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Abstract I

Abstract

Satisfiability (SAT) solvers are extensively used in industry to solve various problems by reducing

them to the SAT problem. With Satisfiability Modulo Theory (SMT) solvers it is possible to find a

satisfying assignment of variables where the problem is specified in first order logic instead of boolean

algebra. Rewriting and simplifying the problem on the theory level is an important concept of every

SMT solver.

In this thesis we extend the union-find algorithm with offsets to store more information than just

equivalences. This extended datastructure maintains dependencies of variables with constant offsets.

For specific variables, the algorithm can also infer that two variables are definitely different. We com-

bine this datastructure with automatically generated rewriting rules which propagate the knowledge

globally and an algorithm for congruence closure. Furthermore we integrate these concepts to Boolec-

tor, a state-of-the-art SMT solver, and can reduce the run-time of the underlying SAT solver in 20 of

22 ASP families.

Kurzfassung

In der Industrie werden viele Probleme auf das Erfüllbarkeitsproblem der Aussagenlogik (SAT) zurück-

geführt und Verfahren (SAT Solver) verwendet die dieses Problem effizient lösen. Mit den Solvern

der sogenannten Satisfiability Modulo Theory (SMT) ist es möglich eine Variablenbelegung für ein

Problem zu finden, dass in Prädikatenlogik erster Stufe formuliert ist anstatt der Boolschen Algebra.

Das Vereinfachen des Problems auf Theorieebene ist ein wichtiges Konzept eines jeden SMT Solvers.

In dieser Arbeit erweitern wir die bekannte Union-Find Datenstruktur um einen konstanten Versatz.

Für manche Variablen kann diese Datenstruktur sogar feststellen, dass sie definitiv unterschiedlich

sind. Wir kombinieren diese Datenstruktur mit automatisch generierten Vereinfachungsregeln die

das Wissen propagieren und mit einem Algorithmus zum Auffinden der Kongruenzrelation. Weiters

integrieren wir diese Konzepte in Boolector, einem SMT Solver, und können dadurch die Laufzeit vom

internen SAT Solver in 20 von 22 ASP Familien verbessern.
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Chapter 1

Introduction

The first section motivates for rewriting on theory level. Further it explains the structure of the

thesis and gives a motivation for each chapter separately. In the second section we highlight the main

contributions of the thesis. The outline of the following chapters is summarized in the last section.

1.1 Motivation

Satisifability Modulo Theory (SMT) solvers usually do preprocessing and rewriting on the theory level,

then bit-blast the formula and let the underlying satisfiabilty (SAT) solver find a satisfying solution

[5, 12]. The SAT solver tries to simplify the formula further before or during the search process [8].

The simplification of the SAT solver is based on boolean algebra and not aware of any problem specific

information. The SMT solver does rewriting on the theory level and is able to apply theory specific

rewriting strategies. Thus simplification on theory level is as important as simplification on boolean

algebra level [17]. For example the formula a ∗ (−1) = a can be simplified to −a = a. Then the SMT

preprocessor can detect that the formula is unsatisfiable. If there is no rewriting or simplification on

SMT level, then the multiplication of the original formula has to be transformed to CNF. Bit-blasting

a multiplication for example for a bit-width of 256 leads to dozens of thousands of CNF clauses and

variables. In this concrete example, the SMT solver can simplify the expression and already detect

that there is no satisfying assignment for the variables. Thus the translation to CNF and the call

of the underlying SAT solver can be avoided. In Chapter 2 we give a short overview of SAT, SMT

and Boolector. Further we define basic terms and explain the well known union-find algorithm. This

knowledge is the basis for the definitions and algorithms in the following chapters.

Typically a SMT solver uses a handcrafted set of rewriting rules which will be applied to simplify

expressions [7, 11]. These rewriting rules are not complete and there is the possibility that an important
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rule is missing. Alexander Nadel implemented an algorithm to automatically generate rewriting rules

and integrated this algorithm to Intel’s SMT solver Hazel [11]. The set of generated rules is complete

with respect to a certain criteria. The SMT solver Hazel with these auto-generated rules was in 20 of

23 ASP families faster than the base version.

As part of a project we analyzed the set of handcrafted rewriting rules of Boolector. Therefore we

looked at every possible binary operation where the algorithm from Nadel is able to simplify the

expression and checked if Boolector finds the same simplification. For a bit-width larger than two,

we found 16 expressions with non-predicate operations and 18 expressions with predicate operations,

where the generated rewriting rules simplified the operation, but Boolector was not able to find a

simplification. One motivating example is the expression (−a+ 1) = a. The generated rules simplify

this expression to false. Boolector is not able to apply any simplification during construction of this

expression.

This is the motivation to integrate the automatically generated rules into Boolector. An overview

of Alexander Nadels idea [11], our implementation and the difference to his approach are shown in

Chapter 3. Unfortunately there is no measurable speedup after the integration of the automatically

generated rules into Boolector. The reason is that Boolector only uses these rules when creating

the directed acyclic graph (DAG) and only considers local knowledge for the condition of the rules.

This motivates us for implementing a datastructure for distinct sets to store equivalences, because

Alexander Nadel uses the same datastructure to propagate information globally [11].

The well known union-find datastructe is a good example for a datastructure to store distinct sets. We

extend this datastructure by offsets to fit more for our purpose and show this idea in Chapter 4. All

our automatic generated rules from Chapter 3 use offsets to describe dependencies of two variables,

e. g., variable b is equal to −a + 1. Therfore we extended the union-find datastructure to be able to

store and query for dependencies with a constant offset. This extension also supports other types

of queries, for example for specific variables it is possible to infer that they are definitely different.

In Chapter 5 we implemented an algorithm for congruence closure and integrated it into Boolector.

This algorithm uses the knowledge of the extended union-find datastructure from Chapter 4 to find

congruent operations.

The experimental results are presented in Chapter 6. Our algorithms simplify the formula in theory

level, such that the underlying SAT solver is in 20 of 22 ASP families faster than before. Furthermore

we show that the number of congruent operations found during the congruence closure algorithm is

an indicator for the performance increase of the SAT solver. Unfortunately our rewriting algorithms

take more time than before and therefore the overall run-time is not always faster. In Chapter 7 we

conclude our thesis and outline the future work.
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1.2 Contributions

The main contributions of this thesis are:

• We extend the union-find algorithm with offsets and essentially get the same complexity.

• We integrate this extended union-find algorithm and a congruence closure algorithm into Boolec-

tor.

• With the extended union-find algorithm one can also check if two nodes are definitely different.

1.3 Outlook

The remainder of the thesis is organized as follows: In Chapter 2 we define basic terms, explain

the well known union-find algorithm and give a short overview of SAT, SMT and Boolector. This

knowledge is the basis for the definitions and algorithms in the other chapters. The idea of Alexander

Nadel to automatically generate rewrite rules [11] is presented in Chapter 3. Further we give an

overview and discuss the problems of our implementation and motivate for Chapter 4. In Chapter

4 we extend the union-find algorithm. First we define a new type of relation and then present the

implementation of the extended algorithm, which exactly represents this relation for a set of explicitly

specified equivalences. Chapter 5 explains how we implement a congruence closure algorithm for

Boolector. The algorithm uses the extended union-find structure of Chapter 4. In Chapter 6 we show

the effects of our implementation. In the last chapter we conclude and discuss some future work.
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Chapter 2

Preliminaries

In this chapter we define mathematical terminology and notation, explain the well known union-find

algorithm and describe basics about Boolector, our SMT solver. This knowledge is needed to fully

understand the following chapters, where we extend and build on the basics presented here: In the first

section we explain bit-vectors. They are a major part of Boolector and strongly used in this work. The

next three sections contain definitions for relations, closure and equivalence classes. These definitions

are used to describe the information maintained by the union-find algorithm which is presented in

Section 2.5. This algorithm is the basis for our algorithm and datastructure presented in Chapter 4.

The last two sections describe basics about SAT, SMT and Boolector.

2.1 Notation of Bit-Vectors

Let b be a bit-vector of constant length n. Thus b is a string of n single bits, where every bit is either

0 or 1. The value of an unsigned bit-vector is the sum of the single bits, where the bit at position

i has the weight 2i. For example 1010 as unsigned bit-vector has the value 8 + 2 = 10. For signed

bit-vectors we use the notation according to the 2’s complement, so the most significant bit has the

factor −2n−1. For example the signed bit-vector 1010 has the value −8 + 2 = −6 [7].

The bit-vector ¬b denotes the bit-wise negation or 1’s complement of the bit-vector b. To negate a

bit-vector is the same as flipping all bits to the other value. We also say that we invert a bit-vector if

we negate the bit-vector.

Further, a⊕b is the addition of two bit-vectors a and b of the same bit-width n. A possible overflow of

the bit-vector addition will be ignored, thus the result of a⊕b is again a bit-vector of bit-width n. The

subtraction of two bit-vectors is defined as a ⊖ b and can be rewritten as the addition by a negative
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value: a⊕ (⊖b). A negative value can again be reformulated using the 2’s complement: ⊖b = ¬b⊕ 1.

For example the signed 4-bit bit-vector 0110 has the value 6. To get the bit-vector for −6 we flip all

the bits and add 1 and therefore get 1010.

2.2 Properties of Binary Relations

For the sake of completeness we define common properties of binary relations in this section [6, 14].

These definitions are important and used in the following section and in the core chapters of this

thesis. Let R be a binary relation over a set S, i. e., R ⊆ S × S.

Definition 2.1 (Reflexive). R is reflexive iff the identity of all elements in S is part of R, i. e.,

∀s ∈ S: (s, s) ∈ R.

Definition 2.2 (Symmetric). R is symmetric iff for all elements (s, t) in R also the swapped element

(t, s) is in R, i. e., ∀s, t ∈ S: (s, t) ∈ R → (t, s) ∈ R.

Definition 2.3 (Transitive). R is transitive iff for any two elements (s, t) and (t, u) in R with such

a common element t follows that the element with the other two values (s, u) is also in R, i. e.,

∀s, t, u ∈ S: (s, t) ∈ R ∧ (t, u) ∈ R → (s, u) ∈ R.

Definition 2.4 (Equivalence Relation). Any relation which is reflexive, symmetric and transitive is

called equivalence relation.

Let F be a set of functions where every function f ∈ F has a fixed arity arity(f), and let S be an

arbitrary set, but closed over F , i. e., ∀f ∈ F : a1, a2, . . . , aarity(f) ∈ S → f(a1, a2, . . . , aarity(f)) ∈ S,

and let R be a binary relation over S.

Definition 2.5 (Monotonic). R is called monotonic iff for every function f in F it holds that if

the arguments of two function applications are pairwise an element of the relation, the results

of the two function applications as a pair is also an element of the relation, i. e., ∀f ∈ F : (∀i =

1 . . . arity(f): (ai, bi) ∈ R) → (f(a1, a2, . . . , aarity(f)), f(b1, b2, . . . , barity(f))) ∈ R.

Definition 2.6 (Congruence Relation). Any equivalence relation which is monotonic is called con-

gruence relation.

2.3 Closure

Let R be a binary relation over a set S, which stores known equivalences. A common problem is that

one wants to know all the equivalences which can be inferred from this known information.
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Example 2.7. Consider the following example: The set S contains four elements: S = {s1, s2, s3, s4}.
Further s1 is the same as s2 and s4 is the same as s1. This equality information is stored in R, so

R = {(s1, s2), (s4, s1)}. An example information which can be inferred from this known information

is that s2 is equal to s4. However, nothing can be inferred for s3.

Definition 2.8 (P-Closure). A relation is called P-closure of R if it is the smallest relation which

contains R and where the property P holds.

Corollary 2.9 (Equivalence Closure). A relation is called equivalence closure of R if it is the smallest

equivalence relation which contains R [14]. We write R′ for the equivalence closure of R.

Example 2.7 (continued). The equivalence closure of R for the small example above is:

{(s1, s1), (s1, s2), (s1, s4), (s2, s1), (s2, s2), (s2, s4), (s4, s1), (s4, s2), (s4, s4), (s3, s3)}

Theorem 2.10. The equivalence closure of R represents exactly the information which can be inferred

from the set of known equivalences R.

Explanation of Theorem 2.10. Obviously the equivalence closure R′ has to contain the known

information R, because it is already known that all the pairs in R are equal. The equality is

reflexive, transitive and symmetric, so R′ has to be an equivalence relation. For example the trivial

relation containing all pairs (S × S) is also an equivalence relation which contains R, but it is in

general not the smallest one. It includes all pairs and assumes that all elements are equal, which

cannot be inferred in general from R. Therefore R′ has to be the smallest equivalence relation,

because the reflexivity, symmetry and transitivity are the only properties of the equality.

Corollary 2.11 (Congruence Closure). A relation is called congruence closure of R if it is the smallest

congruence relation which contains R [14].

2.4 Equivalence Class

Let R be a binary relation over a set S and let R′ be the equivalence closure of R. From the definition

follows that R′ is an equivalence relation over S. Thus, the set S can be split into equivalence classes

according to the equivalence relation R′ [16]:

Definition 2.12 (Equivalence Class). The equivalence class of s ∈ S according to the equivalence

relation R′ is defined as the set of elements which are equivalent to s according to R′, i. e., {s′ ∈ S |
(s′, s) ∈ R′}.

We write [s]R′ for the equivalence class of s according to the equivalence relation R′. Every equivalence

relation is reflexive. It follows that every equivalence class is non-empty. Furthermore, all equivalence

classes of a given set S are distinct, which means that there is no element s ∈ S which is part of two

different equivalence classes [16].
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Example 2.7 (continued). The equivalence classes of R′, where R′ is the equivalence closure of R,

are {a1, a2, a4} and {a3}.

2.5 Union-Find Algorithm

It is a common situation that equalities of certain elements are explicitly specified, but it is necessary

to obtain a representation of all equalities implied by those specified ones. Theorem 2.10 says that

this representation is exactly the equivalence closure of the specified equalities. The set of elements is

again called S and the relation for the explicitly specified equalities is specified as R ⊆ S×S. Further,

the equivalence closure of R is called R′.

In this section we describe a common datastructure for representing the equivalence closure R′ of

known equalities R and an algorithm for maintaining and querying this datastructure, called union-

find algorithm [14].

2.5.1 Top Level View

The algorithm starts with an empty relation R and offers two operations:

• union(a, b): This operation adds (a, b) to the relation R.

• find(a): This operation returns the representative of the equivalence class of a according to

the equivalence relation R′. The representative of an equivalence class is a unique element of

this class and does not change between two calls of the union operation. With this operation

one can check if two elements a and b are equal, by comparing the two representatives of their

equivalence classes, i. e., (a, b) ∈ R′, iff find(a) = find(b).

2.5.2 Internal Structure

Internally, every element of the set S keeps a pointer towards the representative of its equivalence

class. If an element itself is the representative of its equivalence class, then this pointer is null or in

some implementations points to itself. Initially no equivalences are explicitly specified: R is the empty

set, so every element is in its own equivalence class. In other words, every element is the representative

of its own class. Therefore all pointers are initialized with null.
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The find(a) operation returns the representative of the equivalence class. So the operation simply

follows the pointer until it finds an element where this pointer is null. Then this is the representative.

Note that these pointer do not have cycles.

For every call of the operation union(a, b), the two equivalence classes of a and b will be merged.

First the representatives of both elements are needed: a′ = find(a) and b′ = find(b). If they are not

equal, i. e., a′ /= b′, either the pointer from a′ is set to b′ or vice versa. If an element is considered

to be a node and a pointer to be a directed edge, then the datastructure represents a forest: Every

equivalence class is a tree with the representative as root node. Every union(a, b) operation merges

the two trees containing a and b and the find(a) operation returns the root node of a [14]. Figure 2.1

shows two examples for the internal forest from Example 2.7.

s1

s2

s4

s3

null null

s2

s4

s1

s3

null null

Figure 2.1: Two examples for the internal forest from Example 2.7. The difference is in the last call of
union with the argument (s4, s1). In the left forest the element s4 points towards s2, which
is the representative of s1. In the right forest the pointer points the opposite direction:
From s2 to s4.

2.5.3 Complexity

Let n be the number of elements in the set S. Every element has to store only one additional pointer.

So the algorithm has a linear space complexity Θ(n). The initialization of the pointers has a linear

time complexity Θ(n). The find(a) operation follows the path from a to the root element. The time

complexity of this operation depends on the length of the path, i. e., the height of the tree. The

union(a, b) operation calls the find operation twice and sets one pointer. Therefore it has the same

time complexity as find. The height of the tree is in the worst case the number of elements if the

tree is a list [14]. This worst case scenario can be generated if the list is always merged with a single

element in a way that the root of the list points to this element. This leads to the worst case time

complexity of Θ(n) per operation. Fortunately, there are two ways how the run-time complexity of

the algorithm can be improved as shown in the next two sections.
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2.5.4 Optimization: Balancing

One way to optimize the run-time complexity of this algorithm is by balancing the trees: Whenever

two trees are merged, the algorithm can decide whether either the root element of the first tree should

point to the root element of the second tree or vice versa. If the algorithm decides in a way that the

root element of the tree with the smaller height always points to the root element of the tree with the

larger height, then the height of the merged tree will only increase by one if both heights are equal.

This means that a tree of height h was constructed by merging two trees of height h− 1. Each of the

two trees of height h − 1 was again constructed by merging two trees of height h − 2. Therefore the

height of the tree is logarithmic in the number of elements in the tree. This optimization reduces the

time complexity of both operations union and find from a linear complexity Θ(n) to a logarithmic

complexity Θ(log(n)), where n is the number of elements in the set S [18].

2.5.5 Optimization: Path Compression

Another optimization is to compress the path from an element to the root of the tree when it is

traversed: Every time when find(a) is called, the algorithm traverses all the pointers from a to the

root node of the tree. With this optimization, the algorithm traverses this path a second time and

redirects the pointers of all visited nodes directly to the root node. In this way the tree will be flatten.

For the next call of find(a), the algorithm has to go fewer steps to find the root node of the tree.

The time complexity of m find operations without balancing, but with path compression was calcu-

lated by Tarjan and Van Leeuwen [18] to be Θ(m∗ log(2+m/n)(n)) which is smaller than Θ(m∗ log2(n)).
Therefore the time complexity for any operation find or union is O(log(n)). If both optimizations

are combined, then the time complexity is O(m ∗ α(m+ n, n)) for m calls of find and n elements in

the set S [18]. The function α is a very slow growing function and can be ignored in practice [4, 14],

so with both optimizations the algorithm has almost a constant time complexity for each operation.

2.6 SAT and SMT

The term SAT refers to the propositional satisfiability problem. The problem is to find an assignment

for the boolean variables to satisfy a given propositional formula. This formula is usually expressed

in conjunctive normal form [7]. The SAT problem is famous because it was one of the first problems

which was shown to be NP-complete by Stephen Cook in 1971 [3]. Furthermore many other NP-

complete problems are in practice reduced to the SAT problem. The main reason for this reduction
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is the existence of efficient tools to find an assignment for the variables, called SAT solvers. For more

information on SAT see SAT-Handbook [1] and Donald Knuth’s recent book about satisfiability [9].

The satisfiability modulo theories (SMT) problem is a satisfiability problem for formulas in first order

logic with some theories. This thesis has its focus on theory of fixed-size bit-vectors. With the first

order logic one can specify the problem in a higher level as the boolean algebra [1, 7]. A SMT solver

is used to find an assignment for the bit-vector variables to solve a given formula. The complexity of

an SMT formula using the theory of fixed-size bit-vectors is NExp-Time-complete [10].

2.7 Boolector, our SMT Solver

Boolector1 is a state-of-the-art SMT solver, developed at the institute for Formal Models and Verifi-

cation at the Johannes Kepler University in Linz. This SMT solver is very successful in international

competitions. In the SMT Competition 2015, Boolector won first places in three out of five tracks.

The current version 2.2.0 supports the theories of fixed-size bit-vectors and arrays, but no quantifiers

(QF ABV) [12].

Internally, Boolector represents an expression as a Directed Acyclic Graph (DAG), where an edge

from node x to node y represents that node y is an input of node x. A sink node of the DAG has

no outgoing edges. In other words, it has no inputs and is either a variable or a constant. A node

with outgoing edges is an operation. Every operation has a fixed number of inputs. For example the

add operation has exactly two inputs. If we need to add three nodes, we have to cascade two add

operations. Furthermore there exist no operations for inverting a node, instead every input can be

used in a normal way or inverted, i. e., every edge of the DAG points to another node and also stores

the phase with it. We call the combination of a pointer to a node and a phase node pointer. Boolector

holds a list of asserted node pointers, i. e., every node pointer of this list has to evaluate to true, which

is the same as the one-bit bit-vector 1.

Example 2.13. Consider the following expression: (a⊕b < 5)∧(a⊖b ≥ 10) where < and ≥ denote an

unsigned comparison, ⊕ and ⊖ are bit-wise addition and subtraction and a and b are 4-bit variables.

The nodes in Boolector will be created bottom-up: First the variables a and b have to be created

before the sum of those variables can be created. The constant 5 represented as a 4-bit bit-vector

is 0101. To save constant nodes and therefore memory, Boolector does not have constant nodes

where the least significant bit is 1. Instead, all nodes are flipped and the resulting constant node is

used inverted. The constant 5 is therefore expressed as ¬(1010). Furthermore the whole expression,

which is in this example represented by the top-level and operator, will be asserted. The list of

1http://fmv.jku.at/boolector/
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asserted node pointers already represents a logical and. Therefore an and node will never be added

to the assertion list. Its inputs will be added instead. To save more memory, nodes are shared,

which means that the same node can be used several times as an input for another node. Boolector

also avoids redundant operators, so there is no operator for greater or equal (≥). In this case the

less than operator (<) with an inverted result is used. Similarly there is no subtraction operator,

because subtraction is nothing else than addition with a negative value and the negative value of

a bit-vector is defined by its 2’s complement. Figure 2.2 shows the directed acyclic graph of the

expression of this example.

n8: ult (1)

n5: add (4) n6: const (4)
10

n9: ult (1)

n7: add (4)

n3: var (4)
a

n4: add (4)

n1: var (4)
b

n2: const (4)
14

1 2 12

1
2

1 2

1
2

Figure 2.2: The directed acyclic graph from Example 2.13. A rectangular node represents a variable
or a constant where an ellipse represents an operation. Every edge is a node pointer, a
circle at the end of an edge means to use this node inverted and an arrow means to use
it as it is. The description of each node contains a unique label, the type of the node and
the bit-width in braces. The inputs of the nodes are ordered and therefore marked with a
number, since not every operation is commutative. The two edges at the top are asserted
node pointers.

During construction of the DAG only simple predefined rewriting rules will be applied, for instance

instead of a ⊕ 0, directly a will be used. When the sat function is called to check if the expression

is satisfiable, more complicated rewriting strategies, for example term substitution, are applied to

simplify the DAG further. Then the DAG will be translated to CNF and the internal SAT solver will

be used to check if the expression is satisfiable [2]. Some details, for example array handling, are not

discussed here. This thesis has its focus on improving rewriting of plain bit-vector expressions without

arrays.
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Chapter 3

Automatic Rule Generation

For SMT solvers it is common to have a handcrafted set of rewriting rules which will be applied

to simplify the input formula [7, 11]. The problem with this approach is that one can never be

sure that the handcrafted set does not miss an important rewriting rule. In this chapter we will

explain the idea of Alexander Nadel [11] to automatically generate a restricted, but complete set of

rewriting rules. Afterwards we show how we have implemented his idea and discuss the problems of

our implementation.

3.1 Idea

Alexander Nadel describes in [11] an approach where he automatically generates a restricted set of

rewriting rules. The following subsections give an overview of his idea.

3.1.1 Scope of Rules

In theory there are infinitely many rewriting rules, so a restriction is necessary to get the interesting

rules only. Nadel [11] limits the scope for the auto-generated rewriting rules in several ways: First of

all, only binary operations with equal input bit-width are interesting. The result is called x and the

two inputs are called y and z. Together they build a triplet of the form:

x = op(y, z)

There are two kind of binary operations with equal input bit-width: predicate operations and non-

predicate operations. Predicate operations always have a result bit-width of 1 and non-predicate
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operations have the same bit-width for the result and the input variables. The operation of a triplet

where all three variables are of bit-width 1 is also a non-predicate operation [11].

A rewriting rule in general consists of two parts:

• Condition: The part which has to be fulfilled to apply the rewriting rule.

• Result : The result after applying the rewriting rule.

In Nadels approach the condition of a rewriting rule is the information about a triplet and consists of

three parts:

• Operation type: The operation which will be applied to the two input variables.

• Bit-width: The bit-width of the input variables. The bit-width of the output variable x is

indirectly given by the operation type and the bit-width of the input variables.

• Premise: Certain information about the three variables of the triplet: Each of them can be a

constant, depend on another variable or be an independent variable.

The result of the rewriting rule is of the same structure as the premise, because it also contains

information about the three variables: After applying the rewriting rule, each variable can again

either be a constant, depend on another variable or be an independent variable.

The set of constants which are considered by Alexander Nadel [11] is called RC and limited to the

following 5 values: -2, -1, 0, 1 and 2. This means, if a variable is a constant, but the constant is not

in RC then the variable is not treated as a constant. Dependent of the bit-width of the variables, not

all constants in RC can be expressed. For example a 1-bit variable can only store the constants 0 and

-1.

If a variable is dependent on another variable, then the dependency is expressed with a lambda

rewriting function. For example if x is the same as −y − 1 then the rewriting function for x is

λe. −e− 1 with the additional information that x depends on y. The set of rewriting functions RF is

limited to the following ten functions:

λe. e− 2 λe. e− 1 λe. e λe. e+ 1 λe. e+ 2

λe. −e− 2 λe. −e− 1 λe. −e λe. −e+ 1 λe. −e+ 2

In this explanation we use a slightly different notation than Alexander Nadel [11]. Nadel expresses

these rewriting functions as named functions, but we use anonymous lambda expressions.

Again, if a variable is dependent on another one, but the dependency cannot be expressed by one of

these rewriting functions, then the variable is not considered to be dependent on another variable.
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To reduce redundancy, it is not allowed that y is dependent on x or that z is dependent on any

other variable, because these dependencies can also be expressed the other way around. Similar to

the constants, not all dependencies can be expressed by all bit-widths. Furthermore, for predicate

operations there does not exist the case where the variable x is dependent on an input variable,

because the bit-widths do not match.

It is possible that both of these properties (constant and dependency) apply to a variable at the same

time. Therefore the properties are ordered by their importance and the premise only stores the most

important one.

1. The property of being a constant is most important.

2. If a property is not a constant, it can be dependent on another variable.

3. If 1. and 2. do not apply, then the variable is considered to be an independent variable.

Example 3.1. Let x = and(y, z) be a triplet where and is the bit-wise and operation. All variables

are 4-bit variables and y is equal to z.

In this example the premise will contain the following information:

• x is an independent variable.

• y is dependent on z using the rewriting function λe. e.

• z is an independent variable.

Together with the other information from the condition (and-operation and a bit width of 4) one

can generate a rule with the following result:

• x is dependent on z using the rewriting function λe. e.

• y is dependent on z using the rewriting function λe. e.

• z is an independent variable.

In this example, the result is equal to the premise, except for the variable x. The premise treated

this variable as independent variable, but the result shows that x is the same as z.

3.1.2 Rule Generation and Verification

This subsection describes the approach of Alexander Nadel [11] to automatically generate rewriting

rules and why it is guaranteed that they are correct.

Generating a rewriting rule means, finding the result for a given condition. The result consists of the

three single results for the three variables. The idea is therefore to find the result for each variable
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independent of the result for the other variables. Finding a result for a single variable is done by

trying all possibilities for this variable, starting with the most important property.

In case of variable x, the algorithm first tries if x can be rewritten to a constant value. Afterwards it

checks if x can be simplified to a dependency on y or z. Checking if the variable x can be rewritten

to a value v is the same as checking if x is equal to this value v in every situation, i. e., for every

possible value of y and z which is consistent with the premise. A SMT solver is used to do this check:

The three variables are created in a new SMT solver instance. Then the information of the premise is

added to the solver instance. Further x is asserted to be not equal to the value v. Finally the triplet

x = op(y, z) is added and the SMT solver is called to find an assignment for the variables. If the

formula is unsatisfiable then the check is successful and x is equal to v in every case. Therefore x can

be rewritten as v, so v is the result for x for the given condition. This procedure is also done for the

other two variables. The difference is that there exist less possible result values for the variables y and

z, because they do not have so many dependency options. With this strategy it is guaranteed that

the rule is correct, because an SMT solver verified the single results.

3.1.3 Rule Application

Alexander Nadel uses equivalence classes in Intels SMT solver Hazel to store all the information and

a 0-saturation algorithm to propagate all the information through the set of triplets. After merging

two equivalence classes, Hazel traverses all triplets whose representatives have changed and checks if

one of the rewriting rules can be applied to get new information [11].

Hazel has no pregenerated rewriting rules. All the needed rules are generated at run-time and cached

for reuse. In this way only the rules which are needed for the given problem will be generated.

According to Nadel [11], Hazel achieves much better results in the ASP family from the SMT-LIB

with the new algorithm than with the base version: The SMT solver with this new idea outperforms

the base version in 20 of 23 ASP families.

3.2 Implementation

In this section we show how we have implemented Alexander Nadels approach and how it differs from

his implementation. The implementation is split into three parts: First the condition (premise, bit-

width and operation type) has to be extracted from the DAG. Afterwards the rewriting rules have
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to be generated for the condition and finally the result of the rewriting rule has to be applied. This

section starts with the second part.

3.2.1 Rule Generation

A rule is nothing else than a mapping from the condition to the result. We introduced a new structure

for the premise of the condition and the result of the rule. This structure is called RulegenTripletInfo

and is shown in Listing 3.1. This listing also shows the enum RulegenTripletType which is used by

the structure and specifies the property of a variable. For simplicity every variable of the triplet uses

the same RulegenTripletType, even though not every variable can have every property, e. g., the

variable z is not allowed to be dependent on y or itself.

1 enum RulegenTripletType

2 {
3 TRIPLET INDEPENDENT,

4 TRIPLET CONSTANT, // λe. offset

5 TRIPLET DEPENDENT Z, // λe. z + offset

6 TRIPLET DEPENDENT NOT Z, // λe. ¬z + offset

7 TRIPLET DEPENDENT Y, // λe. y + offset

8 TRIPLET DEPENDENT NOT Y, // λe. ¬y + offset

9 } ;
10 s t r u c t Ru l egenTr ip l e t In fo

11 {
12 RulegenTripletType type x , type y , type z ;

13 i n t 8 t o f f s e t x , o f f s e t y , o f f s e t z ;

14 } ;

Listing 3.1: RulgenTripletInfo: A structure to store the premise and the result of a rewriting rule.

The meaning of the RulegenTripletInfo structure is straight forward. For example if type x is set

to be TRIPLET DEPENDENT NOT Y and offset x is set to be -1 then it means that x is equal to ¬y− 1.

In case any type is set to TRIPLET CONSTANT then the offset specifies the constant value. The offset is

of type int8 t, which is an 8-bit signed integer. Therefore we could specify constants and dependency

offsets from -128 to 127. Instead we limit the offset variables always to be between -2 and 2, but this

can easily be extended. If a type is set to TRIPLET INDEPENDENT then the offset has no meaning and

will be ignored.

This is already the first difference to Alexander Nadels approach presented in Section 3.1: Nadel uses

rewriting functions with normal or negative variables and an offset of ±2. We convert every negative

dependency on another variable to a negated dependency and also have symmetric offset limits. Our

motivation to use negated dependencies instead of negative dependencies is to ease the integration
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to Boolector. In Section 2.7 is mentioned that Boolector uses node pointers (a combination of a

pointer to a node and a phase) to reference nodes. So it is very natural to have negated nodes in

Boolector. The following table highlights the different rewriting functions which can be expressed

by our implementation and by Nadels approach. The rewriting functions where the node is not

negated or inverted are not shown, because both implementations have in this case exactly the same

functions. All entries in the same row are equal. If a column has an entry in the specified cell then

the implementation is able to express this rewriting function.

Nadels approach Our implementation

λe. ¬e− 2

λe. −e− 2 = λe. ¬e− 1

λe. −e− 1 = λe. ¬e
λe. −e = λe. ¬e+ 1

λe. −e+ 1 = λe. ¬e+ 2

λe. −e+ 2

Nadel’s approach calculates all the rules at run-time and caches them [11]. We have a more flexible

approach: A mixture of precalculated rules and generation at run-time. The precalculated rules

are usually all rules up to a certain bit-width, because it is common that small bit-widths occur in

problems. The best example here is the bit-width 1 which has to be part of every problem since we

can only assert booleans. It is also possible to disable the generation of rules at run-time and only use

the precalculated rules. Then the application of the automatically generated rules will be skipped if

there are no precalculated rules for a occurring bit-width.

3.2.2 Find Condition

The easiest way to apply rewriting rules is at creation-time of the DAG. The DAG is created bot-

tom up, so the two inputs of a binary operation already exist when the operation node is created.

However, it is not known how the result will be used. Therefore type x of the premise is always

TRIPLET INDEPENDENT in our case.

To find the premise for y and z, our algorithm first checks if the nodes are constants. Afterwards it

checks if y is dependent on z, by looking at the structure of the DAG. Only the following four cases

are taken into account:

• y is the same node as z.

• y is an add-node with z and a constant node as input.
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• z is an add-node with y and a constant node as input.

• y and z are both add-nodes with a common node as input. The other input of the two operations

has to be a probably different constant node.

All these cases are checked with both phases of y and z, e. g., the first case also covers the situation

that y is equal to ¬z.

3.2.3 Apply Rule

The last subsection described how the premise can be extracted from the DAG at creation-time of an

operation. The variable x is in this case always an independent variable, because at this point in time

it is not known how the result of the operation will be used. The rewriting rules are a mapping from

the condition (premise + bit-width + operation type) to the result. So, after the premise is extracted

from the DAG, the result can be calculated.

The result consists of the single results for the three variables. In the premise, the variable x is

always an independent variable. If the result of an operation is unknown, it is impossible to infer any

information for the input variables. As a consequence of this, the result of y and z will be equal to the

premise of y and z. The only information which can be gained from the rewriting rule is stored in the

result of the variable x. If type x is TRIPLET INDEPENDENT, then there is no simplification possible

with the rewriting rule and the common handcrafted rewriting rules are applied. Otherwise the result

of x represents the simplification of op(y, z). Therefore, instead of the original binary operation, the

simplification of x is created. This can either be a constant or a dependency on y or z by a small

offset.

3.3 Related Work

Besides Alexander Nadel [11] also Trevor Alexander Hansen [7] experimented with automatically

generated rewriting rules. Hansen used a slightly different approach: The main idea is to generate

all possible expressions up to a certain depth and check which pairs are equal. In this way one finds

rules how one expression can be rewritten into another one. A rule is only considered as a rewriting

rule if the result is simpler than the condition. Hansen implemented this idea for a depth of two, e. g.,

a binary operation has two binary operations as children where each of them have again two nodes

as children. Hansen describes his approach as less successful, because most of the generated rules

contain a large portion of constants and are never used in practice, although the number of allowed

constants is also limited [7]. We think another reason why the generated rules from Hansen are less
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usable in practice is the fact that most of his generated rules contain shift operators. In his thesis [7]

he presents 20 randomly selected rules, 14 of them contain at least one shift operator in the condition

of the rule.

3.4 Discussion

The way how we use the auto generated rules is not optimal and therefore there is no measurable

performance improvement. There are three simple reasons for this:

1. Boolector has naturally already a good set of static rewriting rules which covers probably the

most important cases.

2. In our implementation only local knowledge is taken into account, i. e., to investigate if a node is

dependent of another one, only four simple situations are checked. All these situations consider

add operations and their inputs only. This is very restrictive. For example it could be asserted

that the two input nodes of an operation have to be equal. However, this knowledge is not used

in the presented approach.

3. In our implementation we do not use the full potential of the generated rules: The rules work

for triplets, but we only use two of the three variables. We always set the variable x to be

independent and therefore only use a fraction of all possible premises.

The first reason will always be a an issue, since it is difficult to get a huge performance improvement

for a fast state-of-the-art SMT solver.

To avoid the second reason, we need a different approach to check how two nodes depend on each other.

To look at the structure and check if one node is an addition of the other and a constant node is not

enough. A good idea is to use a datastructure to store the global knowledge of equivalences. An option

would be a datastructure to maintain the equivalence closure, e. g., the union-find datastructure.

Concerning the third reason, an improvement would be to use the variable x of the rewriting rules

as well. This is not possible when the nodes are created. Therefore the DAG has to be traversed

afterwards. When the DAG is fully created it is known how the result of an operation will be

used and we can take this knowledge into account. Then the type x of the premise is not always

TRIPLET INDEPENDENT anymore and then it is also possible to propagate knowledge top down.

Alexander Nadel uses in [11] equivalence classes to store all the equivalences. Unfortunately it is not

specified how the algorithm can extract the information if two nodes differ by a small offset from the

equivalence class structure. Exactly this information is necessary to find the premise for the rewriting
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rules. For example the union-find algorithm – a well known algorithm for equivalence classes – only

supports to query whether two nodes are equal. Furthermore it is not possible to store the information

that two nodes differ by an offset in this datastructure [4], but this information is a common result

when applying the presented rewriting rules.

n7: eq (1) n8: add (4)

n5: add (4) n6: add (4)

n1: const (4)
2

n2: var (4)
a

n3: var (4)
b

n4: const (4)
14

1 2 1 2

1 2 1 2

Figure 3.1: An example to show the limits of our implementation presented in this chapter.

Example 3.2. Figure 3.1 shows an example where our implementation presented in this chapter would

not find the simplification for node n8. It is asserted (node n7) that a + 2 = b. Therefore a − b as

calculated in node n8 simplifies to the constant −2. It is also not possible to find this simplification

with a normal union-find algorithm which only stores equivalences. This algorithm would store that

node n5 is equal to node n3, but would not be able to recognize and save that the variables a and

b differ by two. This is exactly the knowledge we need for the premise of the rewriting rule, which

simplifies n8 to the constant −2. It is unclear how exactly this information is found [11].

Therefore we extend the concept of equivalence closure by integer offsets and present an extended

version of the union-find datastructure to maintain this knowledge in the next chapter. With this

approach we are able to simplify node n8 of Figure 3.1 to the constant 2. Also a global substitution

of variable b by the expression a+ 2 would simplify the node n6 to −a− 2 and further simplify n8 to

−2.
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Chapter 4

Union-Find with Offsets

In order to find the premises for the rules in Chapter 3, we want a global structure which stores

the information how some nodes are related to each other. The union-find algorithm stores equality

information of nodes by maintaining the equivalence closure of some known equivalences. The dis-

advantage of the union-find algorithm is that one cannot take other information than equivalences of

two nodes into account or query for them. For example if two nodes differ by one, it is not possible to

use this information in the algorithm to gain knowledge. This information that two nodes differ by a

small amount is exactly what is needed for generating the premise of the rule generation algorithm in

Chapter 3. Furthermore the result of the rule generation algorithm is again the information that two

nodes differ by a constant offset. Therefore we extended the union-find algorithm by constant offsets

and present this idea in the following chapter.

4.1 Mathematical Background

The union-find algorithm maintains the equivalence closure of some known equivalences. In this

section we will extend our known information by the concept of “offsets” and introduce the terms

offset equivalence relation and offset equivalence closure. The next section then shows how the union-

find algorithm is extended to maintain the offset equivalence closure of some known information.

4.1.1 Offset Pointer

Let N be a set of nodes with bit-width bw. Boolector uses each node either inverted or non-inverted

(normal). We call such a reference node pointer :
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Definition 4.1 (Node Pointer). A node pointer p is the combination of a reference to a node n ∈ N

with a phase. It simply stores the two ways how a node can be used: Either normal (n) or inverted

(¬n).

The set of node pointers is called P : P = N ∪ {¬n | n ∈ N}. The possible bit-vector constants

depend on the bit-width. The set of all possible constants for bit-width bw is called Cbw: Cbw =

N ∩ [0, 2bw − 1] = 0, 1 . . . 2bw − 1. We also write C instead of Cbw when the bit-width is given by the

context.

We now combine a node pointer with a constant:

Definition 4.2 (Offset Pointer). An offset pointer s = p ⊕ c is the bit-vector addition of a node

pointer p ∈ P with an offset c ∈ C. The constant and the node have the same bit-width. We define

S as the set of all offset pointers: S = {p ⊕ c | p ∈ P, c ∈ C}. An offset pointer represents a node

pointer with an offset. For every element p ∈ P there is a trivial offset pointer which represents p:

(p⊕ 0). If the offset is 0, we can also omit the offset. Therefore p⊕ 0 is the same as p.

Listing 4.1 shows how the node pointer is represented in an implementation. A NodePointer consists

of a pointer to a node and the information whether it is inverted, e. g., using a kind of “sign-bit”. The

pointer to a node can also be null. The structure OffsetPointer extends this the node pointer by

an offset. The type Offset is a data type which can store an offset for the same bit-width as the

node.

1 s t r u c t NodePointer {
2 Node∗ node ;

3 bool i s i n v e r t e d ;

4 } ;
5

6 s t r u c t O f f s e tPo in t e r {
7 NodePointer node po inte r ;

8 Of f s e t o f f s e t ;

9 } ;

Listing 4.1: The definitions of the types NodePointer and OffsetPointer in pseudo code.

In Boolector every constant is represented by a node. To avoid redundancy we always express a

constant value c as the offset pointer zeroNode ⊕ c. The node zeroNode is the constant node with all

bits set to zero. This means that we never create an offset pointer pconst ⊕ c where pconst points to a

different constant node than the zeroNode.

In the following we describe how this datastructure is normalized to avoid further redundancy: An

offset pointer of the form ¬zeroNode ⊕ c is redundant and is normalized to zeroNode ⊕ (c ⊖ 1).
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Furthermore bit-width 1 is a special case, because every node pointer p of bit-width 1 can be inverted

either by adding the constant one (p⊕ 1) or by inverting the node pointer (¬p). To avoid redundancy

in this case, an offset pointer does not have any inverted node pointer of bit-width 1.

The function to normalize an offset pointer is shown in Listing 4.2. A non-normalized offset pointer

has an inverted node pointer and either points to a constant node or has a bit-width of 1. If the

offset pointer points to a constant node, then this node is the zeroNode, because we never create other

constant pointers. The first two conditions in Listing 4.2 check if the given offset pointer is already

normalized. If this is not the case then the algorithm has to invert the node pointer and correct the

offset such that the offset pointer is still the same. Therefore it simply subtracts 1 from the original

offset. This works, because the negation and the subtraction of 1 is the same for a one-bit variable.

For constants it is similar: The node pointer points to ¬zeroNode which represents −1, but it will be

inverted to zeroNode. To correct this negation we have to subtract one from the offset.

1 Of f s e tPo in t e r c o r r e c t op ( O f f s e tPo in t e r op )

2 {
3 Of f s e tPo in t e r r e s u l t ;

4 i f ( ! i s c on s t an t node ( op . node po inte r . node ) &&

5 g e t b i t w id th ( op . node po inte r . node ) != 1)

6 re turn op ;

7

8 i f ( ! op . node po inte r . i s i n v e r t e d )

9 re turn op ;

10

11 r e s u l t . node po inte r . node = op . node po inte r . node ;

12 r e s u l t . node po inte r . i s i n v e r t e d = f a l s e ;

13 r e s u l t . o f f s e t = op . o f f s e t ⊖ 1 ;

14 }

Listing 4.2: A function which returns the normalized version of the given offset pointer.

We can also apply mathematical operations to an offset pointer, because it is nothing else than a node

pointer added with a offset of of the same constant bit-width than the node. For example the negation

of an offset pointer s = p⊕ c is again an offset pointer:

¬s = ¬(p⊕ c) = ⊖(p⊕ c)⊖ 1 = (⊖p⊖ c)⊖ 1 = (⊖p⊖ 1)⊖ c = ¬p⊖ c = ¬p⊕ (¬c⊕ 1)

¬p ∈ P ∧ (¬c⊕ 1) ∈ C → ¬p⊕ (¬c⊕ 1) ∈ S

The negation of an offset pointer as function is shown in Listing 4.3.

1 Of f s e tPo in t e r i nve r t op ( O f f s e tPo in t e r op )

2 {
3 Of f s e tPo in t e r r e s u l t ;
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4 r e s u l t . node po inte r . node = op . node po inte r . node ;

5 r e s u l t . node po inte r . i s i n v e r t e d = ! op . node po inte r . i s i n v e r t e d ;

6 r e s u l t . o f f s e t = ⊖op . o f f s e t ;

7 re turn co r r e c t op ( r e s u l t ) ;

8 }

Listing 4.3: A function to invert an offset pointer.

If a constant value is added to an offset pointer, the result will be again an offset pointer. There exist

2bw different offset pointers of bit-width bw which can be created by adding different constants c′ ∈ C

to an offset pointer.

4.1.2 Offset Equivalence Relation

The binary relation R ⊆ S × S contains the explicitly specified equivalences. For example if (a ⊕ 0)

and (¬b⊕ 5) are equal, then (a⊕ 0,¬b⊕ 5) is in R. We already know that the equivalence closure R′

of our knowledge will be interesting. However, because of our extended definition of the elements in

the set S we can add further properties beside reflexivity, symmetry and transitivity which have to

hold in R′, in order to make it more powerful:

• Monotonic rule of bit-wise negation: If two offset pointers are in R′, also the negation of both

offset pointers have to be in R′, i. e., ∀sa, sb ∈ S: (sa, sb) ∈ R′ → (¬sa,¬sb) ∈ R′.

• Monotonic rule of constant addition: If two offset pointers are in R′, also the offset pointers

created by adding the same constant offset have to be in R′, i. e., ∀sa, sb ∈ S, c ∈ C: (sa, sb) ∈
R′ → (sa ⊕ c, sb ⊕ c) ∈ R′.

Definition 4.3 (Offset Equivalence Relation). We introduce a new relation, called offset equivalence

relation which has the properties of an equivalence relation (reflexive, symmetric, transitive) plus

the properties defined above (monotonic rule of the bit-wise negation and monotonic rule of constant

addition). We write R∗ for the offset equivalence relation of R.

Therefore the offset equivalence closure of some known information R is the smallest offset equivalence

relation containing R.

Example 4.4. Let N be the set of nodes: N = {a, b, c, d}. Every node in N has a bit-width of

2. It follows that P = {a,¬a, b,¬b, c,¬c, d,¬d}. C2 is the set of possible bit-vector constants:

C2 = N ∩ [0, 3] = {0, 1, 2, 3}. For example, R = {(a⊕ 0,¬b⊕ 1), (¬d⊕ 3,¬a⊕ 2)}. The equivalence

closure of R is the same as R plus all the identity elements. Therefore R′ is in this example not

more useful than R, but the offset equivalence closure R∗ of R is much more informative: From the

monotonic rule of constant addition follows that (¬d⊕ 1,¬a⊕ 0) ∈ R∗. From the monotonic rule of
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bit-wise negation follows now that (d⊕ 3, a⊕ 0) ∈ R∗. Now the equivalence properties can be used

to show that [a⊕ 0]R∗ , the equivalence class of a⊕ 0, is {a⊕ 0,¬b⊕ 1, d⊕ 3}.

Here is a list of all equivalence classes according to the offset equivalence closure:

{a⊕ 0,¬b⊕ 1, d⊕ 3} {¬a⊕ 0, b⊕ 3,¬d⊕ 1} {c⊕ 0} {¬c⊕ 0}
{a⊕ 1,¬b⊕ 2, d⊕ 0} {¬a⊕ 1, b⊕ 0,¬d⊕ 2} {c⊕ 1} {¬c⊕ 1}
{a⊕ 2,¬b⊕ 3, d⊕ 1} {¬a⊕ 2, b⊕ 1,¬d⊕ 3} {c⊕ 2} {¬c⊕ 2}
{a⊕ 3,¬b⊕ 0, d⊕ 2} {¬a⊕ 3, b⊕ 2,¬d⊕ 0} {c⊕ 3} {¬c⊕ 3}

4.2 Extended Union-Find Algorithm

We want to use a similar version of the union-find algorithm to maintain the offset equivalence closure

of our knowledge.

Similar to the normal union-find algorithm we build a forest with the nodes. The idea is to store an

offset pointer in every node. The node pointer of the offset points towards its representative. If node

a stores a node pointer ¬b and an offset c, it symbolizes that a is equal to ¬b ⊕ c. Listing 4.4 shows

the extension of the Node structure by the offset pointer.

1 s t r u c t Node {
2 Of f s e tPo in t e r r e p r e s e n t a t i v e ;

3 . . .

4 } ;

Listing 4.4: The extension of the existing Node structure by an offset pointer.

The rest of this section describes how the union and find operations work for this extended version

of the algorithm.

4.2.1 Find

The find procedure in the union-find algorithm again finds the representative of a node. In contrast to

the normal union-find algorithm, the representative, returned by the find operation of our extended

version, is not a simple node anymore, but an offset pointer. The node pointer of such an offset

pointer points to a so called representative node, a node whose node pointer is null. So the find

operation returns an offset pointer which specifies how the node can be expressed by its representative

node. Figure 4.1 shows an example forest with 6 nodes and a bit-width of 2. The forest has two
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representative nodes: n1 and n6. Therefore the call find(n1) returns n1 ⊕ 0. The representative of

n2 is also trivial: find(n2) returns n1 ⊕ 3. Node n3 is equal to ¬n2 ⊕ 2. In combination with the

representative of n2 one can calculate that n3 = ¬n1 ⊕ 3. Node n4 is equal to ¬n3 ⊕ 3 and therefore

equal to n1 ⊕ 0. Node n5 is equal to n3 and has therefore the representative ¬n1 ⊕ 3. The find

operation returns the same offset pointers for the nodes n1 and n4. Therefore they are equal. The

same happens with the nodes n3 and n5.

n1

n2

n3

n4 n5

n6

null null

3

2

3 0

Figure 4.1: A sample forest with six nodes building two trees. The bit-width of all nodes is 2.

Listing 4.5 shows the pseudo code of the simple version of the recursive find function without path

compression.

1 Of f s e tPo in t e r f i n d r e p r e s e n t a t i v e ( NodePointer np)

2 {
3 Of f s e tPo in t e r r e s u l t ;

4 r e s u l t . node po inte r = np ;

5 r e s u l t . o f f s e t = 0 ;

6

7 i f ( np . node−>r e p r e s e n t a t i v e . node po inte r . node == NULL) {
8 re turn co r r e c t op ( r e s u l t ) ;

9 }
10

11 r e s u l t = f i n d r e p r e s e n t a t i v e (np . node−>r e p r e s e n t a t i v e . node po inte r ) ;

12 r e s u l t . o f f s e t = r e s u l t . o f f s e t ⊕ np . node . r e p r e s e n t a t i v e . o f f s e t ;

13

14 i f ( np . i s i n v e r t e d )

15 r e s u l t = inve r t op ( r e s u l t ) ;

16 re turn r e s u l t ;

17 }

Listing 4.5: The simple recursive find function.
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4.2.2 Union

The union algorithm creates the forest. Every non-redundant call to union, merges two trees. Initially

all the nodes build its own tree, i. e., the node pointers are null. For every non-redundant equivalence

(a⊕ ca, b⊕ cb) ∈ R, one edge is added to the forest and merges two trees in the following way:

• The algorithm first has to find the representative of a and b by following the offset pointers.

This can be done by two calls of the find algorithm. With the results of the find operations

it is able to represent a and b by their representatives a′ and b′ respectively: a = a′ ⊕ c′a and

b = b′ ⊕ c′b.

• In the next step the algorithm transforms the known equivalence a⊕ca = b⊕cb into an equivalence

which uses the representatives of a and b: a′ ⊕ (ca ⊕ c′a) = b′ ⊕ (cb ⊕ c′b)

• Similar to the normal union-find algorithm, the algorithm can now choose one node – either

a′ or b′ – to be the new representative. Let us assume the algorithm chooses b′ to be the new

representative, so a′ should point to b′. Then the algorithm transforms the equivalence into the

form a′ = b′⊕((cb⊕c′b)⊖(ca⊕c′a)) by moving the offset from the left side to the right. Afterwards

it can set the offset pointer of a′: The node pointer is b′ and the offset is (cb ⊕ c′b) ⊖ (ca ⊕ c′a).

In case a′ is an inverted node pointer, the node represented by a′ does not exist in Boolector.

Therefore it negates both sides of the equation and sets the appropriate values for ¬a′.

Example 4.4 (continued). This example in Figure 4.2 shows the forest for the explicitly specified

equivalences R = {(a ⊕ 0,¬b ⊕ 1), (¬d ⊕ 3,¬a ⊕ 2)}. The first element in the known equivalences

is the equality a ⊕ 0 = ¬b ⊕ 1. At the moment, both nodes a and b are their own representative,

so the first two steps from above are already done. Let us assume the algorithm chooses a to point

towards b, so a = ¬b⊕ 1.

The next known equivalence is ¬d ⊕ 3 = ¬a ⊕ 2. Node d is its own representative, but the repre-

sentative of a is b and a can be expressed using b by a = ¬b ⊕ 1. The algorithm then transforms

the equality to use b instead of a: ¬d ⊕ 3 = ¬(¬b ⊕ 1) ⊕ 2 = b ⊕ 1. Now our algorithm has to

choose again, either b points to d or vice versa. If b points towards d it reformulates the equation

to b = ¬d ⊕ 2, otherwise it transforms the equation to d = ¬b ⊕ 2 and sets the appropriate values

of the offset pointers. Figure 4.2 shows how the forest looks like in both cases, when the algorithm

either chooses b or d to point to the other node for the second equivalence.

Listing 4.6 shows the pseudo code of the basic version of the union function without tree balancing.

Instead it prefers the constant nodes to be the representatives. If none of the two nodes is a constant

node then the algorithm uses the node with the smaller id as the representative. The reason for this

convention is to avoid circular dependencies in combination with the reference counting system in

Boolector. The return value of the union procedure identifies if a new information was inserted to
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a

b

d

c

null null

1

2
b

d

a

c

null null

1

2

Figure 4.2: Two examples of the forest from Example 4.4. The left forest shows the case where d
points towards b and the right forest shows the other option where b points towards d for
the last call of the union operation with the arguments ¬d⊕ 3 and ¬a⊕ 2.

the structure.

1 void s e t nod e po i n t e r ( NodePointer from , NodePointer to , O f f s e t o f f s e t )

2 {
3 Of f s e tPo in t e r op ;

4 op . node po inte r = to ;

5 op . o f f s e t = o f f s e t ;

6

7 i f ( from . i s i n v e r t e d )

8 op = inve r t op ( op ) ;

9

10 from . node . r e p r e s e n t a t i v e = op ;

11 }
12

13 // meaning : from = to + o f f s e t

14 bool union ( NodePointer from , NodePointer to , O f f s e t o f f s e t )

15 {
16 // get both r e p r e s e n t a t i v e s

17 Of f s e tPo in t e r from op = f i n d r e p r e s e n t a t i v e ( from ) ;

18 Of f s e tPo in t e r to op = f i n d r e p r e s e n t a t i v e ( to ) ;

19

20 // c a l c u l a t e the o f f s e t between the r e p r e s e n t a t i v e s

21 Of f s e t r e p r o f f s e t = o f f s e t ⊕ to op . o f f s e t ⊖ from op . o f f s e t ;

22

23 i f ( from op . node po inte r . node == to op . node po inte r . node ) {
24 re turn f a l s e ;

25 }
26

27 // i f one o f them i s a const we i n s e r t the r e l a t i o n always towards the const

28 // otherw i s e we i n s e r t the r e l a t i o n always towards the sma l l e r id

29 // to avoid c i r c u l a r dependenc ies

30 i f ( i s c on s t an t node ( from op . node po inte r . node ) | |
31 ( ! i s c on s t an t node ( from op . node po inte r . node ) &&



Union-Find with Offsets 29

32 from op . node po inte r . node−>id < to op . node po inte r . node−>id ) ) {
33 s e t nod e po i n t e r ( to op . node po inter , from op . node po inter , ⊖ o f f s e t ) ;

34 }
35 e l s e {
36 s e t nod e po i n t e r ( from op . node po inter , to op . node po inter , o f f s e t ) ;

37 }
38

39 re turn true ;

40 }

Listing 4.6: The simple union function.

4.3 More than Equality

The extended union-find algorithm presented in the last section maintains the offset equivalence closure

of some known equivalences. Similar to the normal union-find algorithm, by asking if two nodes have

the same offset pointer as representatives, one can check if the two nodes belong to the same equivalence

class according to the offset equivalence relation. The difference is that the value returned by the find

operation is not just a single node and represents a single equivalence class. It is a combination of a

node, an inverted flag and an integer offset instead. The node of the representative is therefore the

same for a bunch of equivalence classes and gives us the possibility to extract knowledge beyond the

scope of equivalence classes.

4.3.1 Comparing two Nodes

In this subsection we want to have a look which information one can gain from comparing the rep-

resentatives of two different nodes. Obviously, if the nodes of the representatives of two nodes are

different it is not known yet, whether they will ever be equal or how they relate to each other. This is

similar to the normal union-find algorithm where one cannot say anything if two nodes have a different

node as its representative. Therefore the following subsection will focus on nodes with equal nodes as

representatives.

Example 4.5. The two nodes a and b have the representatives x⊕ 4 and x⊕ 2 respectively. One can

immediately see that a is equal to b⊕ 2. The bit-width bw in this example has to be larger or equal

to 3, otherwise 4 would not be in Cbw and then x⊕ 4 would not be a valid offset pointer. So let us

assume the nodes in this example have a bit-width of 4.

Node a is equal to b⊕ 2, therefore, given the value of one node, it is always possible to calculate the
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value of the other node. Furthermore the two values will always be different. From the definition

of ⊕ follows that the values x⊕ 0, x⊕ 1, . . . , x⊕ 15 will all be different for a bit-width of 4. This

leads us to the following theorem:

Theorem 4.6. If two nodes have the same node pointer (same node and same inverted flag) as

representative, but a different offset, then they are definitely different.

Example 4.7. We have given two nodes with a different node pointer, but again the same node, i. e.,

the inverted flag is different. In this case it is a bit more difficult since the negation of a bit-vector

of a certain value can also be done by adding a specific value.

For example the negation of the bit-vector 1011 is equal to 0100. This is the same value as the

result of 1011 ⊕ 1001. So for the specific bit-vector 1011, the addition by 9 and the negation has

the same result. If the same operations are applied to a different bit-vector it is not necessarily true

that they have the same result, as shown for the bit-vector 0001. The negation is 1110 and the

result of 0001⊕ 1001 is 1010. This means that the negation and the addition by 9 gives a different

result for the specific bit-vector 0001.

Therefore x⊕ 9 = ¬x is true for some specific values of x, but not for all. We will now investigate

how this behaves in general:

Theorem 4.8. Let a = x⊕ c1 and b = ¬x⊕ c2 be two offset pointers. They are definitely different iff

the sum of c1 and c2 is even. Otherwise, when c1 ⊕ c2 is odd, then there exist exactly two solutions

for x where a is equal to b.

Proof of Theorem 4.8. Let a be equal to b, i. e., x⊕ c1 = ¬x⊕ c2. Then ¬x can be reformulated as

⊖x⊖ 1 using the 2’s complement: x⊕ c1 = (⊖x⊖ 1)⊕ c2. The addition and subtraction operators

can be used to move the variable x to one side of the equation and the constants to the other side:

x ⊕ x = (c2 ⊖ c1) ⊖ 1. The addition x ⊕ x is always even, so for a valid solution of x the constant

c2 ⊖ c1 ⊖ 1 has to be even, which means that c2 ⊖ c1 has to be odd. Subtracting or adding the same

amount changes the least significant bit exactly this amount of times, so c2 ⊖ c1 is odd iff c2 ⊕ c1 is

odd.

We finally have to show that there exist exactly two solutions of x for the equation x⊕x = c where

c is an even number, defined as c2 ⊖ c1 ⊖ 1. In case of the normal addition (+) of integer variables,

there only exist one solution for x when the value of x + x is known. The difference of ⊕ to the

normal addition is the overflow semantic: If two values are added, there can be an overflow or not.

This means, if x ⊕ x = c it is either the case that x + x = 0:c or that x + x = 1:c. The notation

1:c is the concatenation of the bit 1 and the bit-vector c. To get an overflow, the sum in the most

significant bit of the addition has to be greater or equal to 2. The only way this can be achieved

is by having the most significant bit of x set to 1. To avoid an overflow, the sum in the most
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significant bit of the addition has to be less or equal to 1. The only way this can be achieved is

by having the most significant bit of x set to 0. Therefore the two solutions of x only differ by the

most significant bit, where the smaller solution (when x is interpreted as an unsigned bit-vector) is

simply the integer division of (c2 ⊖ c1)⊖ 1 by 2. □

Example 4.9. The representatives of two nodes are ¬x⊕ 5 and x⊕ 3. In this case the two nodes are

definitely different. This statement is independent of their bit-width, as long as 5 can be expressed

as a bit-vector of the same length.

Example 4.10. The representatives of two nodes with a bit-width of 4 are ¬x⊕ 5 and x⊕ 2. Then

the two nodes can be equal but do not have to. If they are equal, then x has to be either 0001 or

1001.

4.3.2 Using Additional Information

In Listing 4.6 we showed the simple version of the union algorithm. In this listing we ignored the

union call if the two nodes already have the same node as their representative. With the theorems of

the last subsection we can now extend this algorithm and make use of the additional information.

Whenever union is called with two nodes which have already the same node as their representative,

the algorithm has to distinguish 3 cases: First, if the nodes are definitely different, but the call of

union wants to set them to be equal, then the whole formula is unsatisfiable. In the second case the

value of a node can be restricted to two possibilities. Finally, if the first two cases do not apply, then

the information is redundant and simply ignored by the algorithm. Listing 4.7 shows the code which

has to be replaced by the initial condition in line 23 of Listing 4.6.

1 i f ( from op . node po inte r . node == to op . node po inte r . node ) {
2 i f ( ( from op . node po inte r != to op . node po inte r && r e p r o f f s e t % 2 == 0) | |
3 ( from op . node po inte r == to op . node po inte r && r e p r o f f s e t != 0) ) {
4 // they are d e f i n i t e l y i n c o n s i s t e n t !

5 UNSAT = true ;

6 }
7 e l s e i f ( r e p r o f f s e t != 0) {
8 // the node po i n t e r s are d i f f e r e n t and the r e p r o f f s e t i s odd

9 // we can r e s t r i c t the value o f from op . node po inte r . node to two va lue s

10 }
11 re turn f a l s e ;

12 }

Listing 4.7: The new condition of the union function.

As mentioned in the comments in Listing 4.7: In some cases the algorithm can restrict the value of

a variable to two possible values. This can be implemented by creating a new boolean variable and
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substitute the old variable by a concatenation of the new boolean variable and the remaining constant

bits. We leave this optimization for future work.

4.4 Complexity

The only difference between the extended and the well known version of the union-find algorithm is

the calculation with offsets. The addition of two offsets and the negation of an offset are considered

as single steps. Therefore the extended version of the union-find algorithm has essentially the same

time complexity as the common union-find algorithm. The two optimization strategies tree balancing

(Subsection 2.5.4) and path compression (Subsection 2.5.5) can in general also be applied to this

algorithm and give the same run-time optimization.

Unfortunately we cannot use tree balancing in our implementation in Boolector, because our node

pointers have to point towards the node which was created first to avoid circular dependencies in the

internal structure of Boolector. Fortunately we can use path compression and therefore the run-time

complexity for any call of find or union is logarithmic by the number of nodes (O(log(n))).

The offset is considered to need constant space. The algorithm adds one offset pointer for every node.

Therefore the space complexity is linear by the number of nodes (O(n)).

4.5 Propagation

Every time when a node is asserted or created, our algorithm tries to extract information from this

triplet. It extracts the premise from the extended union-find datastructure, uses the auto generated

rules from Chapter 3 and inserts the resulting information into the extended union-find datastruc-

ture.

Whenever the algorithm inserts a non-redundant information to the datastructure it propagates the

newly gained information for a node n towards every node which uses n as its input. These triplets

have the chance to collect new information. This propagation stops automatically, because there only

exists a small and finite amount of new information per node.
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4.6 Implementation Details

We implemented the extended union-find algorithm and integrated the implementation to Boolector.

This section describes three parts of Boolector, where we had to solve Boolector specific integration

problems.

4.6.1 Simplified Pointer

Boolector has already the concept of proxy nodes. If node a is substituted by node b, then node a is

changed to a proxy node and its simplified pointer points towards b. Furthermore all parents of a are

recursively recalculated with b as their new child. It was necessary to merge this concept of simplified

pointers with our concept of offset pointers. Therefore our algorithm treats such a simplified pointer

as an offset pointer without the inverted flag and with offset 0. In addition, a proxy node never has a

representative node, because the find operation follows the simplified pointer in this case.

4.6.2 Reference Counter

Boolector has reference counts on nodes and deallocates the memory for a node as soon as its reference

count reaches zero. Therefore if node a has an offset pointer with node b as its node, then node a has to

increment the reference count for node b by one. Node a has to decrement the reference count again as

soon as the offset pointer changes or node a is deallocated. There are other situations where one node

depends on another node and therefore increment the reference count, for example if a node is a parent

of another node. Having all these concepts together makes it difficult to avoid circular dependencies.

This is also the reason why tree balancing is not possible in our union-find datastructure.

4.6.3 Skeleton Preprocessing

When Boolector creates the DAG it uses simple rewriting rules only. More complicated rewriting

strategies are applied as a preprocessing step of the CNF transformation, i. e., immediately before the

SMT solver converts the DAG to CNF clauses and passes them to the underlying SAT solver. One of

these strategies is skeleton preprocessing [12]. Here, a part of the DAG – called skeleton – with nodes

of bit-width 1 is converted to CNF clauses and sent to the preprocessor of the underlying SAT solver.

The skeleton consists of all the asserted nodes and recursively all its children if they are and nodes or

if they are eq (equal) or ite (if-than-else) nodes with an input bit-width of 1.



Union-Find with Offsets 34

Boolector uses the result of the SAT preprocessor in the following way [12]:

• If the preprocessor returns that the skeleton is unsatisfiable then the SMT solver returns that

the whole formula is unsatisfiable.

• If the preprocessor can simplify a boolean variable to the truth-values true or false, then Boolec-

tor asserts the corresponding node or its negation in the DAG respectively.

We combined skeleton preprocessing with our extended union-find structure in the following way:

• At the beginning our algorithm adds the information, which is stored in the extended union-find

datastructure, to the skeleton. When the skeleton is converted to CNF clauses, the algorithm

uses the representative for each boolean node instead of the node itself. Therefore any two nodes

which have the same node as representative also have the same clause in the CNF formula.

• After the call the algorithm extracts knowledge from the preprocessor and stores it in the union-

find datastructure. If the SAT preprocessor simplifies the CNF clauses in a way that two

boolean variables have to be equal, then our algorithm adds this information to the union-find

datastructure.

4.7 Related Work

Robert Nieuwenhuis and Albert Oliveras already describe a congruence closure algorithm with integer

offsets [13]. They extend a common congruence closure algorithm by the concept of integer offsets.

Unfortunately they do not describe the details of their algorithm, for example the information is

missing whether they mean real integers or if they also use the overflow semantics of the addition to

restrict the number of possible integer values. Furthermore they do not give experimental results of

the effect of this extension. However they do prove that the extension does not affect the run-time of

their original congruence closure algorithm which is the same for our approach, when also considering

offset addition and negation as single steps.
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Chapter 5

Congruence Closure

In the last chapter we introduced an algorithm for maintaining the offset equivalence closure, an

extended version of the equivalence closure. In this chapter we will first compare congruence closure

with this extended version. Afterwards we will show how we implemented congruence closure and then

present additional rules how we can make our congruence closure algorithm more powerful, because

we use offset pointers as representatives.

5.1 Congruence Closure vs. Offset Equivalence Closure

As defined in Corollary 2.11, the congruence closure of R is the smallest congruence relation which

contains R. A congruence relation is an equivalence relation which is monotonic. A relation R is

called monotonic (see Definition 2.5) if the following rule holds for every function f :

(a1, b1) ∈ R, (a2, b2) ∈ R, . . . , (an, bn) ∈ R

(f(a1, a2, . . . , an), f(b1, b2, . . . , bn)) ∈ R

On the other hand, the term offset equivalence relation is defined as an equivalence relation where the

monotonic rules of bit-wise negation and constant addition hold:

(a, b) ∈ R

(¬a,¬b) ∈ R

(a, b) ∈ R

∀c ∈ C: (a⊕ c, b⊕ c) ∈ R

Obviously one might think that congruence closure is a superset of the offset equivalence closure,

because the monotonic rule for all the functions and not just the bit-wise negation and the addition
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hold, but this is not correct. The congruence closure in general works with simple nodes instead of

offset pointers and applies the monotonic rule for every function in an abstract way [13]. The offset

equivalence closure algorithm is based on offset pointers and directly applies the two monotonic rules

to these offset pointers to get new ones. The following example shows the difference using concrete

values.

Example 5.1. Let x and y be two nodes. Furthermore x⊕5 is equal to y⊕3. The question is, if x⊕2

is equal to y. The offset equivalence closure algorithm presented in Chapter 4 obviously says yes.

Instead, the congruence closure algorithm only has the equivalence classes {x}, {y}, {x⊕ 5, y ⊕ 3}
and some classes for the constant values and therefore cannot say if x⊕2 and y are equal or not. The

reason for the difference is that the algorithm is not able to evaluate the ⊕ operation. According to

the congruence closure algorithm, (x⊕ 5)⊖ 3 is certainly equal to (y⊕ 3)⊖ 3, but it cannot simplify

these terms to x⊕ 2 and y respectively.

Of course, it is also possible to extend an existing version of the congruence closure algorithm to work

with offset pointers and immediately simplify addition with constant values. Instead we used another

approach for the congruence closure as explained in the next section.

5.2 Our Implementation

We have already implemented the union-find algorithm with offsets and now want to extend this

approach by the idea of congruence closure. This means that the algorithm wants to find a function

which is applied at least twice to the same input values, because in this case the result has to be equal

as well.

In Boolector constants, variables and functions are nodes. If a node is a function it has a function

type and between one and three input nodes, dependent of the type of the function. The idea of our

implementation of congruence closure is to iterate through all nodes which are functions and check

if there is another node of the same function type and with the same nodes as inputs. To check if

two input nodes are equal, the algorithm should use the find function of our extended union-find

algorithm and compare the representatives. To do this efficiently our implementation keeps a hash

table of nodes where the hash value depends on the function type of the node and the representatives

of the input parameters.

If two function nodes turn out to be equal, because they are of the same type and their input parameters

are equal, then the algorithm does not add this information to the union-find datastructure. Instead

one node is substituted by the other. This implementation is called congruence closure.
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5.2.1 Ensure Correctness of Substitution

If a node is substituted by another one, it is not necessarily the case that the DAG still represents

the original formula, because the information stored in the union-find datastructure is collected from

the whole DAG including the node which will be substituted. Example 5.2 shows an example where

it is wrong to replace a node by another one, even though the inputs are considered to be the same

according to the union-find datastructure.

Example 5.2. The DAG consists of two 4-bit variables a and b and it is asserted that a⊕ 3 is equal

to b⊕ 3. The DAG is shown in Figure 5.1.

n6: eq (1)

n4: add (4) n5: add (4)

n1: var (4)
a

n3: const (4)
12

n2: var (4)
b

1 2

1 2 12

Figure 5.1: The DAG of Boolector, when a⊕ 3 equals to b⊕ 3 is asserted.

When the DAG is created, the algorithm already collects information for the union-find datas-

tructure: The results of the additions are by 3 larger than the variables (n4 = n1 ⊕ 3 and

n5 = n2 ⊕ 3) and the constant is trivially 3 larger than the node representing the zero for four

bits (n3 = zeroNode4 ⊕ 3). Furthermore, when the equality node is asserted, the equivalences

n6 = zeroNode1 ⊕ 1 and then also n4 = n5 are added to the structure.

Now the representative of n1 is equal to the representative of n2, indicating that the nodes have

to be equal. This means that the two additions n4 and n5 have the same variables as inputs and

therefore one can be substituted by the other, but then the equality would be trivially true and the

whole DAG would be satisfied without making sure that n1 is the same as n2 in say another part

of the formula.

This Example shows that substituting a node by another, just because the inputs have the same repre-

sentative is not always correct. The reason is that the information in the datastructure is propagated

bottom up and top down. It is not possible to substitute one node by the other if the information

that the inputs of these two nodes are equal is based on the existence of these nodes. In Example 5.2
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node n4 cannot be substituted by node n5, because the children n1 and n2 are only considered to be

equal, because of the existence of n4 and n5.

We solve this problem by simply adding the information stored in the union-find datastructure to the

DAG and never substitute these additional nodes. Then we can be sure that no information is based

on any existing nodes which can be substituted. This means that our algorithm inserts for every node

n with the representative r ⊕ c an additional add node to add r and c and an additional eq node to

assert that n is equal to r ⊕ c. This process is called add equality information.

Example 5.2 (continued). The following table shows an example for the representatives of the

nodes:

Node Representative

n1 n1 ⊕ 0

n2 n1 ⊕ 0

n3 zeroNode4 ⊕ 3

Node Representative

n4 n1 ⊕ 3

n5 n1 ⊕ 3

n6 zeroNode1 ⊕ 1

In this example the process add equality information will only add the assertion n2 = n1, because

all the others are trivial. For example n3 = zeroNode4 ⊕ 3 will be rewritten to n3 = 3 and that is

already the case. Another example is node n5: Here, instead of creating n1⊕3, the already existing

node n4 will be reused. Then for n5 = n4 the node n6 will be used and this one is already asserted.

As soon as n1 = n2 is asserted, n5 can be substituted by n4. Each substitution leads to rebuilding all

nodes which depend on the substituted node. As a consequence the DAG simplifies a lot: Node n6

is trivially true, because both inputs are the same and will therefore be removed from the assertion

list. As a consequence node n6 will be deallocated, because no node references to n6 anymore. Then

also n5 will be removed and afterwards also n3. The only remaining part will be the added assertion

as shown in Figure 5.2.

n7: eq (1)

n1: var (4)
a

n2: var (4)
b

1 2

Figure 5.2: The DAG of Boolector after calling add equality information and substituting the con-
gruent nodes.

The procedure add equality information has the additional advantage that it adds the information
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from the union-find datastructure to the DAG. This or at least a similar approach is necessary, because

Boolector only passes the information of the DAG to the SAT solver by bit-blasting the DAG. If this

procedure would not be called, then the collected information would never be used for simplification

of the DAG or for giving hints to the SAT solver. The procedure add equality information and our

implementation of the congruence closure algorithm are the only algorithms making changes to the

DAG which we have added to Boolector. The other algorithms presented in Chapter 4 only collect

information and build the knowledge base for these two algorithm.

5.2.2 Substitution Order

This subsection explains which node has to be substituted by the other when the congruence closure

algorithm finds two nodes with equal inputs. In Example 5.2, either n4 can be substituted by n5 or

n5 by n4. Both ways are possible and lead to the same result. This is not always the case as the

following example shows.

Example 5.3. We have given a DAG of 4-bit nodes as shown in Figure 5.3. This DAG contains two

and nodes (m6 and m3) where both of them have the variable e as their first input. The second input

of these two and nodes is different. However the second inputs of both and nodes are considered

to be equal, because of the asserted eq node m9. Therefore our congruence algorithm will find the

substitution of m6 and m3.

m8: ult (1)

m6: and (4) m7: const (4)
6

m9: eq (1)

m5: add (4)

m3: and (4)
m4: var (4)

g

m1: var (4)
e

m2: var (4)
f

1 2

1

21 2

1 2

1 2

Figure 5.3: The DAG of Boolector for Example 5.3 before applying the congruence algorithm.
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In this example, node m6 depends on node m3, so it is not possible to substitute m3 by m6, because

m6 simply uses somehow the result of m3. However the other way around is possible. Node m6 can

be substituted by m3. In this case the unsigned less-than node m8 would directly use m3 as its first

input as shown in Figure 5.4.

m8: ult (1)

m7: const (4)
6

m9: eq (1)

m5: add (4)

m3: and (4)
m4: var (4)

g

m1: var (4)
e

m2: var (4)
f

2

1

2

1

1 2

1 2

Figure 5.4: The DAG of Boolector of Example 5.3 after applying the congruence algorithm.

To solve this issue of the correct and possible substitution order, our algorithm simply substitutes the

newer node by the older one. In this way it is never the case that the substituted node is a child

of the substitution, because the DAG in Boolector is created bottom-up. To identify which node is

older, the algorithm compares the identifiers of the nodes. Every node has a unique identifier which

will never be reused and increases for every new node.

5.3 Extended Version

In the previous section we described our congruence closure algorithm by iterating through all functions

and check if they have the same input nodes. For identifying if two nodes are equal the algorithm

simply compares the representatives of our union-find datastructure. In this section we extend this

idea to find other nodes which are congruent, but do not have exactly the same inputs. This means

that we make use of properties of specific functions and do not interpret the functions in an abstract

way anymore.
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An example for a property of a function is the commutative property of some binary functions.

Boolector has 7 binary operations with equal bit-widths of the two input parameters:

• add: Addition

• and: Bit-wise conjunction

• eq: Equality check

• div: Division

• mul: Multiplication

• mod: Modulo operation

• ult: Unsigned less-than

The operations add, and, eq and mul are commutative and therefore the input parameters can be

swapped without changing the result. We implemented this by normalizing the order of the inputs

before generating the hash value of a node. Normalizing means that the representatives of the input

parameters of a commutative binary node have to be in a certain order for generating the hash value.

First the algorithm sorts the two representatives by the id of their node, second by the inverted flag

of the node pointer and third by the offset.

Example 5.4. The first two columns of the following table show examples of the two representatives of

the input parameters of a binary commutative function. The third column indicates if our algorithm

swaps the representatives for generating the hash value or if they stay the same. Lower case letters

are used for referencing nodes. Node a has the smallest id, node b the second smallest and so on.

The text in braces – in case they will be swapped – specifies the the reason for swapping.

¬a⊕ 2 b⊕ 4 stay the same

d⊕ 4 a⊕ 2 will be swapped (id)

b⊕ 2 ¬b⊕ 4 stay the same

¬b⊕ 2 b⊕ 4 will be swapped (inverted flag)

¬b⊕ 2 ¬b⊕ 6 stay the same

b⊕ 7 b⊕ 1 will be swapped (offset)

The representatives of the nodes are offset pointers, which increases the possibility to find equivalent

nodes with different inputs. So after the the normalization of the commutative operations, our algo-

rithm distinguishes between the different operation types and performs special normalization steps for

the following two operations:

• add operation: Both representatives itself are expressed by additions. The addition operation is

commutative and associative. Therefore the addition of two representatives (a ⊕ ca) ⊕ (b ⊕ cb)

can be reformulated to (a⊕ 0)⊕ (b⊕ (ca ⊕ cb)). This is nothing else than moving the constant

offset from the left representative to the right.
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• eq operation: The eq operation can be normalized in a similar way as the add operation: The

offset from the left representative will also be moved to the right representative. The algorithm

reformulates the equality of two offset pointers (a⊕ ca) = (b⊕ cb) to (a⊕ 0) = (b⊕ (cb ⊖ ca)).

Furthermore the algorithm reformulates the equality to have no inverted node pointer on the

left hand side, i. e., if a is an inverted node, both sides will be inverted.

There are more special cases for the normalization of certain operations. For example two if-then-else

operations are equal if the condition is negated and the two branches are swapped. We leave the

search and implementation of more special cases for future work.

5.4 Related Work

There already exist algorithms and datastructures which maintain the congruence closure of some

known equivalences [5, 15]. These algorithms do not need to iterate through all the nodes at a

certain point in time as our implementation does. Instead their algorithm – similar as the union-find

algorithm does with the equivalence closure – always updates the congruence closure immediately

if an information is inserted. We have chosen our approach of iterating though the nodes, because

we differentiate between the knowledge we gained from our extended union-find algorithm and the

equivalence of two functions. In the first case we insert this knowledge to the DAG and in the second

case we substitute nodes in the DAG and therefore reduce the number of nodes again.
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Chapter 6

Experimental Results

In Chapter 4 we presented our implementation of a union-find datastructure with offsets. This struc-

ture is filled with information during the construction of the DAG. The information is used in various

steps of the preprocessing loop of Boolector, either to simplify the DAG or to collect even more in-

formation which can trigger other rewriting strategies. We extended one step and added two more to

this loop and described all of them in this thesis:

• skeleton preprocessing: Here the preprocessor of the underlying SAT solver is used to simplify

the top-level boolean skeleton of the DAG (see Subsection 4.6.3).

• add equality information: This routine adds all the information from the extended union-find

datastructure to the DAG (see Subsection 5.2.1).

• congruence closure: The algorithm for substituting one node by another node if both have

the same operation type and if their inputs are pairwise equal (see Sections 5.2 and 5.3).

In this chapter we will show the results of different experiments and analyze them. We used the same

hardware configurations and testcases for all experiments: A cluster with 30 nodes where each node

runs Ubuntu 14.04.2 LTS, has a 2.83GHz Intel Core 2 Quad CPU and 8GB of memory. Every test

case was limited to 1200 seconds of CPU time and 7GB of memory. We use the same time limit as

Nadel in [11] to allow a better comparison with his results. The memory limit of 7GB is motivated

by the maximum available memory of 8GB. For the experiments we used the ASP families from the

SMT-LIB, except the Fastfood family. Initially the Offset datatype from the extended union-find

algorithm was implemented as an unsigned integer and the algorithm was limited to a maximum bit-

width of 16. The Fastfood family is the only ASP family with bit-vectors of a larger bit-width than

16.
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6.1 Boolectorbase vs. Boolectornew

In this section we compare the results of two different versions of Boolector:

• Boolectorbase: This is the base version of Boolector.

• Boolectornew: In this version we integrated all the algorithms presented in the previous chapters

into Boolector: skeleton preprocessing, add equality information and congruence closure.

Table 6.1 shows the comparison of Boolectorbase and Boolectornew. The first column specifies the

family by the first six characters. The second column shows the number of test cases in this family

which have been successfully solved by both versions. The total execution time (TIME[s]), the time

spent for pure SAT-solving (SAT[s]) and the time spent for rewriting (RW[s]) are summed up per

family and shown for each version separately.

Boolectorbase Boolectornew
Family # TIME[s] SAT[s] RW[s] TIME[s] SAT[s] RW[s]

15Puzz 15 450.79 359.31 73.87 563.38 213.37 319.89
Blocke 29 972.11 960.85 3.77 512.24 489.36 14.39
Channe 8 167.89 150.06 7.68 77.92 38.21 22.33
Connec 21 157.31 149.49 6.01 192.92 144.10 44.08
Disjun 1 683.00 637.86 29.27 480.32 422.81 31.23
EdgeMa 20 16579.67 16327.41 131.96 9137.94 8487.98 511.88
Genera 29 794.87 608.94 139.57 1022.96 192.63 746.07
GraphC 15 5121.75 5116.76 1.89 5602.17 5587.91 8.76
GraphP 9 2492.57 2476.71 9.59 1838.11 1792.58 35.57
Hamilt 29 199.81 191.34 2.69 126.30 102.68 16.10
Hanoi- 11 736.16 692.03 23.17 503.79 363.20 105.92
Hierar 12 695.75 666.78 12.50 111.10 52.33 42.23
Knight 3 156.09 154.56 0.53 59.35 54.91 3.12
Labyri 7 5948.24 5236.94 613.00 6390.35 4457.33 1726.96
MazeGe 29 728.57 720.08 5.73 690.10 664.80 20.61
SchurN 29 994.79 963.61 16.61 642.45 547.96 66.37
Sokoba 26 394.80 377.26 9.04 279.56 216.11 46.87
Solita 22 2551.27 2511.12 18.57 1936.85 1845.67 58.02
Sudoku 4 2316.28 2271.28 19.81 917.82 830.15 63.20
Travel 29 2054.01 2021.35 6.33 1137.20 1076.16 35.13
Weight 28 1992.74 1986.30 0.81 3090.29 3075.65 6.47
WireRo 20 5397.83 5298.54 37.47 5450.02 5152.43 212.16

Table 6.1: Run-time comparison of Boolectorbase and Boolectornew. Only testcases which have been
successfully solved in both versions are considered in this comparison.

In general Boolectornew spends less time for SAT solving than Boolectorbase. The SAT solver of the

base version is only faster in two families: Graph Coloring and Weight Bounded Dominating Set. Here

the new version needs about 10% and 50% more time, respectively. These two entries are highlighted
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in bold. Figure 6.1 compares the times spent for pure SAT solving of both versions. The solid line

shows the case where both versions need the same time. Most testcases are below this line, thus the

new version is faster for theses testcases. However the time spent for rewriting is much higher for the

new version.

Figure 6.1: This figure compares the times spent for pure SAT solving with Boolectorbase and
Boolectornew.
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6.1.1 Rewriting

On average, Boolectornew spends about 4 times as much time for rewriting than Boolectorbase. Figure

6.2 shows the time spent for rewriting with Boolectorbase compared to Boolectornew. Both axes are of

logarithmic scale. Every point in the plot represents a single test case. The solid line shows the case

where RW of Boolectornew takes 4.2 times as much as RW of Boolectorbase.

Figure 6.2: This figure compares the times spent for rewriting with Boolectorbase and Boolectornew.

The main reason is the variable substitution which takes about a quarter and skeleton preprocessing

which takes almost half of the total rewriting time of Boolectornew. The add equality information

algorithm inserts many eq nodes and asserts them. This can trigger a variable substitution in Boolec-

tor. Therefore the new version has to substitute more variables than the base version and thus the

variable substitution part of the rewriting takes more time. We think that there exists a faster al-

gorithm to perform variable substitution in Boolector, but leave this investigation for future work.
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Boolectornew calls the skeleton preprocessing algorithm in every iteration of the preprocessing

loop, whereas Boolectorbase called this algorithm just once. This algorithm is time consuming and

therefore highly influences the run-time of the rewriting in Boolectornew. The investigation if skeleton

preprocessing can be done more efficiently or if it is necessary in every iteration is left for future

work.

6.1.2 SAT-Solver

For Boolectornew, the SAT-solver is in 20 of 22 families faster than before. To measure the effect of

the congruence closure algorithm, we use the total number of variable substitutions caused by this

algorithm (VSCC) as a metric. Figure 6.3 compares VSCC to the speed-up of the SAT-solver in a

Figure 6.3: This figure compares the number of variable substitutions (normalized with the SAT-time
of Boolectorbase) with the speed-up of the underlying SAT-solver

semi logarithmic plot. The x-axis shows the speed-up of the SAT solver. The number of variable

substitutions during the congruence closure algorithm is normalized by the time for the SAT-solver

of Boolectorbase and shown on the logarithmic y-axis. We abbreviate this ratio by VSCC/SATbase.

Every point represents a family of Table 6.1.
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One can see that the two families where the SAT-call is slower than before, have a low value on the

y-axis. This means that they have less variable substitutions compared to the run-time of the SAT-

solver of the base version. There is also a third family with a very low ratio and almost no speed-up.

On the other hand, the families with a large ratio of VSCC/SATbase have a good speed-up. We can

definitely say that this ratio correlates to the speed-up.

6.1.3 Time-out and Memory-out

Table 6.2 shows all families where at least one testcase from one of the two versions took longer than

1200 seconds (time-out) or needed more than 7GB of memory (memory-out). In this regard the two

versions are very similar. Only for the Edge Matching and Sudoku family, Boolectornew solved way

more testcases than Boolectorbase. The new version solves for example one testcase less for the family

Labyrinth. The rewriting for this particular testcase takes serveral hundred seconds in the base version

and almost 1000 seconds in the new version. This huge difference of the rewriting time is the reason

why the new version gets a time-out.

Boolectorbase Boolectornew
Family time-out memory-out time-out memory-out

Channe 2 2
Disjun 3 5 3 5
EdgeMa 9 3
GraphC 14 13
GraphP 3 2
Knight 6 7
Labyri 21 22
Solita 5 5
Sudoku 6 0
Weight 1 1
WireRo 3 3

Table 6.2: Comparing the time-outs and memory-outs for Boolectorbase and Boolectornew.

6.1.4 Comparison with Nadel’s results

In this subsection we compare our experimental results with the results from Nadel’s approach pre-

sented in [11] and integrated into Intel’s SMT solver Hazel. Hazelbase is the base version of Hazel and

Hazelnew includes the approach from Nadel. Nadel uses a slightly faster processor (Intel Xeon with

3GHz) for the experiments , but the same time limit as we do. In the following list we highlight four

families to show differences and commonalities:
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• Hazelnew is able to solve all testcases from the Edge Matching family. In this family Boolectornew

outperforms Boolectorbase as well and can solve 6 testcases more. Hazelnew only needs a fifth of

the run-time as Hazelbase to solve all these testcases, but Boolectornew is only almost twice as

fast as Boolectorbase.

• Boolectornew and Hazelnew are able to solve all Sudoku testcases and get about the same speedup

compared to their base versions.

• Hazelnew solves all testcases from the family Labyrinth, whereas the base version of Hazel was

not able to solve 8 of them. Both versions – Boolectorbase and Boolectornew – are not able to

solve more than 20 of these testcases.

• The family Weight Bounded Dominating Set is the family where the SAT solver of Boolectornew

takes about 50% more time than the SAT solver of Boolectorbase. However, Hazelnew solves all

testcases is is 10 times faster than the base version of Hazel.

6.2 Comparison of Two Different Offset Datatypes

In Listing 4.1 we used the abstract type Offset to represent the offset of an offset pointer. Initially

we used in our implementation the datatype uint32 t for this offset. This is a datatype to store

an unsigned integer for 32 bits. Then the algorithms for adding two offsets or subtracting them are

rather simple: One can use the normal integer addition and simulate the overflow semantics for the

bit-vector addition (⊕) by masking out the overflow bit.

Later on we exchanged the uint32 t datatype for the offset to the datatype BtorBitVector. This type

can store bit-vectors of variable length. Internally, it uses a dynamically allocated array of uint32 t

to store packets of 32 bits. With this type it is possible to use the extended union-find datastructure

for variable bit-widths.

In Figure 6.4 we compared the rewriting time of Boolectornew with the two different offset datatypes.

The x-axis shows the slightly faster implementation with uint32 t as offset, whereas the y-axis show

the implementation with the dynamic BtorBitVector datatype as offset. The solid line shows the

average increase and has a slope of 1.08, i. e., the dynamic offset is about 8% slower than the integer

offset.
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Figure 6.4: This figure compares the times spent for rewriting with Boolectorbase and Boolectornew.

6.3 Calculating Rules On-The-Fly vs. Pregenerating Rules

In Chapter 3 we mentioned that Alexander Nadel calculates all the necessary rules at run-time [11],

but our algorithm uses pregenerated rules for small bit-widths to save calculation time. In this section

we want to measure the time which is needed to calculate the rules at run-time instead of using the

precalculated ones. Every rule is cached and therefore calculated at most once.

Figure 6.5 compares the time spent for rewriting when generating the rules on-the-fly or precalculate

them. The double logarithmic plot shows three different behaviours:

1. The most common case is that the time difference of the two rewriting parts is not measurable

or really small.

2. Some testcases show a different behaviour. They have a small constant offset. This is visible
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Figure 6.5: This figure compares the times spent for rewriting of Boolectornew with pregenerated rules
and generation on-the-fly.

in Figure 6.5: The rewriting time for the generation on-the-fly is a fraction of a second larger

than the rewriting with precalculated rules. These testcases are from the families Traveling

Salesperson and Weight Bounded Dominating Set.

3. More visible is the different behaviour from the familyMaze Generation and the random testcases

from the family Hamiltonian Path. Here the constant offset increases for about 10 seconds.

A small constant offset for testcases with a large execution time for the rewriting can not be seen in

this double logarithmic plot. However there is also no time difference in the detailed measurement

results.
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Chapter 7

Conclusion and Future Work

We extended the common union-find algorithm with integer offsets. This extension has basically the

same complexity than the original version and various advantages:

• The datastructure can store and maintain more information than simple equivalences. It is

possible to add and query for dependencies with constant offsets.

• The algorithm can detect if two nodes are definitely different.

• Further, the algorithm can find inconsistencies or reduce the value of a variable to two possibil-

ities.

We integrated this datastructure together with the automatic rule generation and an algorithm for

congruence closure into Boolector. Thus the run-time of the underlying SAT solver reduced in 20 of

22 ASP families. Unfortunately the run-time of the rewriting strategies of Boolector increased by a

factor of about 4. Therfore the overall run-time was only in some of the ASP families faster than

before. This leads us to the future work:

• The rewriting process of Boolector is much slower when all algorithms presented in this thesis

(add equality information, sekeleton preprocessing and congruence closure) are exe-

cuted in the preprocessing loop of Boolector. One reason is that skeleton preprocessing is time

consuming and done in every cylcle of the preprocessing loop. The other two algorithms trigger

variable substitutions in Boolector. We leave the optimization of this variable substitution al-

gorithm and the investigation if skeleton preprocessing is needed in every loop cycle for future

work.

• Whenever the algorithm inserts a new information to the extended union-find datastructure,

i. e., two trees are merged, it propagates this information to all parents of the node where this

information was found. This propagation is local. A different approach, where all nodes which

get a new representative node are triggered for propagation, could be better.

• When Boolector can restrict the value of a variable a, because some of the bits are constant, then
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the variable is sliced. This means that the variable is substituted by a concatenation of constant

bit-vectors and new variables with a smaller bit-width than a. For example if an unsigned 4-

bit variable a has to be smaller than 2, then the three most significant bits have to be zero.

Therefore the node a is substituted by the concatenation of the constant bit-vector 000 and a

one-bit variable. This information that parts of the value of a node are constant is propagated

through the DAG and many nodes are sliced in a similar way. This concept does not fit with the

extended union-find datastructure because many nodes change their bit-width and are therefore

not comparable anymore. To assert that some of the bits of a node have to be equal to a constant

value, instead of slicing the node into several nodes with smaller bit-widths, would be a possible

approach. We leave the implementation and investigation for future work.
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