakallah [37]. They developed a new SAT solver called GRASP (Generic seaRch Algo-

rithm for the Satisfiability Problem) which analyses conflicts that occur during the search
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of solutions in a more sophisticated way. The advantage of this conflict analysis is the

ability to prune search space more effectively.

When making decisions during the search there are possibly decisions that obviously lead

to conflicts, other decisions may never cause the search to fail. If such a conflict occurs

the algorithm needs to undo (recover) previously made decision(s) and search in another

direction (usually flip a decision to the other truth value). When looking at the decisions

that are flipped, it is often observed that they did not really generate the conflict. The

originator of the conflict can theoretically be located on every lower decision level.

This is the point where the algorithm introduces non-chronological backtracking. Back-

tracking means to revert decisions that are originators of the produced conflict. To ’re-

member’ what lead to that conflict a so-called conflict-induced clause is generated and

added to the CNF. This clause is often called learned clause in literature.

Knowledge of the originators is obtained by storing the chain of decisions and the cor-

responding propagations during the search. In case of a conflict, the originators are found

by backtracking, starting from the conflicting literal. This technique has emerged the new

term of conflict-driven clause learning (CDCL) in literature.

The implementation of this backtracking feature is done with an implication graph. It is a

directed graph that points from every assignment to the clause that contains the reason for

assigning it (if the assignment is deduced from unit propagation). A decision assignment

therefore has an empty pointer because it does not have a reason. By traversing these

pointers it is possible to gain all the information that is required to find the originators

on all decision levels and take the proper actions. That is to change the assignment of the

causing decision variable or to stop the algorithm because the other polarity also has lead

to a conflict (showing that it is UNSAT).

Learning new clauses can be done in various ways, the naive way is to just add all

decisions that are found during the implication path traversal. As learned clauses of

this form are less-than-ideal because the implications often are ’weak’, more sophisticated

methods have been developed. Zhang et al. compare different learning schemes in [41].

They revealed that a scheme called 1-UIP (first unique implication point), which is similar

to the one employed by GRASP [37], yields best results.

2.5 Look-Ahead-Based Procedure

Look-ahead solvers are also based on DLL but utilize several additional techniques to be

able to solve especially hard problems like random 3-sat formulas. The core of DLL is

unchanged, only the part where decisions have to be made is improved by a look-ahead

algorithm. This look-ahead algorithm tries to find the best decision variable but also sim-

plifies the current formula. Additionally it produces a measure which phase the decision

variable should be assigned to find a solution quickly.

These heuristics exploit data gained by the look-ahead part of the algorithm. Every time

a new decision variable has to be found it takes the actual assignment state and tests the
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effects of assigning and propagating other unassigned literals. The heuristics typically are

based on the number of additionally satisfied literals, simplified or satisfied clauses. There

exist many work about these decision heuristics that can be found in further readings

refered to in [24].

The simplification part of the look-ahead algorithm utilizes failed literal probing (see

Sect. 4). This technique performs BCP on both polarities of an unassigned literal and

then starts reasoning about the results. One option is that propagation of one polarity

leads to a conflict whereas the other polarity doesn’t - in this case a new failed literal is

found, and the successful polarity can be fixed to that value. This causes a simplification

of the formula - clauses will shrink or get satisfied at all.

The look-ahead procedure of this kind of solvers is very interesting to this work since

it heavily employs failed literal probing. The first full-featured look-ahead SAT solver

POSIT was developed by Freeman in his PhD thesis in 1995 [17]. Freeman discovered

that applying look-ahead for every unassigned literal in every decision step slows down the

algorithm. Better performance can be reached by reducing the number of literals in the

look-ahead, the deeper the search tree gets (this is because on higher levels the decisions

are more significant).

A problem with this technique is that it introduces considerable overhead to the selec-

tion of an adequate decision variable which only pays off in case of hard SAT problems.

In most cases CDCL solvers outperform look-ahead solvers.

More on look-ahead based solvers can be found in a overview paper by Heule and van

Maaren [24]. It contains historical informations as well as state-of-the-art techniques and

further analysis of heuristics.

3 Parallel SAT Solving

There are different alternatives to make SAT solvers work in parallel, depending on prop-

erties like problem partitioning, what kind of architecture the parallel system provides or

how information between components of the solver are exchanged. Since the development

and use of multi-core systems dramatically increased in the last years, it is obvious that

these systems are getting more important. Many current papers focus on exploiting par-

allelism on multi-core machines where different algorithms can be employed due to the

shared memory architecture.

This section will show the main strategies that have been developed to obtain speed-up.

What can be said in general is that static partitioning of work is not useful in the area

of this kind of search algorithms. This is a straightforward issue because complexity of

partitions can be unequally distributed even if work is partitioned equally. Therefore all

presented solutions for parallelization are more or less dynamic in their nature.
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3.1 Embarrassing Parallelism

This type of parallelism has no complex scientific background, it just uses the fact that

in practice multiple SAT problems need to be solved at once. The most straightforward

way is to take a bunch of separated SAT problems that have to be solved and process

them in parallel. There are different ways to implement a task scheduler to distribute the

problems to the workers.

In general there will be a number of workers that utilize a sequential SAT solver to be able

to solve arbitrary SAT problems. A master will then manage the distribution of problems

that need to be solved, which is just a simple scheduling problem. Since the problems

are totally independent from each other there is no need of synchronization between the

workers. The only data that needs to be exchanged between master and workers is the

problem and the solution.

This approach is often used in practice - not limited to the field of SAT solving. It

also scales very well until a point where problems get really hard to solve and therefore

take much time while others can be solved faster. Another limiting factor of scalability is

the number of provided problems - the more workers solve the same number of problems,

the lower the efficiency gets because of inactive workers.

When really large and complex problems have to be solved this solution reaches its

limits because there is no way to speed up solving single problems except utilizing more

powerful workers.

3.2 Guiding Path

The term guiding path was introduced by Zhang et al. in a paper from 1996 where they

presented the parallel SAT solver PSATO [40]. PSATO is an improved parallel version

of the sequential SAT solver SATO that is based on DP. The goal of Zhang et al. was

to utilize idle workstations of a computer network with a flexible, robust distributed solver.

A guiding path can be described as the state of a running search in the binary tree that is

built when decisions are made in DP. Edges (links) in the tree consist of two components:

the decision literal and a value that shows if it points to the first or second child of the

parent node. Zhang et al. distinguish two states an edge can have: open if the edge is the

first child and closed if the edge is the second child. Now it is possible to describe the

path from the root to an arbitrary node by a list of edges – this list is called guiding path.

The sequential algorithm now is modified to support a guiding path as the second

parameter - additionally to the input clauses. This guiding path is used as a current state

of the search, and the open edges in the path are used when new literals for splitting are

needed. Whenever the algorithm is interrupted it is possible to obtain the current state

through extracting the guiding path of the current search tree again.

Guiding paths became frequently used to split up the work in many SAT solvers and is

referred in many publications, including [6, 9, 28, 36]. Splitting work using guiding paths

nevertheless has the drawback that choosing the split variable randomly may lead to very

unbalanced complexity of the subproblems.
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To improve the selection of appropriate split variables Martins et al. utilize a technique

called VSIDS (variable state independent decaying sum) decision heuristics (that has its

origins in SAT solver Chaff as a technique to find the next decision variable [35]) to

determine which variables are relevant in the search tree in a preprocessing phase [31].

There are several other methods to split the search space that are not that popular so

they are not present in this work. For further information about alternatives to guiding

path we refer to a parallel SAT survey paper by Martins et al. [32].

3.2.1 Master-Slave Parallelization

One of the most popular way to utilize guiding paths for parallelization is the master-slave

model (e.g. [6, 28, 36, 40]). The master handles the dynamic partitioning of the problem.

It generates guiding paths that are subsequently distributed to requesting slaves that are

running a SAT solver instance. These algorithms have several differences in detail but the

general behaviour is the same.

Since the work that is necessary to solve a given subproblem is not known in advance,

the generation of new guiding paths - or in other words, new subproblems - is handled

on demand. Whenever a slave becomes idle because it finished processing a subproblem

(proved that it is UNSAT) it requests new work from the master. The master in turn tells

another active slave to split his subproblem by generating two separated guiding paths.

One path is still handled by the splitting slave, the other guiding path is given to the

master which accomplishes the request from the idling slave.

The master now can determine if a problem is SAT or UNSAT. If a slave reports that

a subproblem is SAT it can instantly stop all other slaves and terminate with SAT. If

all slaves are requesting new work from the master the problem is UNSAT because all

subproblems have been proved being UNSAT. This schema of generating guiding paths

whenever requested by a slave guarantees that all of them are well utilized through the

whole runtime of the algorithm.

3.2.2 Cube and Conquer

Cube and conquer is a technique that combines the advantages of look-ahead-based solvers

and CDCL solvers. The term was introduced by Heule et al. in a very recent paper in

2012 [22].

Look-ahead solvers employ advanced reasoning which literals are important especially

in early stages of the search (more details can be found in Sect. 2.5). CDCL solvers are

known to perform best on kind of easier but still large problems, because they produce less

overhead by employing fast heuristics. However, experiments have shown that combining

these two types of solvers can outperform other state-of-the-art parallel solvers on hard

instances [22].

The solving process of the cube and conquer solver introduced in [22] is basically split

in two phases. The cube phase utilizes a modified version of the look-ahead solver march

developed by Heule in his masters thesis [25]. This phase results in so-called cubes, which

are comparable with guiding paths.

A cube defines a partial assignment of a formula - additionally the original formula is

simplified by common look-ahead techniques like failed literal detection. The most criti-
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cal quality issue when generating these cubes is to find optimal cut-off-points, that is to

stop going deeper in the search tree. The generated cubes should be ’easy enough’ to be

efficiently solved in the second phase.

Cubes are exported in a special iCNF file that can hold multiple formulas, each with the

assumptions that have been made in the look-ahead phase. Solving the generated cubes

is done in the second phase where a common state-of-the-art CDCL SAT solver is used (a

modified version of lingeling by Armin Biere to support iCNF files).

Depending on the original formula it is possible that up to millions of cubes are gener-

ated. These cubes can be solved either sequential or parallel, the parallel version is very

straightforward since no synchronization is necessary (similar to embarrassing parallelism

in Sect. 3.1).

As the experiments in [22] have shown that this approach is able to outperform ordinary

guiding path as well as portfolio solvers (see Sect. 3.3) on hard instances. The power

of look-ahead solvers to make well-reasoned top-level decisions and the high efficiency of

CDCL solvers seem to have great potential.

3.3 Portfolio

The idea behind portfolio parallel SAT solvers is to apply diverse sequential algorithms

and/or varying parameters to the SAT problem. It has been seen in the SAT competitions1

that SAT solvers can perform very diverse on different problem domains - depending on

their characteristics.

One kind of portfolio solvers utilize this fact to run different sequential solvers in paral-

lel resulting in surprisingly good results. The other type of portfolio solvers run the same

sequential SAT solver in parallel but use different parameters for the single instances. This

works due to the stochastic nature of SAT problems - different parameters can influence

the runtime of the algorithm significantly.

The first parallel portfolio SAT solver was ManySAT introduced by Hamadi et al. [20].

It utilizes multiple instances of the same sequential solver (based on MiniSat [15]) but

every instance has different settings. They use combinations of restart behaviour, decision

variable heuristics, polarity of decision variables and clause learning scheme. Depending

on how many cores should be used the settings can be varied.

Another technique that is used is clause sharing among the different instances of clauses

that have at most eight literals - which is an empirically evaluated value. Experiments on

instances of SAT-Race 2008 revealed that ManySAT is able to gain a superlinear speedup

of 6.02 when utilizing 4 cores.

The portfolio-based SAT solver called SATzilla by Xu et al. [38] follows a slightly different

approach. It maintains a portfolio of state-of-the-art SAT solvers that can be employed

for solving the problem. SATzilla tries to determine what the runtime of each solver would

1http://www.satcompetition.org/
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be by a component called approximate runtime predictor. This information is the basis to

decide which SAT solver is used to tackle the problem.

To be able to predict the runtime of solvers on specific problems Xu et al. apply

machine learning techniques on previously chosen problem classes and the results of the

solvers contained in the portfolio. The results of this machine learning process are so-

called empirical hardness models. These learned data is then used to identify how well

each solver will perform on a given problem.

More details on how analysis of a given problem works (feature extraction to be able to

classify a problem) can be found in [38]. What has to be mentioned is that SATzilla does

not utilize parallelism although there are possible scenarios for parallelism. Nevertheless,

since SATzilla is attending the SAT competition (first time in 2003,) it performs very well

and often is placed on top. SATzilla even won the recent SAT competition in 20122.

The potentially simplest portfolio solver that has been developed is ppfolio by Olivier

Roussel. There is no scientific paper available which discusses its implementation, but

an algorithm description which has been submitted to 2011th SAT competition3. ppfolio

itself does not know anything about solving SAT instances, the only thing it does is to

execute other SAT solvers in parallel. Roussel states that ppfolio ‘is not clever at all’

himself. There is a fixed schema of how SAT solver instances are assigned to threads when

a given number of threads are available.

Roussel selected the installed SAT solving programs based on the results of SAT com-

petition 2009 (cryptominisat, lingeling/plingeling, clasp, TNM, march hi). To everyone’s

surprise ppfolio won 16 medals in SAT competition 2011, which demonstrated that this

straightforward approach is very powerful.

3.4 Fine-Grained Parallelism

All parallelization techniques presented so far are high-level approaches. Few publications

have been made about low-level parallelization of the core of a SAT solver, namely BCP

(see Sect. 4.2). Since constraint propagation itself is a sequential problem due to depen-

dencies that arise out of implications it is questionable if it makes sense to parallelize BCP

at all.

An example of the worst-case CNF formula for parallel BCP looks as follows (based

on an example in [17]):

Example 1. (1) ∧ (¬1 ∨ 2) ∧ (¬2 ∨ 3) ∧ (¬3 ∨ 4) ∧ (¬4 ∨ 5) ∧ ...

The implication graph for this example has only one starting point (1) and no branches,

making it impossible to parallelize anything. The fastest way of propagation is exactly

the number of clauses:

Example 2. 1→ 2→ 3→ 4→ 5→ ...

This example gives an idea why BCP is proven P-complete [17].

2http://baldur.iti.kit.edu/SAT-Challenge-2012/results.html
3http://www.cril.univ-artois.fr/~roussel/ppfolio/
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Manthey developed an algorithm that enhanced his CDCL algorithm riss to use multiple

threads for BCP [30]. The implementation only handles BCP with multiple threads, the

rest of the algorithm is handled in one single thread to be able to see the effects isolated.

This is how the BCP part of the algorithm works: The clauses of the formula are parti-

tioned, every thread obtains an equal portion of clauses which are handled in the following.

The main thread decides which clauses are handled by which thread and this threads gains

the exclusive write access to the clause. Additionally, the data structures used for unit

propagation are maintained by each thread separately (watch lists, propagation queue,

trail, reason information). When a literal needs to be propagated, every thread’s propaga-

tion queue is initialized with this literal and executes propagation on its associated clauses.

When propagation on each thread terminates, the found implied literals are exchanged

between all threads and propagation in each thread starts over again.

Whenever a thread finds a conflict, all threads stop their work and the main thread

starts the CDCL conflict analysis. When no new literals can be implied by any thread,

unit propagation terminates and the main thread uses the generated information to suc-

ceed with CDCL.

Experiments revealed that the use of four cores is less effective than just utilizing two

cores. With an average speedup of approximately 1.1 the algorithm does not perform very

well, but there are optimizations the author thinks of: enhancing locking techniques and

dynamic load balancing. It is also imaginable to use this technique to additionally use

parallelism in a portfolio solver to be able to utilize more available cores.

Hyvärinen and Wintersteiger [2] take a slightly different approach. Instead of partitioning

the clause database as Manthey does they employ continuous synchronization between

threads. The threads therefore share a common propagation queue and just request literals

to propagate at this global point. This approach implicitly takes load balancing in account,

at the cost of more synchronization overhead. To keep this synchronization overhead as

small as possible, fast atomic operating system calls are used when possible.

Simulations and experiments revealed that this approach is not able to gain any

speedup. The synchronization overhead overcomes the parallel execution of propagation.

The main problem is that the propagation queue contains insufficient literals to fully uti-

lize the workers. Several improvements using faster locking techniques are also proposed

by the authors.

Another way of exploiting fine-grained parallelism is presented by Zhao et al. in [42]. They

developed an application specific multiprocessor system and a new SAT solving algorithm

that especially exploits the properties of the underlying hardware. The single processing

units support complex operations that are often used in the domain of SAT solvers, a

customized message passing system tries to avoid memory bandwidth bottlenecks. The

processors are connected to each other in a grid layout to reduce latencies and optimize

hardware issues.

Clauses are partitioned (like Manthey did in [30]) and distributed to the processing

units, which work asynchronous via message passing and polling techniques. The results

of the experiments show that this application specific hardware approach works surpris-
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ingly well, at the cost of flexibility and limited problem size. These experiments revealed

that a speed-up of up to 60 is possible when utilizing 81 processors - compared to Chaff.

In general the speed-up is higher for larger problems because of better utilization of the

processors.

As the first two examples of low-level parallelization approaches have shown, it is extremely

difficult to achieve speed-ups. Hardware solutions are also not the best way to go because

further development of commercial processors will outperform them anytime soon. This

work tries to apply another kind of low-level technique to parallelize failed literal probing

which also has BCP at its core.

3.5 General Techniques

3.5.1 Clause Sharing

Many parallel solvers share their knowledge of learned clauses via clause sharing tech-

niques. Clause sharing is only relevant for CDCL SAT solvers which generate learned

conflict clauses through a given learning scheme (see Sect. 2.4). Sharing clauses is in-

teresting especially if different parts of the search tree are explored in parallel. Gained

information about clauses that cause conflicts can prune large parts of the search tree.

Experiments have shown that sharing all learned clauses leads to bad performance due to

exponential growth of the clause database, so heuristics and limitations for clauses have

been developed [6, 20, 36].

Many implementations just limit the size (the number of literals) of the learned clause

to a fixed value. This value is determined through empirical observations. Whenever the

size of the clause exceeds the limit it is not shared with the other instances.

Latest versions of ManySAT employ a new strategy on deciding which clauses to

share [19]. They observed that the size of learned clauses increases while the search

process proceeds. This means that with a fixed threshold less clauses are shared via the

workers towards the end of processing. The solution to this is a dynamically adjusted

clause sharing policy, which is calculated from throughput and quality measurements.

This dynamic approach has shown to be more effective than the static one [19].
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4 Probing-Based Simplification

SAT problems are often generated or translated from high-level designs utilizing a set

of rules, which can be far from optimal. That causes CNF formulas that have a great

simplification potential. Even for manually constructed problems great improvements are

possible, depending on the structure of the CNF. Observations on solving SAT instances

reveal that in many cases simplified formulas - containing less clauses and variables - can

be solved faster by SAT solvers.

That’s the reason why much effort has been put into developing effective preprocess-

ing techniques for SAT formulas. There are diverse alternatives to discover simplification

potential. The most researched techniques are those based on probing.

Probing in this domain is a multi-level procedure. The first step is to make assumptions

about the variable assignment. These assumptions are then propagated throughout the

formula using BCP. This allows to infer new knowledge out of changes in the assignment

(additional variable assignments that are fixed). The generated knowledge is then used to

simplify the formula - depending on which levels of simplification to use.

To be able to generate new knowledge a set of rules is applied to the formula that

allows interpretation. Possible outcomes of this processing can be detection of congruent

variables, detached variables or clauses, or even generation of new clauses that can simplify

the search of the following SAT solving process. A problem of these simplifications is that

there is no guarantee this processing pays off at all.

SAT solvers utilize these probing-based techniques in different ways. They are often used

in a separate program that takes the formula as an input, simplifies it and produces a new

output formula. This simplified formula is then passed to an arbitrary SAT solver. There

also exist SAT solvers that implement their own preprocessing steps - the preprocessing

algorithm can utilize data structures and methods of the core SAT solver. The core SAT

solver itself has the opportunity to reuse knowledge generated by the preprocessing step.

The last type of SAT solvers to utilize probing are lookahead solvers (see Sect. 2.5). They

integrate probing deeply in the search process - in this context this is called probing look-

ahead.

An overview on probing techniques can be found in papers by Le Berre [4] and Lynce and

Marques-Silva [29].

A more practical view on probing-based simplification techniques can be found in a

paper by Heule et al. [21]. In addition to introducing a new simplification technique

called hidden literal elimination (HLE ), this work integrates various chosen simplification

techniques in a state-of-the-art solver which are able to maintain a notable performance

gain.

4.1 Basics

Every probing-based simplification on a SAT formula starts with the propagation of every

possible assignment of all literals. That is to propagate every possible assignment α

through a formula ϕ until nothing changes (more details on that can be found in Sect. 4.2).
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An assignment α is defined by a tuple of a literal l and a value v (which can be 0 or 1 -

false or true respectively), α = 〈l, v〉.

The result of this propagation is the following: every assignment α has a corresponding

set of implied assignments denoted by BCP(α). Please note that the result of BCP(α)

also includes the currently propagated assignment α.

Section 4.3 discusses the possible simplifications and a set of rules that are required to

derive them.

4.2 Boolean Constraint Propagation

Boolean constraint propagation does not only build the core of probing-based simplification

techniques, but also for all algorithms that are based on DP. BCP is the most expensive

task of SAT solving nowadays - with almost 90% of total solver runtime [35]. That is why

BCP has to be implemented as efficient as possible.

A short recap about the idea of BCP : The unit clause rule of DP describes that a

clause that only contains negative assignments and exactly one unassigned literal implies

to set this literal to true. Propagation also detects conflicts by implying literal assignments

that contradict existing assignments.

There are different ways to determine for which clauses in the formula this rule can be

applied. Early implementations were straight-forward and did not use any implementation

tricks to find those clauses efficiently. First steps into optimized versions of unit propa-

gation have been made with occurence lists, which utilize additional data structures to

reduce the number of clause visits. Current sate-of-the-art solvers use two-watched-literal

propagation introduced in [35] as it has shown best results in benchmarks.

4.2.1 Occurrence Lists

The most basic approach to propagate units is to simply iterate over all clauses and

calculate the state of each clause. That is to apply the actual assignment to a clause and

identify if the clause is a unit clause. If a new unit has been found all clauses are iterated

again until no new units are found or a conflict is detected. This is not very efficient

because for every unit detected all clauses have to be visited.

An optimization that is widely used is to store occurrence lists for each literal (e.g. [7]).

Each list stores references to all clauses that contain the regarding literal. These lists can

now be used to only iterate over clauses that have the chance to become unit clauses.

Clauses that do not contain the newly assigned literal cannot change their state at all.

These occurrence lists are also called watch lists in literature.

Another alternative to occurrence lists is to use a counter that stores the number of unde-

fined literals for each clause. One of the first publications that describe this improvement

is published by Crawford et al. in [11] as a method of their SAT solver Tableau. The

counter is initialized with the number of literals a clause contains when the algorithm

starts. Occurrence lists for literals in every polarity are necessary to instantly be able to

decide if a clause potentially becomes a unit clause.

When an assignment is propagated, the referring occurrence list is iterated and the

counter of each clause is decremented. Whenever a counter becomes 1, a unit clause or
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conflict is found. The literals of the clause have to be iterated to find the correct literal that

needs to get propagated again. This really speeds up propagation because only potential

clauses have to be visited and the only operation that has to be done is to decrement and

check the counter. The clause only has to be iterated if the counter’s value is 1.

A technical report by Biere [5] adds another feature to the counting technique, that re-

places the need to iterate over the literals of a clause to find the unit literal. Biere utilizes

a field in addition to the counter to store the ’sum’ of the clause. This field is initialized

with an XOR operation over all literals in the clause. Every time the clause is visited the

sum field is updated through another XOR operation with the actually propagated literal.

When the counter’s value is 1 the sum field contains the unit. With this trick it is possible

to replace many clause iterations with a simple and fast XOR operation.

Nevertheless the drawback of using such counters is that if backtracking is necessary and

decisions have to be undone, all the counters have to be adjusted.

4.2.2 Two-Watched-Literal Propagation

Two-watched-literal propagation was introduced by Moskewicz et al. in [35] when they

developed a new SAT solver called Chaff. They asked themselves if it is necessary to know

the exact number of undefined literals in a clause because the only interesting state is

when switching from two to one undefined literals - that is the case when the clause needs

detailed inspection.

To accomplish this idea they initially pick arbitrary two (undefined) literals out of

every clause and make them the watched literals for the corresponding clause. When a

literal is propagated, only two literals of each clause can match the inverted propagation

literal which is potentially much less for longer clauses than with full occurrence lists. If

a watched literal is hit for a clause there are two possible outcomes:

1. The clause contains another undefined literal, additionally to the two already watched

literals. To fulfil the constraint that the two watched literals must be undefined, the

hit watched literal is exchanged with the additionally found undefined literal. Now

that the two watched literals are undefined again it is guaranteed that the clause

cannot be unit until another watched literal is hit.

2. The clause does not contain undefined literals except the ones that were watched

already. That means that a unit clause has been found, and the unit literal is the

second, non-hit, watched literal which can easily be retrieved.

Another benefit of this watching scheme is that nothing needs to be done when backtrack-

ing, in contrast to the counter-scheme where the counters need to be updated to remain

consistent.

4.2.3 Bit-Parallel Propagation

This thesis evaluates the potential of an algorithm that can handle multiple literals in

every propagation step using bit-parallelism. The development of modern CPUs not only
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heads to multiple cores but also to support more complex instructions including more

bits. In more detail these are SIMD (Single Instruction Multiple Data, [16]) styled op-

erations that can apply the same operation to multiple pieces of data in parallel. Latest

Intel R© processors support the new instruction set AVX2 4 which can handle shift and the

most common logical operations on bit-vectors with sizes up to 256 bits. As described

later in the implementation details it is possible to handle up to 128 literals in parallel

because a single literal assignment is encodable in two bits.

There exists earlier work by Heule and van Maaren that utilizes bit-level operations [23].

They modified the existing local search SAT solver UnitWalk [26] so that unit propagation

is handled bit-parallel. More on related work is found in Sect. 5.

Details on the algorithm that has been implemented and the used data structures and

operations can be found in the implementation Sect. 6.

4.3 Reasoning

This section contains rules that define how results of BCP have to be interpreted to obtain

new knowledge.

There are two options on how the formula can be altered. The first one is to deduce

assignments that can be fixed to a value or the value of another literal. The second is to

deduce new clauses which may simplify solving a formula by introducing new implications.

The following subsections will review the findings by Le Berre [4] and Lynce and

Marques-Silva [29]. For every single finding the corresponding theorem or proposition of

the two papers are given.

Le Berre also deals with double unit propagation lookahead where two assignments are

propagated. That way it is possible to do more complex reasoning and find more bicondi-

tionals. This kind of probing is not in the scope of this thesis, so for further information

we refer to the paper by Le Berre [4].

4.3.1 Deducing Assignments

This first deduction section defines rules to obtain literal assignments that can be fixed

due to reasoning. Two of them are often used in look-ahead based solvers - namely called

failed literal and lifting rule.

1. failed literal rule The failed literal rule says that if an assignment leads to a conflict

when applying BCP, the opposite value needs to be assigned to be able to satisfy

the formula.

Definition 7. ⊥ ∈ BCP(〈x, v〉)⇒ ϕ |= 〈x,¬v〉

This rule refers to theorem 2.3 in [29] and proposition 2 in [4]. The first one to call

this technique failed literal probing was Freeman in [17]. This is actually the most

often used probing technique at the moment.

4Advanced Instruction Set 2 – http://software.intel.com/file/36945
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2. lifting The lifting rule says that if BCP of both polarities of a literal results in same

assignments these assignments can be fixed.

Definition 8. 〈y, 1〉 ∈ BCP(〈x, 0〉) ∩ BCP(〈x, 1〉)⇒ ϕ |= 〈y, 1〉

Le Berre defines this rule in proposition 3 and Lynce in theorem 2.1.

3. All literals xj of a clause ci are assigned a value to be satisfied. If applying BCP to

these assignments and the intersection of the results contains new assignments, they

can be fixed.

Definition 9. 〈y, 1〉 ∈
⋂

x∈ci BCP(〈x, 1〉)⇒ ϕ |= 〈y, 1〉

This rule is only present in Lynce’s work [29] as theorem 2.2.

4.3.2 Deducing Clauses

This section contains rules to generate new clauses out of reasoning. These new clauses

may simplify later SAT solving significantly by exposing important implications.

1. implied (obvious) binary clauses This first clause rule describes a way to add the sim-

plest clauses that can be found by BCP. Every new literal assignment that is found

during BCP gives an implication of the propagating assignment to the implicating

one.

Definition 10. 〈y, 1〉 ∈ BCP(〈x, 1〉)⇒ ϕ |= x→ y and x→ y ⇔ ¬x ∨ y

This definition is given in theorem 2.4 and proposition 1. Le Berre additionally

introduced proposition 4 which defines the rule to detect equivalent literals. This

proposition just uses the fact that Def. 10 can be applied in both directions - and

therefore it is obvious, too:

Definition 11. 〈y, 1〉 ∈ BCP(〈x, 1〉) ∧ 〈x, 1〉 ∈ BCP(〈y, 1〉)⇒ ϕ |= x↔ y

Another way to deduce equivalent literals is to utilize the following rule. The idea

is that if x→ y and ¬x→ ¬y they have to be equivalent.

Definition 12. 〈y, 0〉 ∈ BCP(〈x, 0〉) ∧ 〈y, 1〉 ∈ BCP(〈x, 1〉)⇒ ϕ |= x↔ y

2. When propagating both polarities of a literal, every combination of the implied sets

of assignments that are generated introduce a new clause.

Definition 13. 〈y, 1〉 ∈ BCP(〈x, 0) ∧ 〈z, 1〉 ∈ BCP(〈x, 1〉)⇒ ϕ |= y ∨ z

This rule is defined by Lynce as theorem 2.5. To explain this one just imagine that

¬x implies literal y and x implies z. As either x or ¬x has to be satisfied it is clear

that either y or z also have to be satisfied - resulting in the new clause. There can be

more implied literals for sure, every combination of the two sets potentially defines

a new clause.
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3. hyper-binary resolution Hyper-binary resolution basically defines a way to overcome

multiple implication steps that would be necessary to imply a useful clause.

For every clause ci of formula ϕ there exist following clauses: the cross-product of

all BCP(xij ) whereas xij ∈ ci and j ∈ 1, ..., |ci|.

Definition 14. ∀ci∈ϕ, xij ∈ ci ⇒ ϕ |=
∏|ci|

j=1
BCP(〈xij , 1〉))

This definition refers to theorem 2.6 in Lynce’s work.

More information on hyper-binary resolution can be found in a paper by Bacchus [3].

This work also includes a slightly different definition of how new clauses can be

identified.

4. assignments causing conflicts If two different literal assignments imply the same

literal in opposite polarities it can be implied that they must not be satisfied simul-

taneously.

Definition 15. ∀x, y ∈ L(ϕ)(〈z, 0〉 ∈ BCP(〈x, 0〉) ∧ 〈z, 1〉 ∈ BCP(〈y, 0〉))⇒

ϕ |= x ∨ y

which uses this implicit intermediate step: x ∨ y ⇔ ¬(¬x ∧ ¬y)

This rule refers to theorem 2.7 from Lynce - as there can be observed this rule is kind

of the opposite of clause deduction rule 2. The difference is that this one utilizes the

fact that a clause would get falsified - and rule 2 corresponds to satisfying a clause.

5. assignments causing clauses to get falsified Whenever a set of assignments and its

resulting implications lead a clause of formula ϕ to be falsified, one of the initial

assignments have to be satisfied.

Definition 16. x1, x2, ...xn ∈ L(ϕ), A =
⋃k

i=1(BCP(〈xi, 0〉)

if c ∈ ϕ and c(A) = ⊥ ⇒ ϕ |= x1 ∨ x2 ∨ ... ∨ xn

Lynce describes this rule in his work [29] in theorem 2.8.

4.4 Practical Application

As shown in Sect. 4.3 there exist many rules to simplify existing formulæ. In practice this

all looks slightly different - many implementations pick out few because not all of them

pay off the additional work.

The most often used techniques in SAT solvers nowadays include the failed literal

rule (Def. 7 and also in [17, 25], as well as a main component of look-ahead solvers - see

Sect. 2.5), lifting (Def. 8), equivalent literal detection (Def. 11) and hyper-binary resolution

(Def. 14).

This work focuses on the failed literal rule for reasons that have already been told in the

motivation (Sect. 1.1). There is a failed literal reference algorithm provided by the advisor

of this work, Prof. Armin Biere. It is used for verification of the developed algorithm but

also used in the evaluation for comparison issues.

Theoretically all of these reasoning rules could be utilized in the algorithm - but this

is part of future work that has to be done.
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5 Related Work On Bit-Parallelism

5.1 Local Search Parallelization

Heule and van Maaren developed an algorithm based on the existing incomplete SAT

solver UnitWalk by Hirsch and Kojevnikov [26]. Their work [23] is based on following

idea: why not utilize a processors ability to simulate 1-bit operations (boolean operations)

on 32-/64-bit processors. Since incomplete SAT solvers do not utilize complex reasoning

algorithms they are particularly suitable for this kind of parallelization.

As already said, UnitWalk is an incomplete SAT solver (see Sect. 2.2). What is special

about UnitWalk is that it does not use counting heuristics like most of the other algorithms

do - instead it uses boolean constraint propagation (Sect. 4.2) to flip variable assignments.

The modified algorithm in [23] is called UnitMarch. The BCP part of the algorithm

generally works like this:

• Every assignment is represented as a 2-bit value, due to the possible states that have

to be depicted: true, false and undefined (another optional state is unused at the

moment, namely conflicting).

• These 2-bit values are split up in two different arrays, one storing the first bit - repre-

senting a positive assignment, and the other one stores the second bit - representing

a negative assignment.

• These two arrays combined with the clause definitions can be used to find unit

clauses. This happens by calculating bitmasks of the state of a clause - similar to

the approach used in this work.

They also introduced an additional technique to avoid the phenomenon of multiple iden-

tical states in different positions of the vector, which has been observed to occur at a high

probability [23]. This technique basically utilizes assignment matrices to detect duplicates.

Calculation of these matrices can be very time-consuming in theory but it came out that

this fact can be neglected in practice.

Experiments in [23] have shown that even the 1-bit version of UnitMarch is comparable

in performance with UnitWalk. If the algorithm utilizes up to 32 bits in parallel, solution

time is reduced dramatically - which is also the case for the number of periods used to

find a solution.
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6 Implementation

6.1 Input Data

Almost all SAT solvers support the DIMACS CNF format, which is more or less a de

facto standard for the storage of boolean formulas in conjunctive normal form (CNF). A

DIMACS file basically consists of a header line that begins with the fixed string ’p cnf’

followed by the number of variables and clauses that are used within the formula.

Each of the succeeding lines represent a single clause, which consists of one or more,

possibly negated, literals and a terminating zero. Positive literals are denoted as positive

numbers whereas negated literals have the minus-sign ’-’ in front of the literal number.

A simple example of a boolean formula in DIMACS format could look like this:

p cnf 3 2

1 -3 0

-1 2 3 0

This file is a representation for the mathematical boolean formula shown in Ex. 3.

Example 3. (1 ∨ ¬3) ∧ (¬1 ∨ 2 ∨ 3)

6.2 Data Structures and Encoding

6.2.1 Formula Storage

The formula consisting of a specified number of clauses is stored in one block of dynamically

allocated memory. It is implemented as a stack that is enlarged if the formula gets too

large. Each clause is terminated with a zero-literal in memory to denote the end of a

clause, an additional array stores the starting point of each clause via pointer references.

A single literal isn’t encoded as a standard signed integer number in memory but uses

the two least significant bits to encode the three possible states of a literal assignment:

Table 1: Bit encoding of possible literal states

encoding literal state

00 positive
11 negative
01/10 undefined

The types used for literals in the implementation therefore are always unsigned ones. The

programmatic advantages of this encoding will be handled in a later part of this thesis.

6.2.2 Assignments Storage

To store the assignments states when propagating a certain literal a fitted data structure

is required that can represent this. In this algorithm it is basically an array of a specific

datatype. The length of this array depends on the number of literals used in the formula,

so each literal has one corresponding entry in the assignments array.
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As already mentioned before, one assignment has only three different states: positive,

negative and undefined. It is straightforward to see that these three states can easily be

encoded in two bits that could represent 4 states.

In the base version of the developed algorithm, one element of the assignments array

only contains exactly one assignment for the actual propagated literal. If using an unsigned

integer as the preferred data type which can store 32 bits and only two bits are used 30

bits get wasted. Theoretically it is possible to store 16 assignments per integer or, if using

SSE5 data types up to 128 assignments (256 bits). To make use of multiple assignments

per element the algorithm has to be modified to operate on bit-vectors instead of simple

branching behaviour. More information about the use of these vectors is discussed further

down.

6.2.3 Advantages of Sign Encoding

An operation that is used very often is to find the actual value of a certain literal. If the

given literal is a negative one, the actual assignment has to be negated to represent the

actual value. If no special encoding would be used, an if -clause gets necessary to decide

whether the literal is negative and flip the assignment. With the introduced encoding it

is possible to calculate the assignment using a simple XOR-operation. The correctness of

this statement can simply be shown in a truth table:

Table 2: Assignment sign calculation

literal-sign assignment result-sign (XOR)

00 - positive 00 00
00 - positive 11 11
00 - positive 01, 10 01, 10
11 - negative 00 11
11 - negative 11 00
11 - negative 01, 10 10, 01

Even if this was a step to make the improved algorithm branch-less, it is also used in the

base algorithm to keep differences between the two algorithms to a minimum.

6.3 Base Algorithm

The first step of this thesis was to implement the very basic algorithm of failed literal

probing without any optimizations. Other implementations e.g. make use of literal oc-

currence lists, but those would only complicate the basic idea of making the base task of

literal propagation bit-parallel.

In the following, the pseudo-code found in Alg. 1 is explained in more detail.

The only parameter given is the formula which is the parsed representation of the problem

in CNF. As a first step, the global assignment array is initialized to show every literal to

5Streaming SIMD Extensions; additional instructions for CPUs to apply one operation to multiple junks
of data.
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Algorithm 1 Basic Failed Literal Probing

function BasicFLP(formula)
2: initialize global assignment

repeat ⊲ repeat until global assignment unchanged
4: repeat ⊲ repeat until all literals propagated and no new units found

if first round or assignment unchanged then
6: initialize next assignment ⊲ clone global assignments plus

⊲ the next propagation literal

8: for all clause in formula do ⊲ iterate over formula
reset flags

10: for all literal in clause do
if clause not satisfied then

12: actass ← assignment [literal ] ⊲ get assignment of actual literal
if actass is positive then ⊲ clause is satisfied

14: set satisfied flag
else if actass is undefined then

16: if unit candidate flag set then ⊲ already found a
set invalidate unit candidate flag ⊲ unit candidate

18: else ⊲ unit candidate found
set unit candidate flag

20: found unit ← literal

if satisfied or invalidate unit candidate flag set then
22: no new knowledge

else
24: if unit candidate flag set then ⊲ new unit found

assignment [literal ]← found unit
26: else

globalass ← global assignment of propagation literal
28: if globalass is undefined then ⊲ failed literal found

add inverse propagation literal to global assignment
30: else if globalass = propagation literal then ⊲ conflict detected

return formula inconsistent
32: until all literals probed and no further unit found

until no new failed literals produced
34: return global assignment ⊲ return the found failed literals

end function
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be unassigned. When the algorithm finishes, it contains the computed failed literals of the

CNF. The following outer loop is repeated until no more new failed literals are found in the

inner loop. The inner loop is executed until all literals have been propagated and no further

units can be retrieved. The order of literals to propagate is chosen to be ascending from

1 to m, where m is the number of literals, alternating positive and negative assignments.

A sample series for a CNF with four literals shows as follows:

Example 4. [1,−1, 2,−2, 3,−3, 4,−4]

Every time no further unit can be found for an assignment the next literal is propagated.

This is done by cloning the global assignment to the actual one. The next literal to

propagate is also set to the actual assignment, which completes the initialization of the

next propagation round.

The detection of new units and failed literals is basically done by setting flags that

indicate the state of a clause. The possible states are as follows:

• satisfied → if the clause contains at least one positive assignment for a literal, it is

satisfied.

• unit candidate → if the clause is not satisfied yet, and an undefined assignment is

found, it may be a unit, so the literal is a unit candidate.

• invalidate unit candidate → if an undefined assignment is already found (a unit

candidate is found), and another undefined assignment is found, the unit candidate

has to be invalidated.

From these three flags one can deduce if a new unit clause is found or if a clause is not

satisfiable any more and the propagated literal is a failed literal. A new unit is therefore

derived when the clause is not satisfied, a unit candidate has been found and the unit

candidate has not been invalidated. A failed literal has been found if none of the three

flags is set, which means that all assignments in the clause lead to negative values.

6.4 Bit-parallel Branch-less Algorithm

The fundamental form of the basic algorithm also applies to the bit-parallel algorithm. It

also iterates over the formula with the containing clauses and literals over and over again

and calculates clause states. The large difference is how information about the clause state

is computed because ordinary if-then-else cascades are not applicable to bit-vectors any

more. For this purpose complex bit-operations are introduced that calculate the state of

a clause only by combining the base operations NOT, AND, OR, XOR and SHIFT.

The second challenge is to get the main part of the algorithm branch-less to avoid mispre-

dicted branches. Those mispredicted branches result from the CPUs instruction pipeline

that has to introduce stalls if the execution pipeline contains incorrect assignments. Due

to the immense number of iterations over the clauses there is a large potential to save

execution time.
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6.4.1 Bit-Vectors

A bit-vector in the case of this thesis always means the array of bits of a simple data-type

such as integer or m128i (SSE 128 bit integer data-type). The advantage of using simple

data-types is the ability to directly apply the basic bit-operations. This also applies to

SSE’s more complex data types.

Every bit-vector in the algorithm is split into 2-bit entities, which means that a 32

bit datatype contains 16 units. For the implementation one has to choose with which

data-type to work with. In the resulting implementation the bit-vectors range from 4 to

128 bits.

The bit-vector data-type is used to store different elements which are related to each

other and are used to calculate states. These elements are:

• global assignments

• local assignments

• flags (satisfied, unit candidate, invalidate unit candidate, changed, failed, unit)

• masks (first bit of every unit set, all zeros, all ones)

Assignment bit-vectors have the already mentioned 2-bit encoding (see Table 1) for unde-

fined, positive and negative.

6.4.2 Operations

To be able to handle multiple states of assignments without many loops to iterate over

bit-masks it is necessary to define several more complex operations. These consist of well-

known logical operations that are available in almost every programming language and

can be mapped easily to fast hardware-specific operations. In this thesis symbols based

on the C programming language are used. The required basic bit-operations include:

• NOT (symbol ∼): inverts the value of a bit, zero becomes one and vice versa

• AND (symbol &): only leads to one if both corresponding bits are also one

• OR (symbol |): leads to one when not all two bits are zero

• XOR (symbol ˆ): leads to one if either the first or second bit have value one

• SHIFT-RIGHT (symbol≫): shift every bit x positions further to the right inside the

bit-vector, the least significant bit is dropped out the vector and the most significant

bit is filled up with a zero

Assignment Vector One needs to know what the state of an assignment is, more

concrete the least significant bit (LSB) should contain the truth value of the corresponding

operation. Equations 1, 2 and 3 show the formulæ to get the necessary information about

an assignment - if it is undefined, positive or negative for an arbitrary number of entities.

Equation 1. undefined = (vector ˆ (vector ≫ 1)) & mask firstbit
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Equation 2. positive = ∼ (vector | (vector ≫ 1)) & mask firstbit

Equation 3. negative = (vector & (vector ≫ 1)) & mask firstbit

At the time of thesis finalization a trivial optimization idea appeared, which is inspired

by related work of Heule and van Maaren [23] who applied the identical technique. One

could easily store the first bit of an assignment entity in one bit-vector while the second

bit is stored in a separate, second bit-vector. This way all shift-operations that have to

be done at the moment can be omitted.

The second advantage of saving the bits separately is that twice the number of as-

signments can be handled in an iteration. This change has no effect on the other state

bit-vectors because they only need one bit to represent their state - the actual implemen-

tation wastes the second bit that is available.

Unfortunately this optimization did not made it into this thesis and must be postponed

to future work.

Clause States As in the basic algorithm, clause states have to be calculated, but this

time without branches. Equations 4, 5 and 6 show how the three flags can be computed

for multiple entities with bit-operations only.

Equation 4. satisfied |= positive(actual assignment)

Equation 5. unit candidate |= undefined(actual assignment)

Equation 6. invalidate unit candidate |= unit candidate & undefined(actual assignment)

Another challenge arises when the found units should be assigned to the local assignment.

In the branching version the three computed flags only had to be checked with if-clauses

and decided what to do. To make this code branch-less intermediate results have to be

computed at the end of each clause. Those helper bit-vectors are calculated as defined in

Eq. 7, 8 and 9.

Equation 7. unit = ∼ satisfied & ∼ invalidate unit candidate & unit candidate

Equation 8. changed |= unit & ∼ failed

Equation 9. failed |= (satisfied | unit candidate) ˆ mask firstbit

With these vectors and another iteration over the clause one can calculate a new assign-

ment for each literal. As shown in Eq. 10 in the first two lines a mask is calculated that

is true for all assignments that are undefined and refer to a new unit (the LSB from the

entity is cloned to the second bit by a left shift and an or to get a full mask). The third

line removes all bits from the actual assignment where a new literal should be assigned.

In the fourth step the literal sign is converted to a bit-vector (the sign at the two LSB is

cloned to every entities position) and masked with the undefinedunit mask. The result is

then logically linked by an or with newass which results in the new local assignment.

Equation 10. undefinedunit = undefined(actass) & unit

undefinedunit |= undefinedunit << 1

newass = actass & ∼ undefinedunit

newass |= undefinedunit & sign to vector(literal sign)
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The last step that is missing is detection of failed literals. For that purpose the failed

bit-vector has been calculated before, but this one is only handled if all assignments have

not changed in the last iteration. The reason for handling this in normal branch style is

that no method has been found to implement this in a branch-less way. So the solution is

to just iterate over the bit-vector and handle every entity separately, check if it is failed,

if it must be set inconsistent or assign a new failed literal.

6.4.3 Pseudocode

The pseudocode of the branch-less bit-parallel algorithm is shown in Alg. 2. Whenever a

more complex operation is used, the comment contains a reference to the equation where

the detailed calculation can be found.

The initialization statement clones the global assignment to the local one and sets

the propagation literals for the next iteration. The way propagation literals are set to

the bit-vectors is illustrated in a further section where the assignment storage strategy is

explained (see Sec. 6.5.3).

6.4.4 Example

In the following sections the bit-parallel branch-less algorithm is applied on a simple

example problem. The example utilizes 4 bits per assignment, that means two assignments

are handled in parallel. The CNF of the problem looks like this:

Example 5.

p cnf 2 2

1 2 0

1 -2 0

Initialization The first step is to initialize the global assignment with all literals unde-

fined, that is:

Table 3: Global assignments initialization

literal assignment

1 [01, 01]
2 [01, 01]

The initialization of the local assignments is done in two steps: first, all assignments from

the global assignment are cloned. The second step is to assign the literals that should be

propagated to the corresponding entries in the assignments bit-vector. In this example

four bits per vector are used which results in two assignments in parallel. In the first

propagation round literals 1 and -1 are assigned:
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Algorithm 2 Branchless bitparallel FLP

function BlBpFLP(formula)
2: initialize global assignment

repeat ⊲ repeat until global assignment unchanged
4: reset propagation literal list

repeat ⊲ repeat until all literals propagated and no new units found
6: if first round or assignment unchanged then

initialize next assignment ⊲ clone global assignment plus
8: ⊲ the next propagation literals (detail in Alg. 3)

reset failed bit-vector

10: reset changed bit-vector
for all clause in formula do ⊲ iterate over formula

12: reset satisfied , invalidate unit candidate, unit candidate bit-vectors
for all literal in clause do

14: actass ← assignment [literal ]
calculate satisfied , invalidate unit candidate,

16: unit candidate bit-vectors ⊲ according to Eq. 4-6

calculate unit , changed , failed bit-vectors ⊲ according to Eq. 7-9
18: for all literal in clause do

actass ← assignment [literal ]
20: calculate newass bit-vector ⊲ according to Eq. 10

assignment [literal ]← newass ⊲ assign new unit to local assignment

22: if not changed and failed then ⊲ check if all assignments unchanged
⊲ and at least one failed

24: for all failedentity in failed do
propagation literal ← get propagation literal of failedentity

26: if propagation literal valid and failedentity is set then
globalass ← global assignment of propagation literal

28: if globalass = propagation literal then
return formula inconsistent

30: else if globalass is undefined then
add inverse propagation literal to global assignment

32: until all literals probed and no new unit found
until no new failed literals produced

34: return global assignment ⊲ return the found failed literals
end function
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Algorithm 3 Initialization of assignment vector

procedure InitializeAssignment

2: if propagation literal left then
for all literals do ⊲ clone global assignment

4: local assignment [literal ] = global assignment [literal ]

for i in vector entity positions do ⊲ set new propagation literals
6: ⊲ to associated vector position

assignment vector = local assignment [propagation literal ]
8: assignment vector [i] = sign(propagation literal)

assignment propagation literal [i] = propagation literal
10: if propagation literal left then

increment propagation literal
12: else

break
14: end procedure

Table 4: Local assignments initialization (1, -1)

literal assignment

1 [11, 00] 11 means negative assignment, 00 means positive one
2 [01, 01] all other assignments are not modified from global one

Due to be able to calculate the states correctly the bit-vector states are also initialized:

Table 5: State-vectors initialization

flag assignment

satisfied [00, 00]
invalidate unit candidate [00, 00]
unit candidate [00, 00]
unit [00, 00]
changed [00, 00]
failed [00, 00]

Propagation Now that the assignments and states are initialized, the propagation can

start. This happens by iterating over the clauses and literals of the formula, the next table

shows how the flags change when iterating over the first clause:
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Table 6: First iteration of clause 1 to identify unit clauses

flag initial after literal 1 after literal 2 after clause

satisfied [00, 00] [00, 01] [00, 01]
invalidate unit candidate [00, 00] [00, 00] [00, 00]
unit candidate [00, 00] [00, 00] [01, 00]
unit [00, 00] [01, 00]
changed [00, 00] [01, 00]
failed [00, 00] [00, 00]

The new knowledge on the clause can now be applied to the local assignment. One new

unit literal in the first local assignment has been found, namely -1. Now the second clause

iteration starts to calculate the new assignment using Eq. 10:

Table 7: Second iteration of clause 1 to update local assignments

flag initial on literal 1 on literal 2

unit [01, 00]
undefinedunit [00, 00] [11, 00]
local assignment literal 1 [01, 01] [01, 01]
local assignment literal 2 [01, 01] [00, 01]

What can be observed now is that in the local assignment of literal 2 one undefined

assignment changed to a positive assignment (highlighted bold).

The same calculations are done with the second clause which results in no new units.

After another round that does not result in new units, the propagation ends and the failed

literals are handled. In this case no failed literals are found at all (state bit-vector failed

is all zero), so the next literals are propagated: 2, -2. Initialization of local assignment

looks as follows:

Table 8: Local assignments initialization (2, -2)

literal assignment

1 [01, 01]
2 [11, 00]

The resulting flags for the propagation in clause one look as follows:
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Table 9: First iteration of clause 1 to identify unit clauses

flag initial after literal 1 after literal 2 after clause

satisfied [00, 00] [00, 00] [00, 01]
invalidate unit candidate [00, 00] [00, 00] [00, 00]
unit candidate [00, 00] [01, 01] [01, 01]
unit [00, 00] [01, 00]
changed [00, 00] [01, 00]
failed [00, 00] [00, 00]

After calculating and assigning the new unit 1 to the local assignment with propagation

literal -2, the new local assignment looks like this:

Table 10: Local assignment after second iteration of clause 1

literal assignment

1 [00, 01]
2 [11, 00]

Now the second clause is processed:

Table 11: First iteration of clause 2 to identify unit clauses

flag initial after literal -1 after literal 2 after clause

satisfied [00, 00] [00, 00] [00, 01]
invalidate unit candidate [00, 00] [00, 00] [00, 00]
unit candidate [00, 00] [00, 01] [00, 01]
unit [00, 00] [00, 00]
changed [00, 00] [00, 00]
failed [00, 00] [01, 00]

After the second clause a failed literal is found with propagation literal -2. A new unit

has been detected in the first clause as well, so the formula has to be iterated again to

guarantee there are no units missed in propagation. After that, the failed literals are

handled: -2 failed to propagate, so literal 2 is assigned positive in the global assignment

(for every 2-bit entity in the whole vector):

Table 12: Global assignment after detection of failed literal -2 in clause 2

literal assignment

1 [01, 01]
2 [00, 00]

The outer loop of the algorithm says that all literals have to be propagated again if a new
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failed literal is found. This is because clauses processed before now may raise further units

or failed literals. In the case of this example, no more units or failed literals are found

and therefore the algorithm terminates with the result that literal 2 can be permanently

assigned to true, and all clauses containing literal 2 can be removed from the formula.

Additionally every occurrence of literal -2 can be removed from all clauses. The resulting

simplified CNF for this example is as follows:

Example 6.

p cnf 1 1

1 0

6.5 Additional improvements

There are several ways to improve the performance of the branch-less algorithm. As al-

ready mentioned before the easiest way to gain efficiency is to increase the number of bits

used in the assignment vector. With this optimization it should be possible to gain almost

linear speed-up because no additional overhead is added. This statement of course only

holds until more complex data-types and operations like SSE are used, which introduce

overhead for execution or the memory bandwidth is exhausted.

Another popular way to gain performance is to utilize multi-threading, which is also pos-

sible for the presented algorithm. There are different methods to parallelize algorithms,

the developed algorithm implements a worker approach.

A performance factor for almost every memory-intense algorithm is how well caches can

be utilized. An approach to accommodate this is to handle more assignments sequentially

while iterating over the clauses to exploit the proximity of the assignments. This should

scale well until a hardware-specific limit is reached which is an empirical value depending

on the cache sizes and the length of the bit-vector.

Another significant issue with caches is to realize efficient assignment storage, so that

accessed data is as local as possible. During the development process considerable opti-

mization potential has been found to change assignment storage to establish a performance

gain.

The following sections describe the optimizations that have been implemented for the

branch-less version of the algorithm. In the experiment Sect. 7 these optimizations and

their effects are evaluated.

6.5.1 Long Bit-Vectors using SSE Instructions

Since the development of the algorithm was done on a machine with 64 bit architecture

bit-vectors with 64 bits length can be used natively. Almost every modern desktop and

server CPU since 2004 supports the SSE26 instruction set which includes logical operations

on integer values with up to 128 bits.

6Streaming SIMD Extensions 2; http://software.intel.com/sites/default/files/m/9/4/c/8/e/18072-
347603.pdf (retrieved on 2012-09-12)
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The implementation of the algorithm allows to easily switch between different vector

sizes. This is done with a preprocessor setting called VECTOR SIZE which defines which

operations and types should be used. As shown in List. 1 the basic code can stay the same

applying user-defined types and macros for the bit-operations.

#i f VECTOR SIZE == 128

typedef unsigned long long VectorBaseType ;

typedef m128i AssignmentVector ;

#define OR(a , b) mm or si128 (a , b )

#define AND(a , b) mm and si128 (a , b )

#define XOR(a , b) mm xor si128 (a , b)

#define SHR(a , c ) mm sr l i ep i 64 (a , c )

#define SHL(a , c ) mm s l l i e p i 6 4 ( a , c )

#define NOT(a ) mm andnot si128 (a , MASK ALLONES)

#e l i f VECTOR SIZE == 64

typedef unsigned long long VectorBaseType ;

typedef unsigned long long AssignmentVector ;

#define OR(a , b) ( a | b)

#define AND(a , b) ( a & b)

#define XOR(a , b) ( a ˆ b)

#define SHR(a , c ) ( a >> c )

#define SHL(a , c ) ( a << c )

#define NOT(a ) (˜ a )

Listing 1: Vector-size dependent Types and Macros

The m128i data-type and mm * operations are the SSE2 intrinsics that can be used

by including the corresponding header file emmintrin.h. The source code contains several

passages where special treatment for SSE2 data types is required, e.g. debug outputs.

6.5.2 Parallelization/Multithreading

The use of multi-threading is implemented very straightforward: a worker pool is created

on startup, the number of workers is given as a parameter. The initial thread is the ’boss’-

thread which coordinates starting and joining the other worker-threads. The worker-

threads are started round-wise, that is to propagate every literal once.

The workers are started in rounds. One round means that all literals are propagated

once, resulting in a list of failed literals. If no new failed literals are found in a round

the algorithm terminates, otherwise a new round is started. One central method controls

which worker propagates which literals, this is achieved through a globally locked variable

that stores which literals to propagate next.
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The technology used for parallelization is Pthreads7 which offers a simple way of spawning

workers and managing access to global resources. Correct variable access management is

obtained by provided locking methods.

As shown in List. 2 a worker is a very simple structure. The most important compo-

nent for threading itself is the pthread t variable. The id is used for debugging purposes

to identify which thread is performing which actions and to identify the main thread by

a negative number. The assignment states variable stores the actual state of the literal

propagation, more precise the clause flags and the actual propagation literals. Variable

produced globval indicates if a new global assignment has been found in the last round for

this worker.

typedef struct Worker Worker ;

struct Worker {

pthread t thread ;

int id ;

AssignmentState a s s i gnment s ta t e ;

int produced g lobva l ;

} ;

Worker boss , ∗workers ;

Listing 2: Worker Type used for Multithreading

A simple schema of the implementation can be found in Alg. 4, which also includes the

optimization presented in the following section.

6.5.3 Cache Optimization

Sequential Assignments During the development of the algorithm it has been ob-

served that the CPU’s cache is not utilized very well. To overcome this an additional

method has been introduced. The idea is to handle more than just one assignment vector

when iterating over the clauses. The implementation is very straightforward: instead of

using one single assignment state as shown in List. 2 an array containing multiple assign-

ment states is used.

Additionally the storage of the assignments has to be adopted to fulfil the new condi-

tions. The base implementation has a very simple storage scheme for assignments: it is

just an array which is indexed by the literal. This array therefore has as much elements

as literals in the formula. By handling multiple assignments sequentially the number of

elements is multiplied. The memory layout is chosen so that the locality of the sequential

assignments is very high.

Figure 1 shows how the assignments storage is organized. It is arranged in three lev-

els, with the thread at the highest level, followed by the literal and sequential level.

Regarding the algorithm’s structure of nested loops this storage layout generates the

most cache locality possible.

7POSIX Threads - a POSIX standard for developing multi-threaded application on POSIX compliant
operating systems
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Figure 1 also depicts the way assignments are initialized with the literals to propagate.

The order of setting the propagation literals is as follows: 1,−1, 2,−2, ..., n,−n. The num-

ber of parallel assignments that can be handled is 8 in this example (2 per vector × 2

sequentials × 2 threads). The consequence is that following literals can be propagated in

the first round: 1,−1, 2,−2, 3,−3, 4,−4.

A single assignment is described by 3 parameters: thread, sequential and entity num-

ber. When initializing an assignment, e.g. thread 0, sequential 0 and entity 1, and the

literal to propagate is 1, the corresponding assignment vector is calculated (which is at

address 0 in this case). The first entity is then set to 00, stating that literal 1 is assigned

positively. To extend this example, if the assignment of thread 1, sequential 0, entity 2

should propagate −3, the second entity in the vector at address 16 is set to 11, which

depicts a negative assignment.

The example shown in Fig. 1 assigns propagation literals like described in Table 13.

Figure 1: Assignment storage layout

+-----------+-----------------------------------------------+

| |0 1 2 |

| array pos |0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3|

+-----------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| bit 3 |1|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|1|0|0|0|0| \_second entity

| 2 |1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1| /

| 1 |0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| \_first entity

| 0 |0|1|1|0|1|1|1|1|1|1|1|1|1|1|1|1|0|1|1|0|1|1|1|1| /

+-----------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|thread |0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1|

|literal |1 1 2 2 3 3 4 4 5 5 6 6 1 1 2 2 3 3 4 4 5 5 6 6|

|sequential |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1|

+-----------------------------------------------------------+

nr_threads = 2, nr_literals = 6, nr_sequentials = 2, nr_bits = 4

memory_pos = thread * nr_literals * nr_sequentials +

(literal-1) * nr_sequentials +

sequential

To give an idea of how parallelism and sequentials have been implemented, Alg. 4 shows

a rough sketch of the required changes to the simple bit-parallel algorithm. The two most

important sections are the following:

• the for all parallelization loop, where the pthread workers are spawned

• the initialize next assignment in line 8, which is a procedure protected by a semaphore –

this procedure is the central building block of establishing work dispatching

Distributed Assignment Storage The previously introduced assignment storage in

a single pre-allocated block of memory has a disadvantage. Whenever an assignment is
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Table 13: Schema of assigning propagation literals to assignment vectors

propagation literal assignment # thread sequential entity

1 1 0 0 1
-1 2 0 0 2
2 3 0 1 1
-2 4 0 1 2
3 5 1 0 1
-3 6 1 0 2
4 7 1 1 1
-4 8 1 1 2

Algorithm 4 Parallelism and sequentials in bit-parallel algorithm

function BlBpParSeqFLP(formula)
2: initialize global assignment

repeat
4: reset propagation literal list ⊲ start a new propagation round

for all workers in parallel do ⊲ spawn threads
6: while propagation literals left or changed do

for all sequentials do ⊲ initialize assignments for all sequentials
8: if not changed then

initialize next assignment ⊲ for details see Alg. 3

10: for all clause in formula do
for all literal in clause do ⊲ detect unit clauses

12: for all sequentials do calculate clause states

for all literal in clause do ⊲ apply new units
14: for all sequentials do apply new units to assignments

for all sequentials do ⊲ handle failed literals of sequentials separately
16: if not changed then

if found failed literals then
18: handle failed literals

synchronize workers
20: until no new failed literals found ⊲ terminate if no worker found

⊲ new failed literals
return global assignment

22: end function
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retrieved or needs to be set, a global offset is calculated. This offset calculation needs to

include the literal, thread-id and the sequential-id.

As an optimization to get over this offset calculation the assignment storage can been

moved to the worker object (which is used for parallelization issues). This also has the

advantage to store data often used by a single thread closer together than before and

therefore has better caching behaviour. This alternative assignments storage is refered to

as distributed storage in this work.

The effects of both cache optimization techniques are discussed in the following exper-

iments.
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7 Experiments

This section contains experiments of the different variants of the developed failed literal

probing algorithm. Every experiment tries to argue about the expectations and the out-

come of the benchmarks.

A benchmark suite is created that is able to run the algorithm on arbitrary problems in

every required configuration. The result of a run contains the following informations:

• units: the number of unit literals that have been found.

• rounds: the number of rounds that were necessary to finish (see also: rounds in

Sect. 6.5.2).

• iterations: how often the whole formula has been iterated over.

• assignments: how many assignments were made through propagations.

• vector utilization: the ratio of how many bits are actively utilized in an iteration

(the last iteration before a whole new assignment block is initialized is omitted – no

bit is utilized in this case).

The value is calculated like this: in the end of every iteration the number of active

assignments is evaluated and summed up, this value is then divided by the total

assignments that could have been active. This total value consists of the number

of iterations where active assignments existed times the number of assignments per

vector times the number of sequential assignment vectors.

• runtime: the real runtime8 (wall-clock time).

All the benchmarks have been executed on a benchmark machine provided by the institute

of formal models and verification (FMV) at JKU Linz. The features of this machine are as

follows: 12 cores (two Intel R© Xeon R© DP E5645 6x2.4GHz), 96 GB main memory, Ubuntu-

Server 11.10 Oneiric Ocelot (64 bit). The used compiler was GCC 4.6.1 (Ubuntu/Linaro

4.6.1-9ubuntu3).

7.1 Problem Sets

Three problem sets with different properties have been developed to obtain reasonable

results.

• 2sat – A random SAT problem where every clause contains exactly two randomly

selected literals with randomly selected polarity. These two literals are ensured not to

be the same. One parameter is used when generating such a problem that indicates

how many literals and clauses should be generated. Every clause triggers at least

two propagations when running the algorithm.

8real runtime means the actual time that the program needs from start to termination; another way to
measure time is the CPU time, which depicts the time the CPU is busy executing the program
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Figure 2: Visual implication schema of quadratic problem set (implications from ti to lj
are only shown for t1)
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• quadratic – A specific SAT problem that leads to a quadratic number of propaga-

tions while no failed literals are found. Its implications are designed as follows (also

shown visually in Fig. 2). There are three different kinds of literals:

– Two intermediate literals that build a connection between the other two kinds

of literals. These two literals are denoted x and y in the example.

– A set of triggering literals that basically imply both intermediate literals by

two binary clauses. Every triggering literal is denoted by ti where i is the

number of literals used. It is important to say that a literal only occurs in one

polarity because otherwise it would lead to a failed literal when propagating an

intermediate literal. The example shows that for every triggering literal there

exist exactly two clauses, namely one implying x and the other one y.

– A set of implied literals which are implied by x ∧ y. Every implied literal is

denoted by lj where j is the number of implied literals used. Every lj results

in a clause ¬x ∨ ¬y ∨ lj .

The building block for a quadratic problem looks like the following, in the generated

problems i is always equals to j.

¬ti ∨ x

¬ti ∨ y

¬x ∨ ¬y ∨ li

Figure 3 shows how many literals, clauses and assignments are required for prob-

lems with n triggering/implied literals (x-axis). The corresponding values can be

calculated with these formulæ:

Equation 11. literals = 2 ∗ n+ 2

clauses = 3 ∗ n

assignments = n2 + 8 ∗ n+ 4

• maxrounds – A constructed SAT problem that leads all literals of one polarity to

fail and therefore results in a CNF where all clauses have length one - every literal

is fixed to a value. It is constructed equivalent to Ex. 7.
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Figure 3: Characteristics of constructed quadratic problems.
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This problem is specifically hard to solve for the developed algorithm, because it

probes multiple literals at once in a fixed order. If probing l1/¬l1 to l4/¬l4 in

parallel (8 assignments/16 bits), it happens that l1 is recognised as failed literal and

¬l1 is permanently assigned. As a consequence of permanently assigning ¬l1 the

assignment l2 gets a failed literal. The problem is that both literals are watched at

the same time so that a new round has to be started for l2 to be identified a failed

literal. This behaviour repeats until all failed literals are found.

In Sec. 7.3 an approach to reduce this negative effect is presented, which introduces

randomness when selecting literals to probe.

7.2 Efficiency of Bit-Parallelism

The major question regarding the introduction of bit-parallelism is how many bits must

be utilized to overcome the overhead that is produced.

Implementing the algorithm in a branch-less manner introduced the need for a second

iteration of a clause to set possibly found unit clauses. Another issue is that only the main

part of the algorithm is branch-less and can be handled in parallel, the other parts still

take as long or even longer than it was the case with the basic algorithm.

A very basic issue is that the required steps until propagation ends are very diverse

for every literal. The problem is that a number of assignments are joined together, lets

say 16, and start propagation. If there is just one assignment that takes a long time to

finish propagation, and the other 15 terminate quite fast, those 15 assignments keep un-

changed. These unused assignment ’slots’ lead to a lowered vector utilization but handling

assignments of a bit-vector separately would introduce large overhead which does not pay
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Figure 4: Branch vs. branchless bit-parallel version of the algorithm with different sizes
of bit-vectors used.
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off. All these facts lead to the assumption that at least three or four assignments must be

handled in parallel to be competitive to the basic version of the algorithm.

Figure 4 shows the performance of the algorithm with different vector lengths compared

to the initially developed branching version. As predicted the overhead of the bit-parallel

implementation just pays off somewhere between vector sizes of 8 to 16 bits. What also

can be observed is that every doubling of the vector size almost speeds up linearly in the

ideal case (as it is the case with quadratic problems).

The usage of SSE unfortunately does not seem to scale that well because of additional

implementation overhead - from 64 to 128 bits it is impossible to maintain linear speed-up.

The maxrounds result plot may seem odd for a moment. As already mentioned at the

problem description before, this has to do with the implementation issue that the order

of literal propagation is simply ascending from 1 to n. This results in many rounds and

therefore bad runtimes. This does not hold for bitvector sizes with 4 or 8 bits as depicted

in the plot.

7.3 Next Literal Jumping

As mentioned before, the maxround problem causes the algorithm to do many rounds.

This is because of the ascending order of literals to probe. By introducing literal jumping
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Figure 5: Comparison of rounds when employing literal jumping on maxrounds problems
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it is possible to reduce this effect. Literal jumping is implemented like this:

1. a random literal is determined as the start literal

2. a step distance is calculated, it must be a value relatively prime to the number of

literals (that is to find a number which greatest common divisor to the number of

literals is one)

3. beginning from the start literal you can add the step distance to find the next literal

to propagate, ensuring that every literal is exactly once covered - until the start

literal is calculated again

Figure 5 shows how required rounds are influenced by literal jumping. If bit vectors are

longer than 16 bits its influence is positive - otherwise more rounds are necessary. The

same effect would be generated if the source CNF file is scrambled up in a way that literals

are arbitrarily exchanged.

7.4 Multi-Threading

The upper bound of speed-up achieved through multi-threading in this algorithm seems

to be sub-linear. One limiting factor is that the initialization of a new propagation round

for a worker is a global operation and therefore needs locking over all threads. This is also

the case when a new failed literal has been found and it is added to the global assignment.

Another fact is that the more literals are handled in parallel the less information gained

in previous iterations can be utilized in further ones. The most limiting factor for gaining

speed-up with multi-threading is, that unit propagation generally is a sequential task and

in worst case cannot be parallelized at all (see Sect. 3.4).
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Figure 6: Comparison of single- and multithreaded algorithm with up to 32 threads
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Figure 6 shows how multi-threading influences performance on different problems with

vector sizes of 64 and 128 bits. There are various inferences that can be made from these

plots:

• if comparing the no threading (no locking) version to the one thread version they

almost produce same results; whereas the two thread version performs really bad for

an unknown reason.

• 2sat and quadratic problems seem to benefit most of employing multiple threads,

speed-up seems to be limited at approximately 8, when utilizing 32 threads - which

is a nice value for a 12-core machine.

• the maxrounds problem also allows speed-up by multi-threading since rounds can

be processed faster.

7.5 Sequential Assignments

As already mentioned in Sect. 6.5.3, the use of multiple assignment states can help to uti-

lize the CPUs cache better. Since the algorithm has to fetch an assignment for a specific

literal from a more or less arbitrary position in memory anyway, this fact can be exploited

to fetch multiple assignments. A reasonable speed-up is expected if utilizing two or more

of those sequential assignments, depending on the size of the CPU cache and global mem-

ory bandwidth utilization.

As there can be seen in Fig. 7 speed-ups of almost 40 percent are possible, depending

on the problem class and size. It is clear that the maxrounds problem does not perform

better due to the structure it belongs to. The 2sat and quadratic problem really show the

intended behaviour and show that caches can utilized better than before.

Subsequent experiments with combinations of multi-threading and sequential assignments

will show that they heavily influence each other and one has to find an optimal configu-

ration to perform best.

7.6 Distributed Assignments

This improvement heavily influences performance in multi-threaded benchmarks but also

shows moderate improvements in single-threaded results - which can be attributed to

reduction in offset calculations.

The performance plots in Fig. 8 show how distributed storage influences the results of the

three problem classes with different numbers of used threads. It is obvious that the CPU

cache works more efficient if assignment storage is local for each thread.

When looking at the speed-up compared to the assignment block version, distributed

assignments has better scalability. Even with maxround problems a considerable gain in

performance can be achieved.

When looking at the result for four threads a strange behaviour can be observed. The

memory block version performs really bad whereas the distributed storage implementation
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Figure 7: Performance effects of employing sequential assignments in the algorithm
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Figure 8: Comparison of different assignment storage approaches with different problem
classes and threading options
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scales almost linearly with the problem size. The cause for this has to be a caching effect,

no other explicable reason can be found.

What can also be seen is that two threads perform really bad for both storage solutions.

The quadratic problem even has a negative speed-up, which also has to be a mystifying

problem with CPU caching.

Another observation made is that the distributed storage technique has a more positive

effect on the 128 bit version of the algorithm when looking at the quadratic problem. The

64 bit version even runs slower than the memory block version.

7.7 Bit-Vector Utilization

A very interesting measurement on this algorithm concerns utilization of bit-vectors. This

value gives an idea of how much time is spent in calculations that really yield results. The

unused bits can be seen as a lost resource - the calculations have to be done anyway until

nothing changes in the whole vector.

Figure 9 shows the vector utilization for the three problem classes and a diverse num-

ber of sequential assignments to see how this influences the utilization value. The 2sat

problem shows that smaller vector sizes equals higher utilization which is the expected be-

haviour for this problem class. It can also be observed that even 32 sequential assignments

do not reduce utilization - but what is interesting is the poor value for 128 bit vectors.

The average is about 0.15 and 0.2 which means that with an optimal utilization of 1.0 a

speed-up of approximately 5 would be possible.

The plots for the maxrounds problem give an idea, why longer bit-vectors result in bad

performance. Compared to the 4- and 8-bit version the longer ones have utilizations that

go towards zero.

Since the quadratic problem is constructed to have a well-defined length of implication

chain only small variance occurs. Nevertheless with dynamic generation of new assign-

ments there is a great potential to speed up propagation.

The poor utilization values of 128 bit vectors have to be reviewed from a different angle.

Since no additional hardware (SSE is available in almost every modern CPU) is needed

to be able to handle long vectors less utilization can be neglected. As the other evalua-

tions reveal, these bit vectors perform best while at the same time no additional costs arise.

In general it would be a substantial improvement to be able to populate the vector with

new work efficiently. The problem is that the initialization of the assignment vector is

a complex task. No way has been found in this work to establish this in a reasonable

amount of time (e.g. in branch-less manner).

7.8 Optimal Configuration

This experiment has been used to determine which configuration yields best total results

in terms of minimal runtime. We already observed that distributed storage of assignments

outperforms the memory block implementation, so this decision is already fixed.
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Figure 9: Vector utilization values for different vector lengths on different problem classes
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What has to be noted is that this results only apply to the specific benchmark machine.

The performance is heavily influenced by machine specific properties like number of cores,

memory bandwidth and cache sizes.

A substantial unanswered question is which combination of threads and sequentials has

to be chosen to perform best. Figure 10 shows the result of the benchmark. Note that

the problem size has been fixed for this plot (2sat and quadratic have problem size 25000;

maxrounds has problem size 500).

It can be seen that there is a point in the 2sat problem where additional sequential

assignments do not affect the performance positively whereas adding more threads still

reduces the runtime. The turning point is reached with 8 threads. When using less than

8 threads good reductions in runtime can be achieved with 2sat and quadratic problems.

As through all benchmarks, the maxrounds problem does not perform well with sequential

assignments, but with multiple threads.

When looking at the overall best reachable runtimes it is observed that employing 32

threads combined with two sequential assignments achieves best results. The best single-

threaded configuration is using 32 sequential assignments. What holds for both configu-

rations is that bit-vectors with a size of 128 bits perform best - barely better than the 64

bit version.

A comparison of the optimal configurations to the reference algorithm sflprepc by Armin

Biere is shown in Fig. 11. Table 14 shows the configurations of these three programs. The

problem configurations are the same as before. First of all it can be seen that the speed-up

of the parallel version is really good: 8.2 for 2sat, 3.5 for maxrounds and 8.4 for quadratic

problem set. Since the benchmark machine is equipped with two hexacore CPUs resulting

in 12 cores total this gives a positive prospect of what can be possible with much more

cores.

Table 14: Optimal program configurations

bar in figure algorithm threads sequentials vector size assignment storage

1 branch-less 1 32 128 distributed
2 branch-less 32 2 128 distributed
3 sflprepc 1 - - -

It is no surprise that the reference algorithm performs better with 2sat and maxrounds

problems, since it needs much less iterations due to occurrence lists. An idea of the po-

tential of the developed algorithm is shown with the quadratic problem: in this case many

propagations have to be done and occurrence lists are not that helpful. The challenges

therefore really fit the strength of the developed algorithm. Even the single-threaded ver-

sion terminates faster than the reference algorithm, the multi-threaded version is about

nine times faster.
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Figure 10: Runtimes when varying number of threads and sequentials to find optimum
(applied to fixed problem size)
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Figure 11: Comparison of runtimes of optimal configurations with reference algorithm
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The evaluation can be summarized to these core points:

• utilization of long bit-vectors scale well until additional overhead has to be introduced

(compare native 64 bit-vectors and SSE2 128 bit-vectors).

• multi-threading scales really well with streaming-oriented algorithms like the devel-

oped algorithm (at least until memory bandwidth limits are reached).

• CPU caches have to be utilized well to obtain good results in such memory intense

algorithms by localizing memory accesses (using sequential assignments or optimized

storage structures).

• long bit-vectors lead to lower bit-vector utilization if not repopulating them on the

fly - this fact gives a significant potential to speed-up the developed algorithm in

future versions.

• the developed algorithm complies to the design policies of well-performing GPGPU

algorithms and therefore is expected to perform well on such massively parallel

architectures.

60



8 Conclusion

This thesis gave an overview on SAT solving in general, focused on complete SAT solving

algorithms that are based on DP. This is because the central component of failed literal

probing and those algorithms is identical, namely boolean constraint propagation.

In Sect. 3 the current state-of-the-art in parallel SAT solving has been discussed to

have an idea of what is the difference to this thesis’ objective. It also shows that the

general interest on parallelism in SAT solving is as high as never before in SAT solving

history.

Theoretical background on failed literal probing has been presented in Sect. 4, which

includes the state-of-the-art in boolean constraint propagation as well as possible reasoning

techniques.

Related work on bit-parallelism was discussed in Sect. 5. A work by Heule and van

Maaren chased a similar approach like this thesis, but, contrary to this work, in the do-

main of incomplete SAT solvers.

Section 6 covered the implementation of the different stages of the algorithm - starting from

the basic algorithm with no optimizations to the final implementation. The utilized data

structures as well as complex bit-operations were explained in detail, including various

pseudocode which revealed the algorithms behaviour. The implemented optimizations

were described in further subsections.

The most important part of this thesis, namely the experiments and evaluations were

presented in Sect. 7. As the evaluation summary in the end of Sect. 7.8 depicts, the de-

veloped algorithm revealed various valuable facts.

However, the target of this thesis never was to implement an algorithm that outperforms

state-of-the-art BCP implementations. It should evaluate the potential of ‘streaming’

algorithms applied to this kind of application field.

8.1 Future Work

As already mentioned in the motivation in Sect. 1.1, this thesis is a step into the direction

of porting the developed algorithm to massively parallel systems like GPGPUs. This thesis

should be extended to get an implementation that will utilize the whole parallelism of a

GPU in the long term view.

What has to be done first is to design a schema how parallel threads are organized:

the number of dimensions, blocks per dimension and threads per block. The next step is

to decide which parts of the algorithm should be executed on the GPU and which other

parts to process on the CPU. The last step is to implement the kernels that are executed

on the GPU, where every kernel must avoid branch divergence to perform well.

It is hard to predict if the GPU implementation would outperform state-of-the-art

implementations since caching behaviour is unknown for this special implementation. It is

also unclear how processor frequency and memory bandwidth influences the performance.

Nevertheless there is also optimization potential for the developed algorithm, e.g. extend-

ing the use of bit-parallelism throughout the algorithm, increasing bit-vector efficiency or
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improving assignment storage and operations like proposed in Sect. 6.4.2.

The other way of future work concerns the implementation of additional probing tech-

niques like lifting, hyper-binary resolution or equivalent literal detection, which can be

found in Sect. 4. Especially lifting can be implemented in an easy way due to the struc-

ture of the algorithm.

Anyway, this thesis should be a good basis for future work on streaming implementations

of boolean constraint propagation. This work has revealed that notable speed-ups can be

achieved when applying parallelism to the algorithm, which give an optimistic perspective.
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