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Abstract I

Abstract

Programming errors that result in memory errors are hard to detect. Even today, with
the availability of cheap memory modules and virtual machines supporting garbage
collection, detecting such errors can be crucial because using more memory in computer
systems or garbage collection in virtual machines only delay the occurrence of the
problem.

When programming languages did not support automated memory management, a
memory leak was a piece of memory allocated on the heap, that is not referenced
anymore. This piece of memory will only be released when the program terminates.
For programming languages with a managed heap, this definition needs to be updated:
a memory leak is a piece of memory which is allocated and referenced on the managed
heap but the program will never read or write the memory location on any path through
the program. Memory errors on the managed heap are a subset of memory errors that
occur on unmanaged heaps. They are very hard to detect and only a few tools support
techniques to analyze problems on the managed heap.

This work presents the approach taken in dynaTrace, a monitoring and analysis tool
for distributed heterogeneous JAVA and .NET application. dynaTrace helps developers
detect memory errors, especially memory leaks, by creating, storing and analyzing
different types of heap dumps. dynaTrace is designed to be used in both development
and production environment, hence it must meet strict requirements towards time
and memory overhead for the application under diagnosis. Usually, producing heap
dumps generates heavy load for the virtual machine, therefore, to comply with these
restrictions, different types of heap dumps are supported by dynaTrace: simple heap
dumps, producing minor time and memory overhead, and extended heap dumps that
stall the virtual machine for a longer time. This work presents the architecture of
dynaTrace, discussing the advantages of the agent-server design and how overhead for
the virtual machine is reduced to a minimum.

Heap dumps are organized as a graph data structure. To make memory analysis easier
for the developer and to reduce the complexity of the heap dumps, several analysis al-
gorithms were developed. These include the garbage collector size and the dynamic size
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algorithms. To compute the gc size for each object the node which prevents the object
from being garbage collected (the dominator node) must be computed. The dynamic
size of an object can be calculated by summing up the sizes of all nodes reachable from
the object. Additional algorithms that improve the runtime of the original dynamic
size algorithm (strongly connected components, biconnected components, articulation
points and dominating articulation points) are also presented. The strongly connected
components algorithm groups nodes that are known to have the same dynamic size. By
using the biconnected components and articulation points algorithms the graph can be
partitioned into two or more independent sub graphs. The original articulation point
dynamic size algorithm has a design error: It is possible to count certain nodes multi-
ple times. To overcome this flaw, the notion of dominating articulation points and an
algorithm to compute those was developed and is presented in this work.

An important conclusion can be drawn from the data generated to compare the dif-
ferent heap dump and analysis algorithms: The algorithms are tested using generated
heap dumps and heap dumps from two sample applications. Apart from the running
times, also statistic values were determined for the heap dump or strongly connected
components graphs. One important insight gained from the data is that the use of
dominating articulation points speeds up the computation of the dynamic size.
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Kurzfassung

Programmierfehler die Speicherfehler nach sich ziehen sind schwer zu entdecken. Ob-
wohl heute viele Programmiersprachen sogenannte Garbage Collectoren unterstützen
und trotz der Verfügbarkeit von billigen Speichermodulen ist es essentiell, diese Spe-
icherfehler zu identifizieren, denn sowohl Garbage Collectoren, als auch zusätzlicher
Speicher, verzögern nur den Zeitpunkt an dem sich die Auswirkungen eines Speicher-
fehler bemerkbar machen.

Als Programmiersprachen noch keine Methoden zur automatischen Speicherverwaltung
einsetzten, wurde ein Speicherbereich der nicht mehr referenziert wird als Speicherleck
angesehen. Diese Definition muss für Programmiersprachen die Virtuelle Maschinen
und Garbage Collectoren, also einen gemanagten Heap verwenden, angepasst werden:
ein Speicherleck ist ein Speicherbereich der noch referenziert wird, aber auf den das
Programm in keinem möglichen Pfad durch das Programm mehr zugreift. Speicher-
fehler auf dem verwalteten Heap sind eine Teilmenge der Speicherfehler die bei einem
unverwaltetem Heap auftreten können. Sie sind sehr schwer zu entdecken und es gibt
nur wenige Software Werkzeuge die Techniken zur Speicheranalyse anbieten.

Diese Arbeit stellt den Ansatz des Tools dynaTrace vor, ein monitoring und Analyse
Tool für verteilte heterogene JAVA und .NET Anwendungen. dynaTrace hilft Entwick-
lern Speicherfehler, vor allem Speicherlecks, zu finden. Dazu können verschiedene Arten
von Heap Dumps erstellt, gespeichert und analysiert werden. dynaTrace soll sowohl in
Entwicklungs- als auch in Produktionsumgebungen laufen, daher muss das Tool strenge
Regeln bezüglich zusätzlichem Zeit- und Speicherkonsum einhalten. Normalerweise
verursacht das Erstellen eines Heap Dumps große Belastung für die Virtuelle Maschine,
daher unterstützt dynaTrace das erstellen von verschiedene Typen von Heap Dumps,
etwa einfache Heap Dumps, die die zusätzlich benötigte Zeit und Rechenleistung, im
Gegensatz zu den erweiterten Heap Dumps, auf ein Minimum reduzieren.

Heap Dumps sind als Graphen organisiert. Um die Speicheranalyse für den Entwick-
ler zu vereinfachen und um die Komplexität der Heap Dumps zu reduzieren, wurden
mehrere Analyse Algorithmen entwickelt. Diese Algorithmen umfassen den Garbage-
Collector-Größe- und den Dynamische-Größe-Algorithmus. Um die Garbage-Collector-
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Größe berechnen zu können muss für jedes Objekt der Knoten berechnet werden, der
verhindert, dass das Objekt vom Garbage Collector frei gegeben wird (der domina-
tor Knoten). Die dynamische Größe wird berechnet, indem man die Größen aller
Knoten zusammenzählt, die von einen Objekt erreicht werden können. Einige Al-
gorithmen zur Verbesserung der Laufzeit des Garbage-Collector-Größe-Algorithmus
(strongly connected components, biconnected components, Artikulationspunkte und
dominierende Artikulationspunkte) werden in der Arbeit vorgestellt. Mit Hilfe des
strongly connected components Algorithmus werden Knoten, die die gleiche dynamis-
che Größe haben, zu einem Knoten zusammengefasst. Der biconnected components und
Artikulationspunkte-Algorithmus teilt den Graphen in mehrere unabhängige Teile. Der
ursprünglich in dieser Arbeit entwickelte Artikulationspunkte-Algorithmus hat einen
Fehler: Es ist möglich die Größe von bestimmten Knoten mehrmals zu zählen. Um das
Problem zu lösen, wurde in dieser Arbeit die Definition so genannter dominierender
Artikulationspunkte und ein Algorithmus zur Berechnung dieser entwickelt.

Ein Schluss kann im Zuge dieser Arbeit aus den Testdaten der Algorithmen gezogen
werden: Die Algorithmen werden mit selbst erzeugten Heap Dumps und Dumps von
zwei Beispielanwendungen getestet. Abgesehen von den Laufzeiten wurden auch noch
einige statistische Werte für die unterschiedlichen Heap Dump und strongly connected
components Graphen ermittelt. Die Ergebnisse der Tests zeigen, dass die Verwen-
dung von dominierenden Artikulationspunkten die Berechnung der dynamischen Größe
beschleunigt.
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Introduction 1

Chapter 1

Introduction

When memory in computer systems was sparse, programmers were required to mon-
itor memory consumption carefully. Therefore memory analysis was very important.
Increasing memory of a computer system or using an automatic garbage collection for
the runtime environment of a programming language cannot solve memory problems.
The effects of the problem are simply delayed. But the availability of inexpensive mem-
ory modules and virtual machines using garbage collection, seems to have reduced the
awareness towards problems resulting from memory leaks. As a result, computer sup-
ported memory analysis techniques are an important topic today and will become even
more important in the future.

Java as well as .Net virtual machines use three locations to allocate memory:

• Stack: The stack is used to store local variables and parameters of methods. A
separate stack exists for each thread in the program. Memory problems caused
by threads occur if a thread deadlocks or if the method executed loops forever
and does not terminate. The result in both situations is that memory used by
the thread is lost and can only be deallocated when the thread is terminated.

• managed Heap: The part of memory where the garbage collector (GC) collects
unused memory. More about GC technologies can be found in [9] and [14]. The
heap is used to store object data that is allocated at runtime, that is, during
execution of the program.

• unmanaged Heap: The unmanaged heap is used by the virtual machine itself to
store internal data structures. It can be accessed by the programmer via the Java
Native Interface (JNI) in Java or using unmanaged code in .Net. Unmanaged
Heap is not considered by the garbage collector.
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This work focuses on the managed heap because in Java or .Net programs most memory
issues occur there. For programming languages without a managed heap, a memory
leak is a piece of memory allocated on the heap, that is not referenced anymore. This
piece of memory will only be released when the program terminates. For languages
with memory management the same definition of memory leaks can be used for the
unmanaged heap, but it needs to be adjusted for the managed heap: a memory leak
is a piece of memory which is allocated and referenced on the managed heap but the
program will never read or write the memory location on any path through the program.
Leaking memory that suffices the definition of a memory leak for the unmanaged heap
will be deallocated by the garbage collector but it cannot handle memory defined as
leaking on the managed heap.

The most common causes for memory leaks in managed code are: [15] [4]

• Objects forgotten in collections.

• The amount and time of data objects stored in HTTP sessions.

• Missed objects in self implemented lists, data structures or buffers.

• Objects assigned to static fields of classes are not cleaned up until the application
shuts down or they are set to null. A special problem are statically held collections.

Various tools that help the programmer detect those memory problems are available,
but most of them have drawbacks. Their disadvantage is that they need a lot of CPU
time and memory. Only some of these tools support analysis algorithms for heap
dumps.

1.1 Objective

The thesis has two main goals: The first is the development of a tool that creates heap
snapshots to find memory leaks in .Net and Java applications. Memory information
about the application is collected and forwarded to a central server for analysis and
correlation. Memory information includes:

• Classes: store the classname, classID, size of all objects of a class and number
of instances of a class.

• Objects: collect classID, objectID and size for all objects.

• References: find out referees and referrers for all objects of the heap.
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The tool allows to create memory dumps with object references. Furthermore, low-
memory programming techniques are applied in the implementation to handle low and
out-of-memory situations in the virtual machine. The information collected helps to
trace object references and to get an overall picture of the memory consumption of the
application.

The second goal is to develop and implement algorithms to analyze the heap data
collected. During analysis, the heap is represented as object reference graph. The
objects and classes are represented by nodes and references are edges between nodes.

Most profilers and debuggers allow to create dumps of the heap, but without further
sophisticated analysis techniques it is rather difficult to detect memory leaks. The
following analysis techniques can be applied on heap dumps to allow efficient memory
analysis:

• Root Nodes Detection: Finding the root nodes of a given object in the refer-
ence graph.

• Garbage Collector Size Calculation: Calculate the garbage collector size of
a given object: the amount of memory deallocated when the object is garbage
collected.

• Dynamic Size Calculation: Calculate the dynamic size of a given object or
subgraph: the size of the object and the size of all other objects reachable from
it. The dynamic and the gc size of an object can be used to identify objects that
are possibly leaking memory.

• Important Nodes Detection: Important nodes are nodes that are referred by
or refer to many other nodes. Usually nodes at those the graph can be divided into
two independent parts (articulation points) are important nodes in the reference
graph.

• Memory Leak Detection: Finding potentially leaking regions by using the
dynamic and the gc size.

• Diffing: To detect potential memory leaks it is important to compare memory
dumps. Diffing is not discussed in this work.

The results have been integrated into dynaTrace, a performance analysis tool for dis-
tributed applications, developed by dynaTrace Software GmbH [1].
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1.2 Preliminaries

dynaTrace is a diagnostic tool for distributed heterogeneous J2SE/J2EE and .Net appli-
cations which detects performance and stability problems under production load levels.
dynaTrace is designed to be used both in development environments and production
systems. It has a three tiered architecture: the dynaTrace Agent(1), the dynaTrace
Client(2), the dynaTrace Server(3) and an optional Repository(4).

Figure 1.1: Architecture of dynaTrace [1]

• dynaTrace Agent: The dynaTrace agent is running within each process of the
application under diagnosis. It is responsible for the transmission of collected
information to the central server. In addition, it transmits memory snapshots to
the server for analysis. The Diagnostics Agent and the dynaTrace Server com-
municate using three communication channels. For memory diagnosis, a fourth
channel is opened, used only to transmit heap dumps from the agent to the server.

• dynaTrace Server: The dynaTrace server stores and analyses collected memory
data. All analysis is performed on the server, sustaining overhead for the virtual
machine at a very low level. To use data for memory diagnosis the server stores,
manages and analyzes the collected heap dumps on the file system.

• dynaTrace Client: The dynaTrace Client requests the analysis results from the
central server, displays it and allows the user to interact with it. The dynaTrace
Client is implemented as an SWT application based on the eclipse platform.
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Heap dumps are stored on the hard disk of the computer system running the server.
Each dump is stored in its own directory.

Figure 1.2: Heap Dump View of dynaTrace [1]

1.3 Control Flow Graph vs. Reference Graph

The most common analysis techniques are the control flow graph and reference graph
memory analysis.

Control Flow Graph Memory Analysis

To perform control flow based memory analysis the execution paths trough the program
must be recorded. For object oriented programming languages the paths contain all
method calls and all constructor calls and destructor calls of the objects. For each
constructor call, the size of the allocated object (static size) is recorded. For further
analysis, all control paths are merged to one control flow graph, by merging all nodes
that are results of calls to the same method or constructor. The size of the objects
is propagated upwards to the root of the control flow graph. The size of each node
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is the sum of the sizes of all children. The edges of the graph are weighted using the
size information in bytes or percentage. The resulting control flow graph reveals paths
through the program that require more memory than others and are worth detailed
examination.

The Google perftools [2] are an implementation of the control flow graph based memory
analysis algorithm for the programming language C. The advantage of this method is
that it easily finds methods which are responsible for the largest memory consumption.
Furthermore it is easy to calculate the size of the nodes and the propagated size. The
drawback of this method is that collecting data, needed to construct the control flow
graph, is very expensive. Each call of a method or a constructor must be monitored,
resulting in unwanted runtime overhead. For the programming language C it is easy to
monitor the allocation and the deallocation of each memory block. Only the alloc and
free method must be adapted.

Reference Graph Memory Analysis

The reference graph based memory analysis uses heap dumps. In contrast to the control
flow graph technique the reference graph method produces less overhead because CPU
time and memory is only consumed when producing a heap dump. The drawback is
that no control flow information is available. Without control flow information, new
algorithms to analyze the heap dump and to calculate size information are necessary.
The dynamic size and the garbage collector size are the most common size information
calculated for nodes in the heap graph. The reference graph based memory analysis
was implemented by hprof [13] and MAT [6].

The control flow based memory analysis has advantages if it is possible to identify the
method which caused the memory allocation to an object or array. If it is impossible to
identify those methods, the reference graph based memory analysis yields better results.
Consider a situation where a factory method is used to construct objects with the exact
characteristics of the objects specified later. For example a compiler using a factory
method to allocate objects that are used to store information about identifier and
keywords. They are stored in two different lists, depending on whether they represent
keywords or identifiers, defined outside of the factory method. A memory leak in one
of the lists can be found w
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1.4 Control Flow Graph vs. Reference Graph

The most common analysis techniques are the control flow graph and reference graph
memory analysis methods.

Control Flow Graph Memory Analysis

To perform control flow based memory analysis the execution paths trough the program
must be recorded. For object oriented programming languages the paths contains all
method calls and all constructor calls and destructor calls of the objects. For each
constructor call, the size of the allocated object (static size) is recognized. For further
analysis, all control paths are merged to one control flow graph, by merging all nodes
that are results of calls to the same method or constructor. The size of the objects
is propagated upward to the root of the control flow graph. The size of each node
is the sum of the sizes of all children. The edges of the graph are weighted using
the size information in bytes or percentage. The resulting control flow graph reveals
paths through the program require more memory than others and are worth for further
investigation.

The Google perftools [2] are an implementation of the control flow graph based memory
analysis algorithm for the programming language C. The advantage of this method is
that it easily finds methods which are responsible for the largest memory consumption.
Furthermore it is easy to calculate the size of the nodes and the propagated size. The
drawback of this method is that the collection of data to construct the control flow
graph is very expensive. Each call of an method or constructor must be monitored,
resulting in unwanted runtime overhead. For the programming language C it is easy to
monitor the allocation and the deallocation of each memory block. Only the alloc and
free method must be adapted.

Reference Graph Memory Analysis

The reference graph based memory analysis uses heap dumps. In contrast to the control
flow graph technique the reference graph method produces less overhead because CPU
time and memory is only consumed when producing a heap dump. The drawback is
that no control flow information is available. Without control flow information, new
algorithms to analyze the heap dump and to calculate size information are necessary.
The dynamic size and the garbage collector size are the most common size information
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calculated for nodes in the heap graph. The reference graph based memory analysis
was implemented by hprof [13] and MAT [6].

The control flow based memory analysis has its advantages if it is possible to identify
the method which caused the memory allocation to the object or array. If this is
impossible the reference graph based memory analysis is better. Consider a situation
where a factory method is used to construct objects with the exact characteristics
specified later. For example a compiler using a factory method to allocate objects
that are used to store information about identifier and keywords. They are stored in
two different lists, depending on whether they represent keywords or identifiers what is
defined outside of the factory method. A memory leak in one of the lists can be found
by applying the reference graph based memory analysis. It is impossible to detect the
leaking list with the control flow graph method, for it cannot differ between the size of
keywords and the size of identifiers in the factory method. The only conclusion that
can be drawn from the control flow graph method is, that the memory consumption of
the factory method is unusually high.

Combined Memory Analysis

The two methods can be combined. The basis for the combined method is the reference
graph based memory analysis. The heap dump is required to contain information about
root objects. For those that are referenced from the stack, stack traces can be collected.
Using stack traces, the control flow graph can be created similar to the control flow
based memory analysis. It is not investigated which size information, used as edge
weights, yields good results. Possible size information are the dynamic size or the
garbage collector size of the root node. Details about this method can be found in
Chap. 7.

1.5 The Memory Diagnosis Process and Dump Types

Memory diagnosis is a complex and time consuming task. Analyzing heap dumps
allows to monitor application behavior over time and to find trends before errors occur.
Two heap dumping techniques are implemented: the first method collects class names
and the number of bytes needed by all objects of that class, as well as the number
of instances for each class. This technique is called simple heap dump. The second
method collects all classes, objects and references between them. It is called extended
heap dump.
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To identify memory leaks using simple and extended heap dumping techniques, the first
step is to create simple heap dumps. They can be compared and entries can be sorted
to find the class with the largest number of bytes needed by all objects of the class.
After collecting a few dumps, it is possible to identify trends in memory consumption
for specific classes. If the size needed by all objects of a class is growing each dump,
this class is a candidate for a memory leak.

The second step is to create extended heap dumps to identify the root cause of the
memory leak. They must be used cautiously because an extended memory dump stalls
the virtual machine significantly longer than a simple memory dump. Using the objects
of the classes identified as potential memory leaks as starting points, the root cause can
be found by following the references to objects of known classes or by using algorithms
described in Chap. 4 (Root Nodes Detection, Garbage Size Calculation, Dynamic Size
Calculation and some other). If no trend in memory consumption emerges or if the
classes are to common like java.lang.String, another way to search for memory leaks
is to calculate the garbage collector size or dynamic size for all objects and analyze the
biggest objects and arrays. If memory consumption is considered too high these sizes
can be drawn into account when profiling the applications.
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Chapter 2

Dynamic vs. GC Size

The size of an object or array is important for almost all strategies to find memory
leaks. The size of an object can be defined in several ways. In this work, three different
sizes are defined:

• Static-Size: The static size of an object is the size of the piece of memory
necessary to store one instance of the class of this object. The static size is
the sum of the sizes needed to store all primitive fields, all references and some
overhead to manage the object with the garbage collector. Some virtual machines
align the static size on a multiple of four byte.

• GC-Size: The garbage collection size of an object is the amount of memory
deallocated if the object is garbage collected.

• Dynamic-Size: The dynamic size of an object is the size of the object and the
size of all other objects reachable from it.

The static size is the smallest of the three sizes and the dynamic size is always greater
or equal to the garbage collector size.

The garbage collector size is used by the Eclipse Memory Analyzer (MAT) to find big
chunks (potential memory leaks) in the heap graph. In MAT, the garbage collector size
is called retained size and the set of all objects included in the dynamic size of an other
object is called the retained set. [6]
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Figure 2.1: Eclipse Memory Analyzer [6]

The assumption in this work is that using the dynamic size, rather than the garbage
collector size, to find big chunks in the heap graph yields better results because the
garbage collector size does not consider shared objects.

1

2 3

54 6 7

Figure 2.2: Heap Dump Example Graph

The nodes 4, 5, 6 and 7 share references from the nodes 2 and 3. All nodes are
dominated by node 1. Knowing the dynamic size for nodes helps to find the biggest
nodes. Knowing only the garbage collector size, nodes that contain many shared nodes
appear less important.



Dynamic vs. GC Size 12

A real world example for such a situation is a system which uses a buffer or a cache to
store user data received and an analysis algorithm which shallow copies the data in the
buffer and stores it in a separate list.

R

B LS A

O2O1 O3 O4

Figure 2.3: Real World Heap Dump Example Graph

• R: The root node of the heap dump graph. The parent node for all garbage
collector roots on the heap.

• S: This node represents the server which allocates data objects and adds them to
the buffer.

• B: The buffer to store data objects.

• A: The object implementing the algorithm to analyse the data objects in the
buffer. The algorithm reads the objects from the buffer, performs some operations
and stores them in the list.

• L: This list stores the data objects for the analysis algorithm.

• On: The data objects. Only four of them are displayed in the example graph
2.3. In heap dumps of real world applications many more of them exists.

When considering only the garbage collector size, the size of the node representing the
buffer and the node representing the list will be small. If the dynamic size is used the
two nodes will be the biggest nodes, right after the global root node R.



Heapdumps 13

Chapter 3

Heapdumps

Heap dumps are the basis for memory analysis considered in this thesis. Heap dumps
are used to store the structure of the heap and to make it available for later analysis.
Another benefit of heap dumps is that they can be compared. Heap dumps can be
represented as object reference graphs, objects and classes are represented as nodes,
references are edges between nodes. To create a heap dump, all classes, objects and
arrays, as well as all field, static or array references must be collected. Additional
information about the objects, classes or arrays is collected depending on the later use
of the heap dumps. For some applications it can be useful to know which nodes are
gc-root nodes and of which type they are.

3.1 Requirements of the Heap Dumps

To be able to use heap dumps with dynaTrace in a production environment the following
requirements must be met for hep dump algorithms:

• Low CPU and memory overhead: The CPU time and memory overhead of
the application under observation should be as small as possible. If no memory
information is collected no overhead should be produced. Otherwise the CPU
time and memory overhead should be smaller than five percent of the original
applications runtime and memory consumption.

• Temporal memory analysis: The memory information collected should be
stored so that they can be compared later on.

• The virtual machine must not run in debug mode.
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• Cross platform: The code for heap dumps is required to be portable and 32 and
64 bit compatible. Furthermore the code has to be executable on the following
operating systems and platforms:

– Windows 2000 or higher on x86 and amd64 CPUs

– Linux on x86, amd64 and Itanium CPUs

– Solaris on SPARC and x86 CPUs

– AIX on PowerPC CPU

– HP-UX on Itanium and Parisc CPUs

• Support for most Java and .Net virtual machines: As many virtual ma-
chines as possible must be supported (SUN, IBM, BEA JRockIt, HP). Java ver-
sions 1.4, 5 and 6 and .Net versions 1.1 and 2.0 must be supported.

3.2 Heap Dump Data

These requirements are very restrictive. As few as possible data should be collected
to minimize CPU time and memory overhead needed for collecting and storing it. To
create an extended heap dump with size information, the following data is collected for
each object, class and reference:

• Class:

– ClassID: used to identify the class.

– Class Name: only needed to be displayed in the user interface.

• Object:

– ObjectID: used to identify the object.

– ClassID: for identifying the class of the object

– Instance size: the static size of the instance of the object

• Reference:

– FromID: used to identify the referrer.

– ToID: for identifying the referree.

Reference fromID and toID can be a classID or an objectID. If the referrer and the
referree are objects the collected reference is a field or array reference. If the reference
is a static reference, the referrer must be a class and the referree an object. In Java all
three reference types can also appear in combination with a class as referree. Then the
referree must be an object of the type java.lang.Class.
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To minimize the CPU time and memory consumption overhead, no information about
root nodes is transferred. It can be calculated on the server side. If no referree nodes
exists for a node, the node is called a root node in the heap dump reference graph. If
the garbage collector root node is part of a cycle the node with the lowest ID is selected
as the root node in the reference graph.

For the simple heap dump, the following information is collected for each class or array
class:

• Class Name: The name of the class. Only needed to be displayed in the user
interface.

• Instances: The number of all instances of the class.

• Size: The sum of the static size of all objects of the class.

The low CPU and memory overhead requirement is weakened somewhat for the benefit
of a lower network traffic: The information for the classes are stored in a hash map with
the class name as key. After the heap dump, data is transfered to the server by iterating
over the hash map. The number of loaded classes in the virtual machine is much smaller
than the number of objects. If data for each object were to be transfered separately,
large network traffic would result. Depending on the number of loaded classes, extra
memory is needed to store the information collected. Under normal conditions the
memory required additionally is much smaller than the heap that will be dumped.

An advantage of the extended and simple heap dump is that they both uses native
memory only. The Java or .Net managed heap will not be changed during the dump
process.

3.3 Heap Dump Algorithms

Three different heap dump algorithms are implemented. Two for the Java and one for
the .Net virtual machine. The first Java heap dump algorithm is based on the Java
Virtual Machine Profiler Interface (JVMPI) and is used for Java 1.4 virtual machines.
The second algorithm make use of the Java Virtual Machine Tool Interface (JVMTI)
and was implemented to create heap dumps for Java 5 or higher virtual machines.
Each algorithm is divided into two parts. One part for the extended and one for the
simple dump. The basis for the Java heap dump algorithm was the HPROF profiling
tool enclosed in the Java virtual machines. HPROF profiler itself does not meet the
requirements for production systems because CPU and memory overhead is very high.
The HPROF profiling tool holds all available informations about classes and objects in



Heapdumps 16

memory. A lot of extra CPU time is needed to retrieve information. The algorithm must
be reduced to the basics to suffice the requirements. The .Net heap dump algorithm
was implemented with the .Net Profiling API.

The algorithms and interfaces used are illustrated in detail in Chap. B. Short descrip-
tions in pseudo code follow:

1 jvmpi extended heap dump ( ) {
2 Records r = vm request heap dump ( ) ;
3 for ( Record rec in r ) {
4 send data ( dtServer , r e t r e i v e e x t e n d e d d a t a ( r ec ) ) ;
5 }
6 }

Listing 3.1: extended jvmpi heap dump in pseudo code

1 jvmpi simple heap dump ( ) {
2 Data d [ ] ;
3 Records r = vm request heap dump ( ) ;
4 for ( Record rec in r ) {
5 d [ r e c . id ] = r e t r e i v e s i m p l e d a t a ( r ec ) ;
6 }
7 send data array ( dtServer , d ) ;
8 }

Listing 3.2: simple jvmpi heap dump in pseudo code

1 jvmti extended heap dump ( ) {
2 C la s s e s c [ ] = v m g e t a l l c l a s s e s ( ) ;
3 for ( Class c l a in c ) {
4 t a g c l a s s ( c l a ) ;
5 send data ( dtServer , r e t r e i v e e x t e n d e d d a t a ( c l a ) ) ;
6 }
7 // o b j e c t t a g f u n c t i o n :
8 // tag s o b j e c t s and t r a n s f e r s data to s e r v e r
9 v m i t e r a t e o b j e c t s ( o b j e c t t a g f u n c t i o n ( ) ) ;

10 v m i t e r a t e r e f e r e n c e s ( s end data func t i on ( ) ) ;
11 u n t a g o b j e c t s a n d c l a s s e s ( ) ;
12 }

Listing 3.3: extended jvmti heap dump in pseudo code
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1 jvmti simple heap dump ( ) {
2 Data d [ ]
3 C la s s e s c [ ] = v m g e t a l l c l a s s e s ( ) ;
4 for ( Class c l a in c ) {
5 t a g c l a s s ( c l a ) ;
6 d [ c l a . id ] = r e t r e i v e s i m p l e d a t a ( c l a ) ;
7 }
8 // o b j e c t t a g f u n c t i o n :
9 // tag s o b j e c t s and t r a n s f e r s data to s e r v e r

10 v m i t e r a t e o b j e c t s ( u p d a t e c l a s s d a t a f o r o b j e c t ( ) ) ;
11 u n t a g c l a s s e s ( ) ;
12 }

Listing 3.4: simple jvmti heap dump in pseudo code

1 net extended heap dump ( ) {
2 // gc c a l l s Ob jec tReferences f o r each o b j e c t
3 vm garbage co l l e c t ( ) ;
4 }
5
6 ObjectRefe rences ( . . . ) {
7 send ob j e c t da ta ( dtServer ) ;
8 i f ( ! c l a s s w a s s e n t ( ) ) {
9 s e n d c l a s s d a t a ( dtServer ) ;

10 }
11 }

Listing 3.5: extended .net heap dump in pseudo code

1 stat ic Data d [ ] ;
2
3 net simple heap dump ( ) {
4 // gc c a l l s Ob jec tReferences f o r each o b j e c t
5 vm garbage co l l e c t ( ) ;
6 send data ( dtServer , d ) ;
7 }
8
9 ObjectRefe rences ( . . . ) {

10 u p d a t e c l a s s d a t a f o r o b j e c t ( ) ;
11 }

Listing 3.6: simple .net heap dump in pseudo code
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Chapter 4

Algorithms

For a complete memory analysis heap dumps are not sufficient. It is hard for human
users to find links between the nodes of the heap dump graph only with the reference
information and the static size. To reduce the problem analysis algorithms are needed,
which are the topic of this chapter.

4.1 Dominator Tree

The first analysis algorithm is the dominator tree algorithm. First some definitions:

Definition 1 (dominator) A vertex v dominates another vertex w 6= v in graph G =
(V,E, r) if every path from root r to w contains v. [5]

Definition 2 (immediate dominator) Every vertex of a graph G except root r has
a unique immediate dominator idom (w). [5]

Definition 3 (dominator tree) The edges {(idom (w) , w) |w ∈ V − {r}} from a di-
rected tree rooted at r, called the dominator tree of graph G, such that v dominates w
if and only if v is a proper ancestor of w in the dominator tree. [5]

To make the definitions easier to digest, the following example is used. Fig. 4.1 shows
the example graph form [5] and Fig. 4.2 shows the corresponding dominator tree. The
node R is the root node of the graph. From this and the dominator tree definition follows
that it is also the root node of the dominator tree. From the dominator definition and
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the Fig. 4.1 follows that the node R is the dominator for all other nodes but it is not
the immediate dominator for all nodes.

R

B C

A

D E

L

H

K

F G

J

I

Figure 4.1: Example Graph

For example the node L can be reached by the following paths:

1. R → B → A → D → L

2. R → A → D → L

3. R → B → D → L

R

I K C

F G

J

H E A D

L

B

Figure 4.2: Dominator Tree Example



Algorithms 20

If analyzing the paths using the definition of dominators and immediate dominators,
one can determine that the nodes R and D are part of all three paths in the example.
This means that these two nodes are dominators of the node L. Node D is further on
the right side than node R in all paths. From the definition of immediate dominators it
follows that node D is the immediate dominator of node L. If the immediate dominator
is known for each node the dominator tree can easily be constructed.

The dominator tree algorithm requires that there exists exactly one root node. The
heap dump reference graph may violate this property, it may contain more than one
root node. To restore the property, a super root node must be created. The super root
is the referrer of all garbage collector roots in the heap dump graph.

The dominator tree and the dominator relation have some interesting characteristics
as to the garbage collector information:

• The dominator of an object prevents that the object is garbage collected by
referencing it.

• If an object is garbage collected all direct or indirected dominated objects are
garbage collected, too. All paths from the root node to the object contain the
dominator. If all references to the dominator are removed, all paths from the root
to the object are broken, leaving the object as garbage.

Interesting information can be deduced from the dominator tree:

• The rootpath from some object to the root object is shorter and more significant
in the dominator tree than in the original heap graph.

• The garbage collector size of an object can be calculated easily from the dominator
tree. It is the sum of the static sizes of all direct or indirect dominated objects
and the static size of the object.

The dominator tree was first used by MAT to calculate the retained size and set [6].
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LL@1 E@2

O@3

E@4

O@5

E@6

O@7

E@8

O@9

Figure 4.3: Real World Example Graph

The paths from an object to the root nodes are important inputs to the memory
analysis process. The root paths allows to deduce why the selected object was not
garbage collected. Root paths for heap dump reference graphs can be very long. An
example for a long root path is a linked list. Fig. 4.3 shows a double linked list. The
light grey arrows mark the root path O@7 → E@6 → E@4 → E@2 → LL@1. Fig.
4.4 shows the dominator tree of the graph presented in Fig. 4.3. The same root path
is also marked with light grey arrows but the path O@7 → E@6 → LL@1 is much
shorter than the root path in the reference graph. The length of the root path in the
dominator tree is independent from the size of the linked list. In contrast, the length
of the root path in the reference graph is directly dependent on the number of objects
in the linked list.

LL@1

E@2

O@3

E@4

O@5

E@6

O@7

E@8

O@9

Figure 4.4: Real World Dominator Tree Example

In this work the two algorithms described by Thomas Lengauer and Robert Tarjan
in [5] were implemented. The first simple algorithm has a runtime complexity of
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O(m ∗ log(n)), where m is the number of edges and n is the number of vertices. The
second algorithm has a runtime complexity of O(m ∗ α(m,n)), where α(m,n) is a
functional inverse of Ackermann’s function. The runtime complexity of the second so-
phisticated algorithm is almost linear. The original algorithm described in the paper
is a recursive one. It was developed for the use with control flow graphs. Heap dump
reference graphs are much larger than control flow graphs in general. Both algorithms
must be adapted from a recursive to an iterative implementation for the use with heap
dumps. An iterative version is achieved by using stacks to store local variables. The
memory consumption of the algorithm can be calculated: Nine integer arrays are used
in the sophisticated algorithm, seven in the simple algorithm. The size of the arrays is
the number of objects, arrays and classes. Some extra memory is necessary to buffer
access to the heap dump files. After calculating the dominator tree, it is written into a
file in the according heap dump directory.

4.2 Garbage Collector Size

The dominator tree is the basis for the garbage collector size algorithm. The garbage
collector size for all nodes of the heap graph can be calculated by traversing the domi-
nator tree in depth first order. For each node, the garbage collector size of all children
must be summed up with the static size of the node.

1 int [ ] g c s i z e [ n ] ;
2 d f s ( root ) ;
3
4 void d f s ( int id ) {
5 g c s i z e [ id ] = g e t S i z e ( id ) ;
6
7 for ( int c h i l d i d : getChi ldren ( id ) ) {
8 g c s i z e [ id ] += df s ( c h i l d i d ) ;
9 }

10 }

Listing 4.1: garbage collector size algorithm

A pseudo code representation of the garbage collector size algorithm can be seen at Lst.
4.1. The original algorithm is implemented recursively. For the use with heap dumps
the algorithm must be changed, similar to the dominator tree algorithm, to an iterative
implementation.

Each node must only be visited once. It follows, that the runtime complexity of this
algorithm is O (n), where n is the number of vertices. The memory consumption of the
algorithm is low because only one array with the number of objects, arrays and classes
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as size is used to store the calculated garbage collector size. Furthermore, some extra
memory is needed to buffer file access on the heap dump files. After gc size calculation
the array containing the sizes is written to a file in the heap dump directory. To optimize
memory consumption of the algorithm the garbage collector size array can be saved. If
a gc size value is computed, it can be written to the corresponding file at once.

4.3 Dynamic Size Simple

Apart from the garbage collector size algorithm, the dynamic size algorithm is the
second algorithm in this thesis. Differences between the two sizes are discussed in
detail in Chap. 2.

The simplest way to calculate the dynamic size is to sum up the static sizes of all nodes
reachable from it.

1 int [ ] dyns i ze [ n ] ;
2 boolean [ ] v i s i t e d [ n ] ;
3
4 for ( int id : getAl lNodes ( ) ) {
5 dyns i ze [ id ] = d f s ( id ) ;
6 for ( int i ; i<v i s i t e d . l ength ; i++) {
7 v i s i t e d [ i ] = f a l s e ;
8 }
9 }

10
11 int d f s ( int id ) {
12 int s i z e = g e t S i z e ( id ) ;
13
14 for ( int c h i l d i d : getChi ldren ( id ) ) {
15 i f ( ! v i s i t e d [ c h i l d i d ] ) {
16 v i s i t e d [ c h i l d i d ] = true ;
17 s i z e += df s ( c h i l d i d ) ;
18 }
19 }
20
21 return s i z e ;
22 }

Listing 4.2: simple object dynamic size algorithm

The pseudo code representation of the simple dynamic size algorithm can be seen in
Lst. 4.2. The presented algorithm is a recursive implementation, for the use with heap
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dumps the algorithm must be changed, similar to the other algorithm, to an iterative
version.

The runtime complexity of the dynamic size algorithm a node is similar to the garbage
collector size algorithm, O (n), where n is the number of vertices. The runtime com-
plexity of the algorithm to calculate the dynamic size for all nodes is O

(
n2

)
in the worst

case. This happens if all other nodes are visited to calculate the dynamic size of one
node. The memory consumption of the algorithm is as small as the consumption of the
garbage collector size algorithm. Only one integer array is used to store the calculated
size. Buffers are used to speed up the access to the file which contains the reference
information. After computation, the size information is stored in a file in the heap
dump directory. The memory consumption can be optimized by omitting the dynamic
size array, as it is done for garbage collector size algorithm,.

4.4 Strongly Connected Components

The first idea to reduce runtime complexity is to calculate strongly connected compo-
nents (SCC) and use the identified components instead of nodes. First some defini-
tions:

Definition 4 (path) If G = (V,E) is a graph, a path p : v ∗⇒ w in G is a sequence of
vertices and edges leading from v to w [16].

Definition 5 (simple path) A path is simple if all its vertices are distinct [16].

Definition 6 (closed path) A path p : v ∗⇒ v is called a closed path. A closed path
p : v ∗⇒ v is a cycle if all its edges are distinct and the only vertex to occur twice in p

is v, which occurs exactly twice [16].

Definition 7 (strongly connected) Let G be a directed graph. Supposed that for
each pair of vertices v, w in G there exist paths p1 : v ∗⇒ w and p2 : w ∗⇒ v. Then G is
said to be strongly connected [16].

Definition 8 (strongly connected components) Let G be a directed graph. Two
vertices v and w are equivalent if there is a closed path p : v ∗⇒ v which contains w.
Let the distinct equivalence class under this relation be Vi, 1 ≤ i ≤ n. Let Gi = (Vi, Ei),
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where Ei = {(v, w) |v, wεVi}. Then each Gi is strongly connected and no Gi is a proper
subgraph of a strongly connected components of G. The subgraphs Gi are called strongly
connected components [16].

The definitions are explained by the following example from [16]. Fig. 4.5 shows the
example graph, Fig. 4.6 shows strongly connected components in the graph and Fig.
4.7 shows the reduced graph. A lot of paths can be found in Fig. 4.5. An example is
the path 4 → 5 → 6. This path is a simple path: it contains each node exactly once.
It is not a closed path because the first node (4 ) occurs only once. The path 4 → 5 →
3 → 7 → 4 is a closed path.

86

54

32

7 1

Figure 4.5: SCC Example Graph

Strongly connected heap dump reference graphs are very rare. There exist no strongly
connected heap dump graphs from real world applications. But nearly all heap dump
graphs contain SCCs.

Each node of the strongly connected components in Fig. 4.6 is part of one or more
closed paths. It follows, that each SCC consists of at least one cycle. The light grey
cycle of the SCC consists of only one node. This is the simplest possible cycle. The
grey SCC consists of one cycle and the dark gray SCC of two cycles.
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Figure 4.6: SCCs

For heap dump analysis two characteristics are of interest.

• It is possible to reach each other node from each node of the strongly connected
component.

• If each SCC is represented by one node, the resulting graph will be a DAG.

The first characteristic is important to reduce the number of nodes for which the dy-
namic size must be calculate. The dynamic size of all nodes contained in a strongly
connected component is equal for each node. This follows from the fact that each node
of the SCC can reach all other nodes of the same SCC. A node can be reached by all
nodes of the SCC if it is reachable by one node of the SCC. The simple dynamic size
algorithm can be optimized by using the strongly connected components graph in place
of the heap dump reference graph. Fig. 4.7 shows the SCC graph of the reference graph
from Fig. 4.5. The strongly connected components graph is created by representing
each SCC as a single node and only edges between two SCC’s are registered. To re-
duce the number of references, double references between the SCC’s are removed. The
advantage of this characteristic is that for the dynamic size algorithm the number of
nodes and references can be reduced. On the other hand overhead computing time for
the calculation of strongly connected components graph is needed.

1 2 3

Figure 4.7: SCC Graph
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The second characteristic of the strongly connected components is that the SCC graph
is a DAG, hence no back edges or loops exist. This property is used by the next dynamic
size calculation algorithm. The BFS based Dynamic Size Algorithm.

As example Fig. 4.8 shows the SCC graph of the reference graph from Fig. 4.1.

11

10 5

9

8

7

6

4 3

2

1

Figure 4.8: Example DAG

To calculate the strongly connected components the algorithm from Robert Tarjan,
described in [16], was implemented. The runtime complexity of the strongly connected
components algorithm is O (n), where n is the number of vertices in the original heap
dump reference graph. The algorithm must be adapted to an iterative implementation.
The algorithm uses three integer arrays of size n.

Applying the strongly connected components algorithm does not reduce the complexity
of the dynamic size algorithm, but it reduces the number of nodes and references for
which the dynamic size must be calculated. Furthermore, the memory consumption of
the algorithm is smaller because the array consists of fewer nodes.
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4.5 BFS based Dynamic Size Algorithm

This algorithm traverses the SCC graph in reverse breadth first order. The algorithm
starts with the leaves and follows the references back to the roots. All nodes at the
same breadth level know the ids of all the other nodes which the dynamic size consists
of. The ids are stored in the ids hash set. In the beginning only the leaves hold such a
hash set. Lst. 4.3 shows the algorithm.

1 int [ ] dynamics ize [ n ] , componentsize [ n ] ;
2 boolean [ ] v i s i t e d [ n ] ;
3
4 NodeData vTemp , currentTemp ;
5 Queue queue = new LinkedLis t ( ) ;
6 HashMap hashMap = new HashMap ( ) ;
7 componentsize = ca lcu la teStat i cComponentS ize ( ) ;
8 addLeaves ( ) ; // add l e a v e s to queue and hashmap
9

10 while ( ! queue . isEmpty ( ) ) { // run b f s based graph t r a v e r s a l
11 int cur rent = queue . remove ( ) ;
12 currentTemp = hashMap . get ( cur rent ) ;
13 i f ( currentTemp . t o t a l == currentTemp . v i s i t e d ) {
14 hashMap . remove ( cur rent ) ;
15 currentTemp . va lue . add ( cur rent ) ;
16 for ( int index : currentTemp . va lue )
17 dynamics ize [ cur rent ] += componentsize [ index ] ;
18 } else { queue . o f f e r ( cur r ent ) ; continue ; }
19
20 for ( int v : g e t R e f e r r e r s ( cur rent ) ) {
21 i f ( ! v i s i t e d [ v ] ) { v i s i t e d [ v ] = true ; queue . o f f e r ( v ) ; }
22
23 i f (hashMap . containsKey ( v ) ) {
24 vTemp = hashMap . remove ( v ) ;
25 } else {
26 vTemp = new NodeData ( ) ;
27 vTemp . va lue = new HashSet ( currentTemp . va lue . s i z e ( ) ) ;
28 vTemp . t o t a l = g e t R e f e r e e s S i z e ( v ) ;
29 }
30 vTemp . va lue . addAll ( currentTemp . va lue ) ;
31 vTemp . v i s i t e d ++;
32 hashMap . put (v , vTemp) ;
33 }
34 }

Listing 4.3: BFS based dynamic size algorithm
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The queue and the visited array are used for the BFS based graph traversal algorithm.
The dynamicsize array stores the calculated dynamic size of each node and compo-

nentsize array stores the static size each component. The static size of all components
is calculated at the beginning of the algorithm (calculateStaticComponentSize()).
The hashMap is used to store information about all nodes at the same breadth level.
The id of a component is used as key for the hash map. The value is an object with
the following three data fields:

1. total: The number of the referrees of the node

2. visited: The number of the visited referrees.

3. value: The ids hash set, which was mentioned above, to store all the ids on which
they dynamic size of the node exists.

The graph must not contain loops, a property guaranteed when using the SCC graph
instead the heap dump reference graph.

Before a node can be visited all of its children must be visited. If all children were
visited the node data is removed from the hashMap and the dynamic size is calculated
by summing the static sizes of the components which ids are enclosed in the ids hash
set. See Lst. 4.3 line 11 to 18.

For each child (referrer) of the visited node the hash set of the child must be merged with
the hash set of the node and stored in the value entry of the child record. Furthermore,
the visited entry of the child record must be incremented. If no record exists in the
hashMap, a new one must be created. See Lst. 4.3 line 23 to 32.

The biggest advantage of this algorithm is that each node has to be visited only once.
The downside of this algorithm is its massive memory consumption. It can be used
only for heaps with few objects. Fig. 4.9 shows the memory usage from a Java process
running the BFS based dynamic size calculation algorithm. The maximum memory
used was limited to 3 GB. The heap dump analyzed was generated by a dynaTrace
Server with a heap size of 85 MB. The dump contains 1409000 vertices and 3081501
edges.
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Figure 4.9: BFS based dynamic size algorithm memory consumption

4.6 Articulation Points

The next idea to reduce runtime complexity of the dynamic size algorithm is to calculate
the articulation points of the SCC graph. First some definitions:

Definition 9 (biconnected) Let G = (V, E) be an undirected graph. Suppose that for
each triple of distinct vertices v, w, a in V there is path p : v ∗⇒ w such that a is not on
the path p. Then G is biconnected [16].

Definition 10 (articulation point) If there is a triple of distinct vertices v, w, a in
V such that a is on any path p : v ∗⇒ w, and there exists at least one such path, then a

is called an articulation point of G [16].

The basis for the articulation point algorithm is an undirected graph, but the strongly
connected components graph is directed. To create a undirected graph from the di-
rected one, for each reference in one direction, a second one must be produced in the
opposite direction. Furthermore, all double references which were produced by the
transformation of the graph must be eliminated.
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Fig. 4.10 shows the example graph from the paper [16]. The articulation points are
marked light gray and the different biconnected components are marked with different
grey levels.

1
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Figure 4.10: BCCs and Articulation Points

Using articulation points allows to divide the graph in two independent parts at the
articulation point. It is possible to use the dynamic size of the articulation points
without following references. The maximum number of nodes reachable form a node is
the number of nodes in the biconnected component (BCC). But the articulation point
dynamic size algorithm has a defect. It is possible to count some nodes multiple times.
If the dynamic size for node 1 in Fig. 4.11 is computed and the dynamic size from
articulation point 2 is used, the size of node 4 will be counted twice.

1

2 3

45

Figure 4.11: Articulation Points Defect

The defect was detected by using the delta debugger implemented for this work, ex-
plained later in this chapter.
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The defect can be fixed in two ways. For example by using articulation points which
are not part of the same BCC as the node for which the dynamic size is calculated. The
advantage of this method is that all articulation points can be used and that checking
whether an articulation point is in the same BCC as the used node is simple. If the
node is not an articulation point, it is part of exactly one BCC. The ids of the BCCs
of each articulation point must be stored in a hash set. The drawback of this method
is the high complexity when testing if the articulation points belong to the same BCC.
It can be done by intersecting the two BCC hash sets of the articulation points. If the
intersection is the empty set, the articulation points are not part of the same BCC.
This test increases the run time of the algorithm significantly. For this reason it is not
used.

The second method uses articulation points where all children in the original directed
SCC graph are part of the same biconnected component only. In this case, all parents in
the SCC graph of the point are in one BCC and all children are in another. It follows,
that all children of the point in the SCC graph can only be reached by using this
articulation point. The advantage of this method is that the points can be calculated
once and stored in a file. It is not necessary to check if the size can be used each time
the point is reached, as it is done in the first method. The drawback is that a lot of
articulation points must be canceled.

To calculate the biconnected components the algorithm presented by Robert Tarjan
in [16] was implemented. The runtime complexity of the biconnected components algo-
rithm is O (n), where n is the number of vertices in the strongly connected components
graph. The algorithm needs to be adapted, similar to the other algorithms, to an iter-
ative implementation. A large portion of the memory used is required for two integer
and one hash set arrays and one list. The list is used to store articulation points and
the hash set array stores the membership to any biconnected components for each node.
Another big part of the memory is used to remove double references in the undirected
graph by using a bit set. For each new recursive step a new bit set is needed. This
means, that many bit sets must be produced and garbage collected.

Two articulation point dynamic size algorithms were implemented. Two fixes were
implemented to overcome the problem with the original definition of articulation points.
Both algorithms did not reduce the runtime complexity of the original dynamic size
algorithm, but they reduced the number of nodes needed to calculate the dynamic size
of a particular node.
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4.7 Delta Debugger

A delta debugger was implemented to find bugs in the heap dump analysis algorithms.
For example, delta debugging was used to find a bug in the first implementation of the
articulation point dynamic size algorithm, described previously in this chapter.

The delta debuger uses the ddmin algorithm described by Andreas Zeller in the book
Why programs fail [17]. The ddmin algorithm simplifies the input of a program, con-
taining a defect, to the minimum size. For the heap dump analysis algorithms delta de-
bugging minimizes the number of references needed to reproduce a defect. The number
of objects and the number of classes remain the same at each step of delta debugging.
The algorithm attempts, similar to binary search, to eliminate the largest blocks of a
given input. For each temporary input created, the test must be executed. In a ddmin

run either all references of an object are contained or non at all. The result of the run
decides whether the selected part of the input is needed to reproduces the bug. For
the articulation point dynamic size algorithm, the test first calculates the dynamic size
of the root node using articulation points then without articulation points. If the sizes
differ the bug can be reproduced with the selected input.

4.8 Dominating Articulation Points

To overcome the problem that emerges from using articulation points dominating ar-
ticulation points can be used. First some definitions:

Definition 11 (dominating articulation points) A dominating articulation point
is an articulation point which dominates all other nodes that can be reached directly or
indirectly.

The definition is explained by the following example. Fig. 4.12 shows the example
graph and Fig. 4.13 the corresponding dominator tree. Articulation points are marked
dark grey and dominating articulation points light grey.
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Figure 4.12: Dominating Articulation Points Example

The dominating articulation point algorithm consists of three steps. The first two steps
are preprocessing steps for the actual algorithm.

1. Topologically sort the nodes of the strongly connected components graph.

2. Calculate the dominator tree for the SCC graph.

3. Compute the dominating articulation points.

The first step can be omitted if the strongly connected components algorithm from
Robert Tarjan is used. The numbers of the components are in a topological order
because the algorithm is based on the DFS algorithm. The dominator tree for the SCC
graph is calculated via the simple dominator tree algorithm, described previously.
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Figure 4.13: Dominator Tree

The dominating articulation points algorithm reads the dominators from the file and
iterates over the SCCs, starting at the first SCC (number one). For each node the
maximum of the ids of the dominators of all nodes which can be reached from this
node is calculated. In a first step, the maximum of the values of all children in the
SCC graph is computed. If the calculated maximum is equal to the SCC number of the
node, then the node is a dominating articulation point. The last step is to calculate the
number for the node by building the maximum of the maximum value of the children
and the SCC number of the dominator of the node. Lst. 4.4 shows the algorithm in
pseudo code.

1 int max ;
2 int [ ] va lue [ n ] ;
3 L i s t a r t i c p o i n t ;
4
5 for ( int i = 1 ; i < value . l ength ; i++) {
6 max = 0 ;
7
8 for ( int element : g e tRe f e r e e s ( i ) ) {
9 max = max(max , va lue [ element ] ) ;

10 }
11
12 i f (max == i ) {
13 a r t i c p o i n t . add ( i ) ;
14 }
15
16 value [ i ] = max(max , dom [ i + 1 ] − 1) ;
17 }

Listing 4.4: dominating articulation points algorithm
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The value of each node is equal to the id of the dominator which is closest to the root
node. If the highest of the values of all child nodes is equal to the SCC id of the node,
then the node is a dominator for all directly or indirectly reachable nodes. It follows,
that the node is also an articulation point, because all paths to any node behind the
node contain this node. Therefore, the graph can be splitted into two independent
parts at this point.

The maximum of the values of all children of the node 1 is 0 because the node has no
children. Zero is not equal to one, therefore the node is not a dominating articulation
point and the number of the node is 4, the maximum of the dominator id 4 and 0. The
same can be done for nodes 2 and 3. The maximum value of the children is 4 and
their own number is also 4. Neither are dominating articulation points. The maximum
of the children for node 4 is 4. It follows, that node 4 is a dominating articulation
point.

The runtime complexity of the dominating articulation point algorithm is O (n), where
n is the number of vertices in the strong connected components graph. The memory
consumption of the algorithm is low, only one integer array of size n and a list is needed.
The integer array stores the calculated numbers for each node and the list stores the
dominating articulation points found.

The use of the dominating articulation points does not reduce the complexity of the
dynamic size algorithm, but it reduces the number of nodes that are necessary to
compute the dynamic size for one node further.
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Chapter 5

Results

The algorithms are implemented as JUnit tests. Each test loads the necessary data from
files in the heap dump directory, executes the algorithm and stores the results in other
files in the directory. For this thesis, the following algorithms have been implemented:

• GCRootsAndLeaves: The basis for all other algorithms. To meet the require-
ments from Chap. 3, no root node information is stored in the collected heap
dump data. This implementation computes the roots and leaves of the graph and
stores them in different files in the heap dump directory.

• SophisticatedDominator and SimpleDominator: The implemented domina-
tor tree algorithms. They read the roots and leaves from the file created by the
GCRootsAndLeaves algorithm and stores the calculated dominators into an file.

• StrongConnectedComponents: It depends on the GCRootsAndLeaves algo-
rithm and computes strongly connected components and stores them in the heap
dump directory.

• SCCGCRootsAndLeaves: Similar to the GCRootsAndLeaves algorithm. It
uses the SCC graph instead of the heap dump reference graph.

• ArticulationPoints: Calculates the articulation points and biconnected com-
ponents on the heap graph and stores them.

• SCCDominatorTree: The simple dominator tree algorithm used on the SCC
graph.

• DomArticulationPoints: Computes the dominating articulation points and
stores them in the heap dump directory.

• GCSize: The garbage collector size algorithm depending on the dominator tree.

• BFSDynamicSize: The BFS based dynamic size algorithm, using the SCC
graph as basis.
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• SimpleObjectsDynamicSize: The simple dynamic size algorithm depending
on the heap dump reference graph.

• SimpleCompDynamicSize: The simple dynamic size algorithm. It depends
on the SCC graph.

• DomArticPointsDynamicSize: Computes the dynamic size by using the SCC
graph and the dominating articulation points.

• ArticPointsDynamicSize1: The dynamic size algorithm which uses the artic-
ulation points and the biconnected components. The articulation points are only
used if they are in another BCC than the node for which the dynamic size is
calculated.

• ArticPointsDynamicSize2: Similar to the ArticPointsDynamicSize1 algo-
rithm, but articulation points are only used if all of their children are part of
the same BCC.

The tests were executed using an ant script on a computer with an Intel Xeon Duo 3,2
GHz CPUs and four GB RAM running Windows XP. Each test was run three times
for each algorithm. From the running times of the individual runs, the average value
was calculated and used for charting and tables. Running time of the algorithms is
roughly the execution time of the JUnit test which also includes the time needed to
read data and to store results in a file in the heap dump directory. The charted values
are the sum of the running times of all algorithms, necessary to compute the size value.
For example, the charted values of the GCSize algorithm is the sum of the running
times of the GCRootsAndLeaves, the SimpleDominator and the GCSize algorithm.
The implemented algorithms are tested with the following heap dump types.

5.1 Generated Heap Dumps

The generated heap dumps are used to test the algorithms with simple artificial heap
dumps. An advantage of the generated dumps is, that the computed sizes for nodes can
be examined easily. For the DAG and the unbalanced tree example graphs, the sizes
can be computed from the id of the node. A drawback of these dumps is, that they do
not have much in common with heap dumps of genuine applications. Furthermore it is
not possible to test the strongly connected components algorithm. For the generated
heap dumps, each node is its own component. From this follows that the SimpleObjects-
DynamicSize algorithm is always faster than the SimpleCompDynamicSize algorithm.
Twenty Heap dumps were generated. The smallest is of size 1001 nodes and the largest
of size 10001 nodes.
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Balanced Tree Example Graph

The balanced tree based heap dump graph is the simplest of the generated graphs. The
structure is a simple balanced binary tree. All nodes are objects of the same class.
The class and the root object for the tree are garbage collector roots. For these heap
dumps, not only the SCC graph is equal to the heap dump reference graph, but also
dominator tree. The number of reachable from a given node is much smaller than in
all other generated heap dumps.

Fig. 5.1 shows measured running times. The simple objects dynamic size algorithm
is the fastest, the dominating articulation point algorithm is the slowest. The running
times of the algorithms are sorted by the number of the other algorithms which are
a prerequisite for the algorithm. For example the SimpleCompDynamicSize algorithm
has three prerequisite. The GCRootsAndLeaves, StrongConnectedComponents and SC-
CGCRootsAndLeaves algorithms. The SimpleObjectsDynamicSize algorithm has only
one prerequisite. The GCRootsAndLeaves algorithm. Not even the dominating ar-
ticulation points algorithm brings improvement, though each node, except the leaves,
are dominating articulation points. The time to calculate the dominating articulation
points is higher than the time gained by using the dominating articulation points.

Figure 5.1: Balanced Tree Chart
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The result of tests using the balanced tree example graph heap dumps show that the
average number of nodes necessary to calculate the dynamic size of a node is too small
to show improvement. The overhead of the algorithms is higher than the improvement.
Tab. A.5 contains the average running times of all algorithms.

Unbalanced Tree Example Graph

1

2 3

. . . . . .

Figure 5.2: Unbalanced Tree Example Graph

The unbalanced tree example graph is similar to a simple linked list with data objects.
The nodes with odd ids represent list entries, even ids represent data objects. All nodes
are objects of the same class. The class and the root object for the tree (the head of
the list) are garbage collector roots.

Figure 5.3: Unbalanced Tree Chart



Results 41

Heap dumps organized in this manner are well suitable for the dominating articulation
points dynamic size algorithm, because to calculate the dynamic size of each entry
node, only the data node and the next entry node are needed. Each entry node is a
dominating articulation point.

Fig. 5.3 shows the running times for unbalanced tree heap dumps. As predicted, the
dominating articulation points dynamic size algorithm was the fastest dynamic size
implementation. Another interesting observation is that the articulation points and
simple dynamic size algorithms have nearby quadratic run time complexity, visualized
in the next figure.

Tab. A.6 contains the average running times of all algorithms.

DAG Example Graph

1
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3

. . .

Figure 5.4: DAG1 Example Graph
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Figure 5.5: DAG2 Example Graph

The DAG example heap dumps are used to test the heap dump analysis algorithms
on more complex heap dumps. Fig. 5.6 and 5.7 shows running times measured for
produced DAG heap dumps. In neither examples articulation or dominating articula-
tion points were found. As a result, it is not possible to decrease running times of the
algorithms. Tab. A.7 and A.8 present the average running times of all algorithms.

The BFS based dynamic size algorithm works well for all tests with the generated heap
dumps. It is the fastest for the DAG heap dumps. For the unbalanced tree heap dumps
only the dominating articulation points algorithm was faster. The generated heap
dumps are small enough that the algorithm can get along with the available memory.
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Figure 5.6: DAG1 Chart

Figure 5.7: DAG2 Chart
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5.2 SimpleLoadGenerator Heap Dumps

The SimpleLoadGenerater generates an object graph of a given size in a Java virtual
machine. The objects graph generally consists of two parts. The first part is a City
objects containing Person objects. The ABC objects use the majority of the memory.
They consist of one 1 MB large double array. The number of City objects depends on
the size of memory. 90 % of the memory is filled with City objects. The remaining
memory is filled up with an tree of GrandMother, GrandFather, Mother, Father, Son
and Daughter objects.

Figure 5.8: Simple Load Generator Data Chart

Nine heap dumps were provided. The smallest heap dump generated by the Sim-
pleLoadGenerator was 10 MB and the largest 90 MB. For all these dumps, the number
of nodes is almost the same for all of them. The smallest dump consists of 678375 nodes
and the largest of 678480 nodes. The difference only 105 nodes. This can be explained
by the 1 MB large double array in the Person object.

The fastest dynamic size algorithm was the BFS based one. It is the result of the
small number of conditions and that each node is used only once. All other dynamic
size algorithms are equivalently fast. Only the dominating articulation point algorithm
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was a little faster than the others. The generated object graph is similar to a tree.
It follows, that it contains many dominating articulation points, which improves the
running time of the dominating articulation points dynamic size algorithm. Tab. A.3
contains the average running times of all algorithms.

Apart from the running times of the algorithms also some statistical values for the
graphs were determined. The values can be found in Tab. 5.1.
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678375 844 677531 675428 4493 30 8.03 323414 323028 12.97 2.10 331411

678452 844 677608 675462 4542 30 8.03 323435 323047 12.97 2.10 331634

678424 844 677580 675465 4511 30 8.03 323444 323056 12.97 2.10 331643

678455 844 677611 675494 4514 30 8.23 323464 323076 12.97 2.10 331852

678458 844 677614 675496 4514 30 8.03 323474 323086 12.97 2.10 331673

678408 844 677564 675468 4486 30 8.03 323471 323087 12.97 2.10 331437

678468 844 677624 675528 4493 30 8.23 323503 323115 12.97 2.10 331891

678471 844 677627 675530 4493 30 8.03 323513 323125 12.97 2.10 331712

678480 844 677636 675533 4499 30 8.03 323522 323134 12.97 2.10 331721

Table 5.1: Simple Load Generator Statistics Table

A trend which can be read from the table is, that the number of strongly connected
components for the SimpleLoadGenerater heap dumps is relatively small. This explains
why the SimpleComponentsDynamicSize algorithm is not faster than the SimpleOb-
jectsDynamicSize algorithm. Another observation is that the number of dominating
articulation points is rather high. Roughly each second node is a dominating articula-
tion point. Furthermore they were frequently used.

5.3 dynaTrace Server Heap Dumps

Six different heap dumps of the dynaTrace server were provided. The smallest heap
size was 20 MB and the largest was 115 MB. For these heap dumps, only two of the
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six dynamic size algorithms return a result. The BFS based and the articulation point
algorithm run out of memory for all dumps. The simple object dynamic size algorithms
did not produce results because twice the running time of the simple components dy-
namic size algorithm was considered timeout. Tab. A.1 contains the average running
times of all algorithms.

Figure 5.9: dynaTrace Server Data Chart

The experiments helped to conclude that the use of dominating articulation points
improves the running time of the dynamic size algorithm. As shown in Fig. 5.9 the
dominating articulation points algorithm working on heap dumps from the dynaTrace
server runs twenty to thirty percent faster than the simple components dynamic size
algorithm. Faster runtime can be explained with the statistic values, which were col-
lected for the heap dumps. Tab. 5.2 contains the statistic values for the dynaTrace
Server heap dump graphs.
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497860 7136 490724 772425 47882 11327 9.37 138027 106238 14.06 2.91 58702402

734962 7792 727170 1285127 46687 11478 13.98 213998 180596 15.71 3.23 52783542

945087 7792 937295 1841021 46301 11478 19.99 283929 250708 15.60 3.55 78544958

1128750 7792 1120958 2342892 45705 11478 25.61 348937 315532 15.55 3.80 103443382

1409000 7792 1401208 3081501 45938 11481 33.58 441648 408216 15.46 4.00 138311806

1780673 7795 1772878 4060032 46161 11482 44.15 564439 531073 14.46 4.17 173207168

Table 5.2: dtServer Statistics Table

One can observe that the number of dominating articulation points and the number of
dominating articulation points used is rather high. The value of the points used is 80
to 100 times higher than the number of nodes in the heap dump reference graph. This
observation explains why the DominatingArticulationPointsDynamicSize algorithm is
faster than the SimpleComponentsDynamicSize algorithm. The DominatingArticula-
tionPointsDynamicSize algorithm hits dominating articulation points very often when
the dynamic size of a node is computed. This means, that the algorithm can use
the dynamic size of the node without following the references of them. The Simple-
ComponentsDynamicSize algorithm must follow these references. Therefore, the simple
algorithm must traverse a much larger tree and needs more runtime for the computation
of the same size.

Another observation is that the number and the size of strongly connected components
is much higher than for the SimpleLoadGenerater heap dumps. This helps to explains
why the SimpleObjectsDynamicSize algorithm for the dynaTrace server heap dumps
always time out. The SimpleComponentsDynamicSize algorithm must visit all nodes
in the SCC graph which can be reached from the node for which the dynamic size is
computed. Similarly, the SimpleObjectsDynamicSize algorithm must visit all reachable
nodes in the dump reference graph. If the number and size of strongly connected com-
ponents is high, the number of nodes traversed by the SimpleComponentsDynamicSize
algorithm is much smaller than the number of nodes traversed by the SimpleObjectsDy-
namicSize algorithm. It follows, that the SimpleObjectsDynamicSize algorithm needs
much more computing time to calculate the same sizes.
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The average SCC DAG height and width can be used to make a rough estimate for the
runtime of the SimpleComponentsDynamicSize algorithm. The two values influence
the running time but they do not determine it solely. A formula approximating the
algorithms run time must be found for an improved version of the heap dump analysis
algorithm.

5.3.1 Differences between Dynamic and Garbage Collector Size

The computation of the dynamic size takes much longer than the computation of the
garbage collector size. It must be investigated whether the computation of the dynamic
size is necessary. It is possible that the garbage collector size is sufficient. This could
be found out by calculating the difference between the two sizes, sort the differences
and group them. The number of nodes with a large differences between the sizes
is interesting. Memory leaks in such nodes can often only be found by comparing
the dynamic size of them because usually the garbage collector size of these nodes is
small.

N
o
d
e
s

H
e
a
p

S
iz

e
[M

B
]

t
o

1
K

B

1
t
o
1
0

K
B

1
0

t
o

1
0
0

K
B

1
0
0

t
o

1
0
0
0

K
B

1
t
o

1
0

M
B

1
0

t
o

2
5

M
B

2
5

t
o

5
0

M
B

5
0

t
o

7
5

M
B

7
5

t
o

1
0
0

M
B

g
r
e
a
t
e
r

1
0
0

M
B

497861 20 383225 33010 23887 28140 12 29587 0 0 0 0

734963 35 561765 37643 24927 33862 14 1 76751 0 0 0

945088 50 703069 37639 24930 33669 14 1 145766 0 0 0

1128751 65 822092 37659 24926 33846 14 1 3 210210 0 0

1409001 85 1010766 37659 24926 33863 14 1 0 12 301760 0

1780674 115 1261157 37673 25488 33781 14 1 0 0 6 422554

Table 5.3: Size Difference Statistics Table

Tab. 5.3 shows the size difference for the heap dumps generated from the dynaTrace
Server. The differences between the dynamic size and the gc size is smaller than one
MB for most nodes. In all heap dumps examined it is possible to reach almost all
other nodes from a fifth to a quarter of nodes. For these nodes the dynamic size is an
important information to find memory leaks because the garbage collector size of them
is much smaller. Garbage collector size is equal to the static size form most of these
nodes. For future work this investigation must be made for as much as possible real
world applications and heap dumps.
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Chapter 6

Conclusion

The results presented in the previous chapter show that it was possible to improve the
computation time for the dynamic sizes. Improvements were gained by introducing the
following changes to the algorithm:

Running time was decreased by identifying and using strongly connected components
instead of the original nodes of the graph. The SCC graph was smaller than the original
heap dump reference graph for all heap dumps tested. It consists not only of less nodes,
but also of fewer references. Because nodes in the original graph are grouped together
in the SCC graph, double references between certain nodes in the SCC graph can be
omitted. The smaller number of nodes and references has a shorter running time of
the SimpleComponentsDynamicSize algorithm as consequence. It performs better than
the SimpleObjectsDynamicSize algorithm. The magnitude of the improvement depends
on the number and the size of the not trivial SCC nodes. For dynaTrace server heap
dumps, the SimpleComponentsDynamicSize algorithm was more than twice as fast as
the SimpleObjectsDynamicSize algorithm.

Another improvement for the running time is to identify nodes in the SCC graph (artic-
ulation points) that allow to divide the SCC graph into serveral independent subgraphs.
The advantage of using such nodes is that they allow to reuse the dynamic size of the
nodes without computing them again. The original articulation point dynamic size
algorithm had a defect. It was possible to count some nodes multiple times (for details
check Fig. 4.11). To overcome this problem, the definition of dominating articulation
points was introduced in this work. No comparable definitions were found in literature
about graph algorithms. A dominating articulation point must comply the following
properties:

1. The node is required to be an articulation point.

2. All reachable nodes must be dominated.
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An algorithm that computes dominating articulation points was developed in this work
and is presented in Chap. 4. They help to overcome the problem of counting certain
nodes multiple times because all nodes reachable from a dominating articulation point
can only be reached via the dominating articulation point.

The DominatingArticulationPointsDynamicSize algorithm runs twenty to thirty per-
cent faster than the SimpleComponentsDynamicSize algorithm on heap dumps gener-
ated from the dynaTrace server.

Another insight gained in this work is, that it is meaningful to compute the dynamic
size, additionally to the garbage collector size. The experiments with the dynaTrace
server heap dumps show that the garbage collector size differs significantly from the
dynamic size for many objects.
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Chapter 7

Future Work

Test of Dynamic Size and GC Size in the Memory Leak

Detection Process

The benefits of using the dynamic size and the garbage collector size must still be eval-
uated on real world applications with memory leaks. Moreover, the analysis algorithms
should be tested more extensively on heap dumps of real world applications. Some tests
suggest that the dynamic size algorithm could be improved: The possibility to cluster
nodes in order to reduce the calculation time of the dynamic size seems worth further
investigation. It seems possible to cluster objects using their classes.

Heap Dump diffing

For heap dump analysis, it is important to be able to compare heap dumps. No research
towards heap dump comparison was done in this work. Heap dump diffing can be
realized by making use of graph isomorphisms. Two Graphs G and H are isomorphic
graphs if there exists a structure-preserving vertex bijection f : VG → VH [3]. A well
known tool for the computation of graph isomorphisms is nauty, presented in [7].

Root Node and Control Flow Information

The heap dump algorithms, introduced in Chap. 3, do not contain root node or control
flow information in order to suffice the strict time and memory consumption require-
ments. For further analysis of the heap dumps this information could be useful. It
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still needs to be investigated if it is possible to improve the implementation of the heap
dump algorithm such that it collects root node information, too.

For root nodes originating from the stack stacktraces are interesting. A stacktrace
helps the user of the memory analysis tool to differ between long and short living stack
root nodes. The lifetime of a stack root node depends directly on the lifetime of the
containing method. Because each stacktrace belongs to a thread, it can be helpful
to know which thread or thread group is responsible for the stacktrace. Different
approaches are required because of the differences between Java and .Net managed and
native JNI or .Net unmanaged stacks.

In the Java VM threads and monitors are garbage collector root nodes. For threads,
the name and the thread group are of interest. If the root node is a monitor, memory
analysis can be combined with thread analysis. If, for example, a monitor is not re-
leased, it is helpful to know which threads wait for the monitor and which thread holds
it. With this information it seems easier to detect why a monitor is not released.
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Appendix A

Tables

Appendix A list all tables of all measured running times and statistic values. Tab.
A.1 and Tab. A.2 shows running times and statistical values for the tests using the
dtServer heap dumps. Check Tab. A.3 and Tab. A.4 for the results of the Simple Load
Generator heap dump tests. The results of the generated heap dump tests are listed in
Tab. A.5, Tab. A.6, Tab. A.7 and Tab. A.8

Nodes 497860 734962 945087 1128750 1409000 1780673

GCRootsAndLeaves 14.08 17.89 20.51 23.04 26.83 31.12

SimpleDominator 23.60 33.36 43.13 52.32 64.42 81.96

SophisticatedDominator 24.37 33.58 43.93 52.35 65.88 82.50

StrongConnectedComponents 15.47 26.94 28.38 36.23 42.19 50.14

SCCGCRootsAndLeaves 11.98 15.63 18.05 20.46 23.85 28.35

ArticulationPoints 39.92 67.79 97.83 125.67 240.78 389.65

SCCDominatorTree 23.89 32.65 41.31 49.35 60.84 77.27

DomArticulationPoints 12.60 15.79 19.34 21.88 26.45 31.59

GCSize 5.86 8.03 9.96 10.81 14.50 17.89

BFSDynamicSize 0.00 0.00 0.00 0.00 0.00 0.00

SimpleCompDynamicSize 6354.19 4502.66 5590.59 6537.21 7981.86 9628.27

DomArticPointsDynamicSize 4634.36 3250.94 3958.70 4552.88 5449.21 6472.95

SimpleObjectsDynamicSize 0.00 0.00 0.00 0.00 0.00 0.00

ArticPointsDynamicSize1 0.00 0.00 0.00 0.00 0.00 0.00

ArticPointsDynamicSize2 0.00 0.00 0.00 0.00 0.00 0.00

Table A.1: dynaTrace Server Table
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Appendix B

Heapdumps Implementation

The algorithms and the used interfaces will now be illustrated:

B.1 JVMPI Heap Dump

The Java Virtual Machine Profiler Interface (JVMPI) [11] is available since version 1.2
in the Java Hotspot virtual machine. It is a bidirectional native interface. With the
profiler interface it is possible to get memory profiling information from the Java virtual
machine.

To create the extended or simple heap dump the JVMPI_EVENT_HEAP_DUMP with the
JVMPI_DUMP_LEVEL_0 is requested. The response of the event is a pointer to an array
of records of the following format [11]:

• ty: type of object

• jobjectID: object ID

The type of the object field reports if the object is an object, a class or an object- or
primitive array. The type field is not required for the JVMPI extended heap dump
algorithm. Only the object ID field is used. To get more information about the object
the JVMPI_EVENT_OBJECT_DUMP with the object ID as parameter is used. The response
of the event, depends on the type of the object and is one of the following byte arrays.

The dump level 0 was selected to reduce the size of the array in the heap dump event
result for the extended dump. If another dump level is used, the response array of the
heap dump event contains byte arrays for classes, objects and arrays presented later.
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The use of the dump level 0 reduces the needed memory but increases the CPU time
which is needed for the creation of the heap dump. The extra CPU time is spent to
request the object dump events. A benefit of this method is that it is possible to create
heap dumps of larger virtual machines without hitting the border of the underlying
machines memory. Nevertheless, information about the root objects is lost.

Class Dump

If the parameter of the object dump event was a class the response will be a byte array
with the following structure where (...)* signals zero, one or more occurrences:

JVMPI_GC_CLASS_DUMP

jobjectID class

jobjectID super

jobjectID class loader

jobjectID signers

jobjectID protection domain

jobjectID class name (a String object, may be NULL)

void* reserved

u4 instance size (in bytes)

(jobjectID)* interfaces

u2 size of constant pool

(u2, constant pool index,

ty, type,

vl)* value

(vl)* static field values

For the heap dump only the jobjectID class and the static field values are of interest.
The jobjectID pointer can be directly interpreted as the classes id. To get the name of
the class and the types of the static references the JVMPI_EVENT_CLASS_LOAD can be
used. The response of the class load event is the class_load struct. The name of the
class can be taken from the struct by using the char *class_name. With the fields
jint num_static_fields, JVMPI_Field *instances from the struct and the (vl)*

static field values from the byte array, it is possible to iterate over the static fields
of the class. If the type of the static field is a reference then the id of the referree must
be sent to the server.

struct {
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char *class_name;

char *source_name;

jint num_interfaces;

jint num_methods;

JVMPI_Method *methods;

jint num_static_fields;

JVMPI_Field *statics;

jint num_instance_fields;

JVMPI_Field *instances;

jobjectID class_id;

} class_load;

Object Dump

If the parameter was an object, the byte array has the following structure:

JVMPI_GC_INSTANCE_DUMP

jobjectID object

jobjectID class

u4 number of bytes that follow

(vl)* instance field values

(class, followed by super, super’s super ...)

The object ID and the class ID are represented by reading the fields jobjectID object

and jobjectID class. To get the static size the JVMPI_EVENT_OBJECT_ALLOC is used.
The size is taken from the jint size field of the response struct obj_alloc of the
object alloc event. The iteration over the fields of the object is very similar to the static
fields of a class. The jint num_instance_fields and JVMPI_Field *instances fields
from the response of the JVMPI_EVENT_CLASS_LOAD and the (vl)* instance field

values from the array are used to get all field references of the object. The only
difference is, that for parsing all instance field values, the class load event must be called
for each class on the inheritance path from the class’s object to java.lang.Object.
This means that the event must be requested for the class of the object, for the super
class, for the super super class and so on.

struct {

jint arena_id;

jobjectID class_id;
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jint is_array;

jint size;

jobjectID obj_id;

} obj_alloc;

Object Array Dump

If the parameter of the object dump event was an object array, the response will be a
byte array of following structure

JVMPI_GC_OBJ_ARRAY_DUMP

jobjectID array object

u4 number of elements

jobjectID element class ID

(jobjectID)* elements

The id of the array are represented by the jobjectID array object value. To get
the size and the class ID the JVMPI_EVENT_OBJECT_ALLOC is used. To iterate over the
array references, the values u4 number of elements and (jobjectID)* elements are
used. Using class ID from the object alloc event can be a drawback for object arrays.
For Sun and IBM virtual machines the returned class ID is the ID of the class of the
elements of the array, for Oracle virtual machines the returned class ID is the ID of the
class of the array. Special treatment is necessary at the server side!

Primitive Array Dump

If the parameter was a primitive array, the byte array has the following structure:

JVMPI_GC_PRIM_ARRAY_DUMP

jobjectID array object

u4 number of elements

ty element type

(vl)* elements

The id of the array object are represented, similar to object arrays, by the jobjectID

array object value. To get the class ID and the size the JVMPI_EVENT_OBJECT_ALLOC

is used.
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For the simple heap dump both fields of the records in the response array of the heap
dump event are used. If the type of the object is a primitive array the classname
is known. To get the classname for objects or object arrays the class id must be
determined. This is done by using the JVMPI_EVENT_OBJECT_ALLOC with the object id
as parameter. With the class id as parameter for the JVMPI_EVENT_CLASS_LOAD the
classname is determined. The size of the object or array is determined independently
of the type by requesting the JVMPI_EVENT_OBJECT_ALLOC. With the classname it is
possible to check if a matching entry in the hash map exists. If such an entry is found
the number of instances must be incremented and the object size is added to the size
value of the entry in the hash map. If such an entry does not exist a new one with the
classname and the size of the object must be created and added to the hash map.

More about the Java Virtual Machine Profiler Interface (JVMPI) can be found at [11].

B.2 JVMTI Heap Dump

The Java Virtual Machine Tool Interface (JVMTI) [12] was integrated in the Java
virtual machine version 5.0. It is also a bidirectional native interface. It is the successor
of the JVMPI and the JVMDI (Java Virtual Machine Debug Interface).

The basis for heap dumps with JVMTI is the tag mechanism. For each loaded class,
object or array instance, a tag can be set. The tag is a value of type long. To create
an extended heap dump with the tool interface, each class and object must be tagged.
The tag then is used to assign an unique ID to each node.

To create a extended heap dump the following steps must be performed:

1. Get all classes.

2. Iterate over the classes, tag each of them, get the name of the class and send the
informations to the server,

3. Iterate over all objects, set the tag of each object, get the size of the object and
send the information to the server.

4. Iterate over all references and send them to the server.

5. Iterate over all objects and untag them.

6. Iterate over the classes and untag them.

The function GetLoadedClasses returns the number of the classes (jint*
class_count_ptr) and an array of all loaded classes (jclass** classes_ptr).
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jvmtiError GetLoadedClasses(jvmtiEnv* env,

jint* class_count_ptr,

jclass** classes_ptr)

To tag each class and to get then name of them the functions SetTag and GetClassSig-

nature can be used. The GetClassSignature returns the name of the class in the
output parameter char** signature_ptr.

jvmtiError SetTag(jvmtiEnv* env,

jobject object,

jlong tag)

jvmtiError GetClassSignature(jvmtiEnv* env,

jclass klass,

char** signature_ptr,

char** generic_ptr)

The IterateOverHeap function and the jvmtiHeapObjectCallback is used to it-
erate over all objects and to set the tag of them. The callback must be imple-
mented and handed over to the function as a function pointer with the parameter
heap_object_callback. The function calls the callback for all objects and arrays
on the heap. All information about the object for which the callback was called are
supplied as parameter. The tag of the object is set by changing the value of the ref-
erence parameter tag_ptr to the desired value. Values available as parameters size,
class_tag and tag_ptr are transmitted to the server.

jvmtiError IterateOverHeap(jvmtiEnv* env,

jvmtiHeapObjectFilter object_filter,

jvmtiHeapObjectCallback heap_object_callback,

void* user_data)

typedef jvmtiIterationControl (JNICALL *jvmtiHeapObjectCallback)

(jlong class_tag, jlong size,

jlong* tag_ptr, void* user_data);

The IterateOverReachableObjects function and the callback jvmtiObjectRefer-

enceCallback are used to iterate over all references. The jvmtiStackReferenceCall-

back and the jvmtiObjectReferenceCallback are not used because no root infor-
mation is collected. The jvmtiObjectReferenceCallback is called for each reference
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exactly once. The tag of the referrer is the value of the referrer_tag and the tag of
the referree is the value of the tag_ptr parameter.

jvmtiError IterateOverReachableObjects(jvmtiEnv* env,

jvmtiHeapRootCallback heap_root_callback,

jvmtiStackReferenceCallback stack_ref_callback,

jvmtiObjectReferenceCallback object_ref_callback,

void* user_data)

typedef jvmtiIterationControl (JNICALL *jvmtiObjectReferenceCallback)

(jvmtiObjectReferenceKind reference_kind,

jlong class_tag, jlong size,

jlong* tag_ptr, jlong referrer_tag,

jint referrer_index, void* user_data);

The values of the tags of all objects, arrays and classes needs be set to zero, deallocating
the memory used by the tags. The functions SetTag and IterateOverHeap and the
jvmtiHeapObjectCallback callback are used.

The JVMTI simple heap dump has minor differences to the other simple heap dump
algorithms, instead of using a hash map an array is used, since the number of loaded
classes is known.

Creating a simple heap dump is done the following way:

1. Get all classes.

2. Iterate over the classes, tag each of them, get the name of the class and initialize
the array element on the tag position with the classname.

3. Iterate over all objects, get the size of the object, add them to the value of the
corresponding array element and increment the instance count value of the array
element.

4. Iterate over the classes and untag them.

5. Send the information to the server

Similar to the extended heap dump, the functions GetLoadedClasses, SetTag and
GetClassSignature are used to tag all classes and to get their names. The Itera-

teOverHeap function and the jvmtiHeapObjectCallback are used to collect the data
from the objects and arrays. The class_tag parameter of the callback is used to iden-
tify the correct array element. The value of the size parameter is added to the variable
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in the array element. Furthermore the instance counter of the array element must be
incremented.

More about the Java Virtual Machine Tool Interface (JVMTI) can be found at [12].

B.3 .Net Profiling API Heap Dump

The profiling API [10] within CLR allows to the user to monitor execution and memory
usage of a running application. Typically, the API is used in profilers, for example
the Profiler [8]. The profiling API is implemented as two COM interfaces. One is
implemented by the Runtime (ICorProfilerInfo), the other is implemented by the
profiler (ICorProfilerCallback).

The ICorProfilerCallback interface must be implemented by the profiler DLL. The
interface methods are called by CLR to notify the profiler of events in the profiled
process. The methods in the ICorProfilerInfo interface can be used by the profiler
to gather information about profiled application.

To create heap dumps with the profiling API, the garbage collection functionality of
the ICorProfilerCallback interface is used. The COR_PRF_MONITOR_GC flag must be
set in the initialize method of the interface. This has a drawback: after setting
this flag, the concurrent garbage collection is turned off. Creating a memory dump
is quite similar to a garbage collector run. To create a memory dump the garbage
collector must be started. If this flag is set the ObjectReferences method of the
ICorProfilerCallback interface is called by the CLR for each object or array seen
by the garbage collector. The ObjectReferences methods are called by each garbage
collector run. If no memory dump is issued the method can return constant E_ABORT

to abort the execution of the method for this garbage collector run.

HRESULT ObjectReferences(ObjectID objectId,

ClassID classId, ULONG cObjectRefs,

ObjectID objectRefIds[])

The .Net heap dump algorithm uses the GetObjectSize method of the ICorProfiler-
Info interface to get the size of the considered object.

HRESULT GetObjectSize(ObjectID objectId,

ULONG* pcSize);



Heapdumps Implementation 68

Then the algorithm checks if the classId identifies a real class or the class of an
array. It is done via the IsArrayClass method of the ICorProfilerInfo interface.
IsArrayClass returns S_OK if the given classId is the id of an array class or S_FALSE

if the classId is the id of a class. The parameter pBaseClassId of the method returns
the classId of the next lower dimension of the array.

HRESULT IsArrayClass(ClassID classId,

CorElementType* pBaseElemType,

ClassID* pBaseClassId,

ULONG* pcRank);

With the output parameter pcRank it is possible to test if the array is jagged or multi
dimensional. The elements of multi dimensional arrays are stored one after the other
in a continuous memory block. A jagged array is an array whose elements are arrays.
The elements of a jagged array can be of different dimensions and sizes. Sometimes it
is called an ”array of arrays “. If the pcRank parameter returns 1, the considered object
is a multi dimensional array. Otherwise the parameter returns the dimension of the
array, since the object is a jagged array.

The classname can be collected with the GetTypeDefProps method of the IMeta-
DataImport Interface. The parameter szTypeDef contains a pointer to a wide char
array with fully qualified class name in it. This method needs as an input parameter
the type def token (mdTypeDef td) of the class.

HRESULT GetTypeDefProps (mdTypeDef td,

LPWSTR szTypeDef, ULONG cchTypeDef,

ULONG* pchTypeDef, DWORD* pdwTypeDefFlags,

mdToken* ptkExtends);

To call this method, a pointer to a IMetaDataImport struct must be acquired first
by calling the GetModuleMetaData function of the ICorProfilerInfo interface, where
REFIID riid is the wanted pointer. This function needs as an input parameter the
moduleId of the module in which the class is contained.

HRESULT GetModuleMetaData(ModuleID moduleId,

DWORD dwOpenFlags, REFIID riid,

IUnknown** ppOut);
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The moduleIds and the typedef tokens are collected with the GetClassIDInfo method
of the ICorProfilerInfo interface. The inspected input parameter of this method is
the classId of the considered class.

HRESULT GetClassIDInfo(ClassID classId,

ModuleID* pModuleId,

mdTypeDef* pTypeDefToken);

With this information and the references form the objectRefIds[] parameter of the
ObjectReferences method, it is possible to send all information for the extended heap
dump to the server. Because it is impossible for the .Net profiling API to acquire all
loaded classes, the extended heap dump must store the classIDs sent to the server in a
hash map. Each class is only sent once. The .Net extended heap dump has a drawback:
It is impossible to collect static references because only field references are reported by
the ObjectReferences method.

The .Net simple heap dump is similar to the extended dump. The implementation only
differs at one point: By the extended heap dump sends all data to the server. The
simple heap dump stores the data in a hash set and sends the collected data to the
server if all data is collected. The RuntimeResumeFinished callback can be used to
check if the heap dump is finished.

HRESULT RuntimeResumeFinished()

The heap dump is part of a garbage collector run. The gc suspends the virtual machine
before the run starts and resumes it if the run is finished. The collected data from the
simple heap dump is sent to the server in the RuntimeResumeFinished callback.

More about the .Net Profiling API can be found at [10].
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Appendix C

Implementation

The practical part of the master thesis was the implementation and integration of the
selected algorithms. The implemented classes and the structure between them are
discussed in Appendix C. The heap dump algorithms are presented in Chap. 3 and the
analysis algorithms are presented in Chap. 4. The first section in this chapter discusses
the algorithms to create heap dumps and the second section discusses the heap dump
analysis algorithms.

C.1 Heap Dump Algorithms

Fig. C.1 shows the structure of the classes necessary for the heap dump algorithms.

Figure C.1: Heap Dump Overview Class Diagram
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The class diagram of MemDumpClient can be seen in Fig. C.2. This class manages the
communication between the dynaTrace server and the dynaTrace agent. There are only
minor differences between JavaMemDumpClient and DotNetMemDumpClient.

Figure C.2: MemDumpClient Class

The Heap class contains methods to manage the heap dump channel and to send
the HeapDumpStart and the HeapDumpEnd event. The JVMPIHeap and JVMTIHeap

classes are implemented to manage the JVMPI_Interface or the jvmtiEnv environ-
ment pointer. All of the following heap dump classes contain a HeapDump() method.
Calling this method is required to initiate a heap dump.

Figure C.3: JVMPIExtendedHeap Class

Fig. C.3 shows the class diagram for the extended heap dump implemented using
JVMPI. The method HeapElementDump() is called for each JVMPI_EVENT_OBJECT_DUMP

response. The method parses the record type field and calls ClassDump() for class
records, ObjectDump() for object records, ObjectArrayDump() for object array records,
and PrimArrayDump() for primitive array records. The methods parses the records and
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collects information required for the class, objects or refference records. For details
about the algorithm see Chap. 3.

Figure C.4: JVMPISimpleHeap Class

The class diagram of the JVMPI simple heap dump can be seen in Fig. C.4. The
algorithm is presented in Chap. 3.

Figure C.5: JVMTIExtendedHeap Class

Figure C.6: JVMTISimpleHeap Class

Fig. C.5 and Fig. C.6 present the class diagram for the simple and the extended heap
dump implemented with JVMTI. Other methods and callbacks are explained in Chap.
3.
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Figure C.7: DotNetHeap Class

DotNetHeap implements the simple and the extended heap dump algorithm for .NET.
The class diagram is presented in Fig. C.7. The method connectClient() is used to es-
tablish the heap dump channel between agent and server. The methods sendHeapDump-
Start() and sendHeapDumpEnd() are used to send HeapDumpStart and HeapDumpEnd
events to the server. The .NET heap dump algorithms depends on a garbage collector
run. To determine the start and the end of the gc run the CLR callbacks Runtime-

SuspendStart() and RuntimeResumeFinished() are used. Another callback used is
the sendObjectReferences(). For each object in the CLR this method is called. The
callback is used to collect information for the simple and the extended heap dump. If
enough information for the simple heap dump is collected sendSimpleHeapDumpData()

method transfers it to the server. Detailed information about the algorithm can be
found in Chap. 3.

C.2 Reference Graph Analysis Algorithms

This section discusses the heap dump generator algorithm, the delta debugger and the
actual heap dump analysis algorithms.
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C.2.1 Heap Dump Generators

Four different hep dump generators were implemented in its own classes. All the heap
dump generators are JUnit tests, extending the AbstractGenerator class.

Figure C.8: Heap Dump Reference Graph Generators

The AbstractGenerator class contains all methods necessary for the JUnit test.
setUp() constructs the memDumpWriter object and tearDown() destroys it. The test-

Generator() method is the JUnit test method. The main part of the testGenerator()
method is the call of the abstract generate() method.

Figure C.9: AbstractGenerator Class

All extended classes must implement the testGenerator() method. All heap dump
generator classes use the memDumpWriter object to create the classes, objects and ref-
erences of the heap dump.
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C.2.2 Delta Debugger

The delta debugger was implemented to find defects in the heap dump analysis algo-
rithms, by reducing the references in a given heap dump to a minimum. The ddmin

algorithm from [17] was implemented as JUnit tests.

Figure C.10: Reference Graph Delta Debugger

The ddmin algorithm was implemented in the DeltaDebuggerTest class. The ddmin

algorithm produces reduced heap dumps from the original heap dump. For each of
the reduced dumps it is tested whether the defect still occurs, by calling Test(). The
method is abstract and must be implemented by the class that implements the de-
bugger for a specified defect. The ArticulationPointsDeltaDebuggerTest class was
implemented to find the defect in the dynamic size algorithm that uses articulation
points.

Figure C.11: DeltaDebuggerTest Class

The methods split() and listminus belongs to the ddmin algorithm and can be
found in [17]. createDebugHeapDump() produces reduced heap dumps from the original
one.
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C.2.3 Analysis Algorithms

Analysis algorithms are implemented as JUnit tests. To run them some helper classes
are necessary. Fig. C.12 show the AbstractTest class with all helper classes.

Figure C.12: Reference Graph Analysis Algorithms Helper Classes

The AbstractTest class is the super class for all heap dump analysis algorithms imple-
mented. The class implements all methods, necessary for the JUnit test and manages
the memDumpReader interface to the heap dump. The analysis algorithms implement
the test() method.

Figure C.13: AbstractTest Class

To monitor memory consumption of the analysis algorithm MemoryMonitorThread is
used. The thread determines the free-, the used- and the maximum memory consump-
tion of the analysis algorithm every five seconds. The values collected are stored in a
comma separated values file. The thread controlled by AbstractTest.

The IOData class is the super class of the AbstractTest class. It extends the analysis
algorithms with two additional methods to read and to store integer arrays from files.
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This is necessary because most of the analysis algorithms stores their results in integer
arrays.

Figure C.14: AbstractReader Class

All analysis algorithms use the NormalReader or the ComponentReader class. The
classes implement the AbstractReader interface, see Fig. C.14. size() is used
to get the number of nodes in the graph. NormalReder returns the number of
objects and classes, ComponentReader the number of SCCs. The iterators re-
turn a java.lang.Iterable object. The iterable objects store references to a
java.util.Iterator object. Several iterator classes were implemented. The next()

functions return the ID of the next node, independent from whether the node is a class
or an object. The ArrayIterator class is necessary for getRoots() and getLeaves()

functions. The iterator object iterates over the roots or leaves array. The getRefer-

eesArray() and getReferrersArray() use the NodeIterator of the NormalReder or
ComponentReader. The getNodeLinksArray() is used in the articulation points algo-
rithm. It returns an object of the type NodeLinkIterator. The iterator object iterates
over all incoming and outgoing references of a given object. This is necessary because
the articulation points algorithm works on undirected graphs only.

All heap dump analysis algorithms extend AbstractTest. Fig. C.15 shows all imple-
mented analysis algorithms and the corresponding JUnit tests. The analysis algorithms
can be used by more than one JUnit test.
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Figure C.15: Reference Graph Analysis Algorithms Overview

The JUnit test loads the requirements from the files in the heap dump directory, con-
structs the analysis algorithm instance, runs the algorithm and stores the results to the
file system. An exception to this are the statistic and the size tests. They do not use
any of the implemented analysis algorithms. The statistic test reads the needed data
from the files in the heap dump directory and writes the results to the log file. The
SizeTest reads all computed sizes from the filesystem and compares the results.
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Figure C.16: GCSize Class

Fig. C.16 shows the class diagram of the GCSize algorithm. The calculated dominators
are loaded to the dom array. The value at each array position represents the dominator
of the node. This is not useful for the depth first traversing of the dominator tree. To
traverse the dominator tree the domList array is computed. For each node the list of
all direct dominated nodes is calculated and stored in the array at the position of the
index of the ID of the node. To optimize the algorithm domList array can be computed
only once by storing it into the heap dump directory. The gcsize array stores all the
size values computed.

Figure C.17: SimpleObjectsDynamicSize Class

The class diagram of the SimpleObjectsDynamicSize class is displayed in Fig. C.17.
The array dynamicsize stores the dynamic sizes calculated and the array objectsize

contains the static size of the nodes. The array objectsize is used to reduce the IO
of the algorithm. To calculate dynamic size for each node the graph is traversed in
breadth-first-order, because the breadth-first algorithm is implemented iteratively. All
other dynamic size algorithm classes are similar to the SimpleObjectsDynamicSize

class.
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Figure C.18: BFSDynamicSize Class

Fig. C.18 shows the class diagram of the implemented BFSDynamicSize algorithm. For
more about this algorithm see Chap. 4. The BFSDynamicSize implements, like all
classes connected to the SCC graph, convertSize(). It computes the dynamic size
values of the heap dump reference graph nodes from the dynamic size values of the
SCC nodes.

Figure C.19: GCRootsAndLeaves Class

The class diagram of GCRootsAndLeaves is shown in Fig. C.19. getRootsProspect()
adds all nodes without referrer nodes to the roots ArrayList. bfs() is called for each
of the nodes in the roots list. It marks all reachable nodes in the array visited.
Afterwards, for each node not marked, checkRoot() is called. It checks if the node is
part of a cycle. If so, it adds the node with the lowest ID in the cycle to the roots

list.
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Figure C.20: DominatorTreeSimple Class

Figure C.21: DominatorTreeSophisticated Class

The class diagrams of DominatorTreeSimple and DominatorTreeSophisticated can
be seen in Fig. C.20 and C.21. Detailed information about the fields and methods can
be found in [5].
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Figure C.22: StrongConnectedComponents Class

Fig. C.22 shows the class diagram of the StrongConnectedComponents algorithm.
Detailed information about the fields and methods can be found in [16].

Figure C.23: ArticulationPoints Class

The class diagram of ArticulationPoints can be seen in Fig. C.23. Detailed infor-
mation about the fields and methods can be found in [16].
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Figure C.24: DominatingArticulationPoints Class

Fig. C.24 shows the class diagram of the DominatingArticulationPoints algorithm.
The dominators computed for the SCC nodes are loaded to the dom field. The algorithm
is explained in Chap. 4.
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Staatsbürgerschaft: Österreich
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07/2001–09/2001 Technischer Zeichner GFM Steyr

03/2004–12/2004 Programmierer bei BM-IT

08/2005–05/2009 Programmierer bei dynaTrace software



Eidesstattliche Erklärung 87

Eidesstattliche Erklärung
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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.
Linz, am October 28, 2009

Stefan Riha


	1 Introduction
	1.1 Objective
	1.2 Preliminaries
	1.3 Control Flow Graph vs. Reference Graph
	1.4 Control Flow Graph vs. Reference Graph
	1.5 The Memory Diagnosis Process and Dump Types

	2 Dynamic vs. GC Size
	3 Heapdumps
	3.1 Requirements of the Heap Dumps
	3.2 Heap Dump Data
	3.3 Heap Dump Algorithms

	4 Algorithms
	4.1 Dominator Tree
	4.2 Garbage Collector Size
	4.3 Dynamic Size Simple
	4.4 Strongly Connected Components
	4.5 BFS based Dynamic Size Algorithm
	4.6 Articulation Points
	4.7 Delta Debugger
	4.8 Dominating Articulation Points

	5 Results
	5.1 Generated Heap Dumps
	5.2 SimpleLoadGenerator Heap Dumps
	5.3 dynaTrace Server Heap Dumps
	5.3.1 Differences between Dynamic and Garbage Collector Size


	6 Conclusion
	7 Future Work
	A Tables
	B Heapdumps Implementation
	B.1 JVMPI Heap Dump
	B.2 JVMTI Heap Dump
	B.3 .Net Profiling API Heap Dump

	C Implementation
	C.1 Heap Dump Algorithms
	C.2 Reference Graph Analysis Algorithms
	C.2.1 Heap Dump Generators
	C.2.2 Delta Debugger
	C.2.3 Analysis Algorithms


	Bibliography

