
Submitted by
Markus
Zimmermann, BSc

Submitted at
Institute for Formal
Models and Verification

Supervisor
Univ.-Prof.
Dr. Armin Biere

Co-Supervisors
Assoc. Univ.-Prof.
Dr. Martina Seidl

Dr. Josef Pichler

December 2017

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Tavor - A Generic
Fuzzing and Delta-
Debugging Framework

Master Thesis

to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

Abstract I

Abstract

Testing software to verify its correctness and debugging code to locate and patch faults

are two important tasks that need to be mastered by every software developer. With

increasing complexity of software these tasks become progressively complicated and

cumbersome. Hence, approaches that simplify these tasks are needed. Fuzzing and

delta-debugging are two zeitgeisty automatic techniques that allow the systematic gen-

eration and reduction of test data. However, most implementations of these techniques

utilize either fuzzing or delta-debugging with hard-coded models, or are complicated

fuzzing frameworks that lack usability.

In this thesis, we introduce Tavor, a framework and tool for applying both fuzzing

and delta-debugging while operating on one user-defined data model, and the Tavor

Format, an EBNF-like notation that allows to define data models for file formats,

protocols and test cases. In combination they allow the basic utilization of fuzzing

and delta-debugging without any programming knowledge, making these techniques

available to non-expert users. Additionally, we present the necessary data structures,

interfaces and algorithms to achieve this combination of fuzzing and delta-debugging.

One part of our evaluation is the comparison of Tavor’s fuzzing capabilities with

aigfuzz, a dedicated fuzzer for the sophisticated AIGER format. In total 16 commands

of the AIGER toolset were evaluated to compare the generated test sets. On average the

random fuzzing strategy of the Tavor Framework reached 9.16% more line coverage

than aigfuzz. The best result has been obtained for the aigunroll command, where

aigfuzz covered 24.08% and Tavor’s AlmostAllPermutations fuzzing strategy reached

61.36%. In summary, this evaluation showed that Tavor as a generic fuzzer can keep

up with a dedicated fuzzing implementation.

II

Kurzfassung III

Kurzfassung

Das Testen von Software um ihre Korrektheit zu überprüfen und das Debuggen von

Source Code zum Finden und Korrigieren von Fehlern sind zwei wichtige Tätigkeiten,

die von jedem Softwareentwickler gemeistert werden müssen. Mit ansteigender Kom-

plexität von Software werden diese Tätigkeiten jedoch zunehmend kompliziert und

mühsam. Es ist daher nötig Herangehensweisen anzuwenden, welche diese Tätigkei-

ten vereinfachen. Fuzzing und Delta-Debugging sind zwei dem Zeitgeist entsprechen-

de automatisierte Techniken, für die systematische Generierung und Reduzierung von

Testdaten. Die meisten Implementierungen von Fuzzing und Delta-Debugging erlauben

jedoch nur die Anwendung einer dieser Techniken anhand eines fest programmierten

Datenmodells, oder repräsentieren komplizierte Frameworks zur Anwendung von Fuz-

zing denen es an Benutzerfreundlichkeit fehlt.

Diese Arbeit stellt Tavor vor, ein Framework und Tool für die gleichzeitige Anwendung

von Fuzzing und Delta-Debugging anhand benutzerdefinierter Datenmodelle, und das

Tavor Format, einer EBNF-ähnlichen Notation zur Definition von Datenmodellen

für Dateiformate, Protokolle und Testfälle. Zusammen erlauben sie die grundlegende

Anwendung von Fuzzing und Delta-Debugging ohne das Voraussetzen von Program-

mierkenntnissen, wodurch diese Techniken auch für Nicht-Experten zugänglich gemacht

werden. Zusätzlich präsentiert diese Arbeit alle nötigen Datenstrukturen, Schnittstel-

len und Algorithmen welche für diese Kombination von Fuzzing und Delta-Debugging

nötig sind.

Ein Teil unserer Evaluierung ist der Vergleich von Tavors Fuzzing-Fähigkeiten mit

aigfuzz, einem dedizierten Fuzzer für das anspruchsvolle AIGER-Format. Insgesamt

wurden 16 Befehle vom AIGER-Toolset evaluiert, um die generierten Testsets zu ver-

gleichen. Durchschnittlich erreichte die random Fuzzing-Strategie vom Tavor Frame-

work 9.16% mehr Line-Coverage als aigfuzz. Das beste Ergebnis wurde für den Befehl

aigunroll erzielt, für den aigfuzz 24.08% Abdeckung erzielt und Tavors AlmostAll-

Permutations Fuzzing-Strategie sogar 61.36% erreichte. Zusammenfassend lässt sich

durch diese Evaluierung sagen, dass Tavor als generischer Fuzzer mit einer dedizierten

Fuzzing-Implementierung mithalten kann.

IV

Contents V

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal of Thesis . 2

1.3 Contributions . 3

1.4 Outline . 4

2 Background 7

2.1 What Is Fuzzing? . 7

2.1.1 Mutation-Based Fuzzing . 8

2.1.2 Generation-Based Fuzzing . 9

2.2 What Is Model-Based Testing? . 10

2.3 What Is Mutation Testing? . 11

2.4 What Is Delta-Debugging? . 13

3 The Tavor Framework 17

3.1 Components . 18

3.2 Tokens . 19

3.2.1 Example Implementation - The Smiley Token 21

3.2.2 Advanced Token Concepts . 25

3.3 Fuzzing Strategies . 28

3.3.1 Basic Example Fuzzing Strategy 30

3.3.2 The AllPermutations Fuzzing Strategy 31

3.4 Fuzzing Filters . 35

3.5 Reducing Strategies . 37

3.5.1 Basic Example Reducing Strategy 39

3.5.2 The Linear Reducing Strategy 40

4 Tavor Format 45

4.1 Token Definition . 45

4.2 Terminal Tokens . 47

4.3 Embedding of Tokens . 47

4.4 Alternations . 48

4.5 Groups . 49

4.6 Character Classes . 51

4.7 Token Attributes . 52

VI Contents

4.8 Typed Tokens . 54

4.9 Expressions . 56

4.10 Variables . 59

4.11 Statements . 60

5 Tavor CLI 63

5.1 Command graph . 64

5.2 Command fuzz . 67

5.3 Command validate . 69

5.4 Command reduce . 69

6 The go-mutesting Framework 73

6.1 Motivation . 73

6.2 Components . 74

6.3 Mutators . 75

6.4 Exec Commands . 76

7 Evaluation 79

7.1 Case Study: Coin Vending Machine . 79

7.1.1 Definition of the Coin Vending Machine 80

7.1.2 Keyword-Driven Testing . 80

7.1.3 Tavor Format and Fuzzing . 82

7.1.4 Mutation Testing . 86

7.1.5 Delta-Debugging . 87

7.2 Fuzzing the AIGER ASCII Format . 89

7.2.1 Introducing the AIGER ASCII Format 89

7.2.2 Experimental Setup . 92

7.2.3 Results and Conclusions . 94

7.3 Fuzzing the JSON Format . 98

7.3.1 Introducing the JSON Format 98

7.3.2 Experimental Setup . 100

7.3.3 Results and Conclusions . 102

8 Conclusion 107

8.1 Summary . 107

8.2 Future Work . 108

A Tavor Framework Pseudo Codes 111

B Tavor CLI Command Line Arguments 113

C Case Study: Coin Vending Machine 119

Bibliography 129

1

Chapter 1

Introduction

In this chapter we introduce the main topics and motivation, followed by the goals,

contributions and the chapter structure of this thesis.

1.1 Motivation

Testing software is a complicated and cumbersome but necessary task to verify the cor-

rectness of a program. Nowadays software developers usually lean to exercise testing

using automated measures, such as writing and executing unit, integration and system

tests, instead of or additionally to manually testing the program under test. Even

though such automation has clear advantages for catching regressions of modifications

to existing programs, developers often tend to only utilize test data that they expect to

be interesting to a program. This leads to the problem that only expected behavior is

tested by such automated measures. However, given enough time, users of a program

will exercise unexpected behavior too, which can lead to program crashes, false results

or vulnerabilities. Such negative outcomes make it necessary to invest more time into

software testing, to increase the probability of covering all corner-cases of the program

under test. However necessary such thorough testing is, it is no guarantee to find all

problems of a program, and it can be therefore seen as one of the more bothersome

tasks of developing software. Fortunately, automated techniques exist to at least help

with the task of thorough testing. One such technique is fuzz testing, or simply fuzzing,

which was introduced by Miller et al. [16]. Fuzzing, in its most basic form, generates un-

structured random data as input for the execution of a program. Even tough such data

can lead to early success in testing software for unexpected behavior [16], it depends

on pure luck given the underlying randomness, and is therefore prone to poor coverage

for the program under test. Each condition of a program reduces the effectiveness of

unstructured random generated data to reach certain program areas, since the data is

more likely to be invalidated with each condition. To overcome this limitation, models

2 Introduction

can be additionally utilized to generate more structured data to cover deeper execution

paths, which is therefore more likely to uncover problems of the program under test.

However useful fuzzing is to generate interesting data, the results can often be largely

sized. Even if data reproducibly exercises a problem, its size becomes a limiting factor

for the developer, since more context has to be included for fixing the program. Debug-

ging the given problem can be aided by simply reducing the size of the context. Hence,

by trimming data of irrelevant parts so that it still reproduces the same problem. This

procedure is called delta-debugging and was introduced by Zeller in [22]. However,

an unstructured reduction of the given data, can lead to invalidating a condition of

the underlying execution path. Utilizing a model of how expected data is structured,

can help to systematically reduce huge data and keep it valid, to at least increase the

probability of hitting the same problem as the unreduced data.

This thesis explores the assumption that both fuzzing and delta-debugging can strongly

benefit from utilizing the same model which represents expected data for a program

under test. The subsequent Section 1.2 substantiates the goals of this thesis for the

exploration of this assumption and lists restrictions to these goals.

1.2 Goal of Thesis

Fuzzing and delta-debugging are strong techniques to aid testing and debugging of

software programs. Many implementations for these techniques exist but suffer from

the following two distinct disadvantages:

1. Most implementations are either frameworks to implement specialized models

in the framework’s programming language, or programs with the sole purpose

of either fuzzing or delta-debugging with hard-coded models. Programming is

therefore a seemingly required skill to utilize both techniques. This raises the

following questions: What are the common data structures and algorithms that

can be shared to utilize fuzzing and delta-debugging? What are the underlying

concepts that are necessary to define arbitrary models? How can such definitions

be represented to make fuzzing and delta-debugging of these models available to

non-programmers?

2. Additionally, implementations for fuzzing and delta-debugging commonly utilize

only one of the two techniques inside a single application. This raises the following

question: How can a model be defined without any additional tweaks, so that both

techniques can operate on it within the same application?

1.3 Contributions 3

These aforementioned questions are the foundation of this thesis and can be formulated

as the following main goals:

1. Define the main concepts, data structures, algorithms and interfaces that are

necessary to utilize a common model for applying fuzzing and delta-debugging.

2. Additionally, conceive a declarative language for defining such models that is

usable without the knowledge of a programming language.

In order to keep within reasonable limits, this thesis focuses, additional to the afore-

mentioned main goals, on the following subgoals:

• Implement generative fuzzing for the conceived models, which allows the genera-

tion of valid data that can be used for positive testing.

• Make it possible to define at least one sophisticated data model to directly com-

pare this thesis to other fuzzing implementations. The sophisticated format cho-

sen for this purpose is the AIGER ASCII format (AAG) defined at 1. The format

is capable of defining and-inverter graphs that allow the definition of combina-

tional circuits.

• Implement the necessary interfaces to allow fuzzing and delta-debugging of ex-

ternal programs.

• Allow and showcase delta-debugging for simple data models but not necessarily

for sophisticated models.

1.3 Contributions

The following list is an excerpt of the contributions that were made in consequence of

this thesis:

• One of the main contributions is the implementation of Tavor, a now estab-

lished framework and tool, which utilizes a common model for fuzzing and delta-

debugging. The implementation has been open sourced using the permissive MIT

license 2.

1http://fmv.jku.at/aiger/FORMAT
2https://github.com/zimmski/tavor

http://fmv.jku.at/aiger/FORMAT
https://github.com/zimmski/tavor

4 Introduction

• The conception and implementation of the Tavor format for the definition of

data, such as file formats and protocols, has also been open sourced along with

Tavor 3.

• Additional to Tavor, other open source contributions have been made. The

project go-mutesting 4, a mutation testing framework and tool for Go source

code, has been established and is to this date the most widely used mutation

testing tool in its area. Large contributions have been made to the extensively

used Go package go-flags 5, a command line option and configuration parser,

which lead to a maintainership of this package. Many contributions to the widely

adopted Go source code static-analysis projects errcheck 6 and golint 7 have been

made. The project go-leak 8, a Go package to identify resource leaks, has been

established as no implementation existed during the implementation of Tavor.

• Patches to the Go project 9 have been made of which one of them fixed a silent

corruption of the internal structure of the container/list package. Additionally,

the identification of inconsistencies in the encoding/json package lead to patches

to the Go package.

• Contributing Tavor to the open source community lead to a mentoring position

for the lowRISC organization 10 in the Google Summer of Code 2015. As a

result one student used Tavor for generating assembly test cases for the RISC-V

architecture.

1.4 Outline

The remainder of this thesis is structured as follows:

• In Chapter 2 we explain the terminology as well as the main topics and techniques

of this thesis.

• In Chapter 3 we present the Tavor framework by describing its main design

goals, components, data structures and algorithms.

3https://github.com/zimmski/tavor/blob/master/doc/format.md
4https://github.com/zimmski/go-mutesting
5https://github.com/jessevdk/go-flags
6https://github.com/kisielk/errcheck
7https://github.com/golang/lint
8https://github.com/zimmski/go-leak
9https://golang.org/

10http://www.lowrisc.org/

https://github.com/zimmski/tavor/blob/master/doc/format.md
https://github.com/zimmski/go-mutesting
https://github.com/jessevdk/go-flags
https://github.com/kisielk/errcheck
https://github.com/golang/lint
https://github.com/zimmski/go-leak
https://golang.org/
http://www.lowrisc.org/

1.4 Outline 5

• In Chapter 4 we introduce the Tavor format: an EBNF-like notation which

allows the definition of data, such as file formats and protocols, without the need

of programming.

• In Chapter 5 we present the Tavor CLI: the user interface for non-programmers

to utilize capabilities such as fuzzing and delta-debugging of the Tavor frame-

work.

• In Chapter 6 we introduce go-mutesting: a framework for performing mutation

testing on source code of the programming language Go.

• In Chapter 7 we provide an evaluation of the implemented solutions under differ-

ent scenarios.

• In Chapter 8 we discuss the conclusions we could draw from this thesis and give

an outlook for possible future extensions.

6 Introduction

7

Chapter 2

Background

This chapter provides an overview of the main topics discussed in this thesis: namely,

fuzzing in Section 2.1, model-based testing in Section 2.2, mutation testing in Section 2.3

and delta-debugging in Section 2.4. Each section consists of a common definition of the

corresponding topic, its terminology, techniques, typical workflow and its components.

Furthermore, each section presents how the respective main topic is employed in this

thesis and how these topics are related to each other.

2.1 What Is Fuzzing?

Fuzz testing, or simply fuzzing, is a software testing technique which—in its original

form introduced by Miller et al. [16]—uses random generated data as input for the

execution of software programs. The system under test, which can range from a single

program to complex software infrastructure, is then monitored for unexpected behavior

such as program crashes, and program defects, buffer overflows and memory leaks.

Nowadays fuzzing is a popular choice for uncovering software vulnerabilities by security

testing [15, 19, 20], since it does not require to understand the source code or individual

components of the system under test. Furthermore, fuzzing does not even require

to have access to the source code but solely relies on the execution of the system.

Hence, every generated input that exercises a problem during fuzzing, is a true positive

for a deterministic system under test and therefore adds value to the testing process.

This makes fuzzing, a superior choice in contrast to other techniques, at least if this

characteristic is the most interesting for choosing a technique. For example static

analysis, which looks at source code without executing it, relies on heuristics which can

sometimes produce false positives. Hence, it can be necessary to check and verify every

case manually, making such a technique far more inefficient.

The fundamental components of a fuzzer, the program for applying fuzzing, as described

in [15], are the Fuzz Generator, the Delivery Mechanism and the Monitoring Sys-

8 Background

Figure 2.1: Fundamental Components of Fuzzing

tem. These components, as well as their typical interactions, are depicted in Figure 2.1.

The fuzz generator creates data which is then fed by the delivery mechanism to the

system under test. Each system can have its own mechanism of accepting input data,

e.g., a graphical user interface needs different actions than a program using a command

line interface, and it is therefore the responsibility of the delivery mechanism to apply

the correct actions for the given data and system. Observing the execution of these

actions is the responsibility of the monitoring system that defines which problems can

be found by the fuzzing process. The monitoring system can be as simple as checking

the exit status of a program, i.e., to detect program crashes, or more sophisticated such

as the instrumentation for buffer overflows during the execution of a program.

Even though Miller et al. showed in [16] that the generation of random bytes as inputs

for programs can harvest good results, its effectiveness gets limited by every conditional

branch of the program under test. Each check and verification of a program requires

the input data to be more structured for reaching deeper program areas. To overcome

this issue two types of approaches are used by more advanced fuzz generators [20]:

mutation-based and generation-based techniques.

2.1.1 Mutation-Based Fuzzing

Mutation-based fuzzers, or mutative fuzzers, take existing data and simply change it

according to different rules. Such rules can be as simple as randomly toggling bits or

as complex as combining two different sets of data into a new set. The advantage of

mutation-based fuzzers is that they can work without the knowledge of how data must

be structured and can therefore be implemented independently of the system under

test. However, since they only adapt existing data, it is highly unlikely that program

areas that are not bound to the existing data are exercised with the mutated data.

Additionally, the advantage of using existing structured data is thwarted since the

applied changes make the resulting data again more likely to be invalidated by existing

checks and verifications of the program.

2.1 What Is Fuzzing? 9

2.1.2 Generation-Based Fuzzing

Generation-based fuzzers, or generative fuzzers, create new data without the need for

existing data. They overcome the issues of mutation-based fuzzers by possessing an

almost or even complete knowledge of the structure for the data that is valid for the

system under test. By using this knowledge, which is called a model, data can be

generated that exercises greater program coverage, since it complies to the expected

structure and semantics of the system under test [17].

Given that generative fuzzers have the knowledge of how valid data for a system under

test has to be generated, they can be used as an efficient technique for positive testing.

Hence, testing the system under test for expected behavior which includes valid as well

as invalid data to test for expected error handling that is included in the specification.

However, the knowledge of how valid data must be generated can also be used to

derive invalid data by systematically adapting the underlying model to effectively apply

negative testing. Hence, testing invalid cases which are not covered by the specification

in order to provoke unexpected behavior such as system crashes.

Since one of the main goals of this thesis is to combine fuzzing and delta-debugging

using the same underlying model, generative fuzzing seems to be the only logical choice

for choosing an approach to implement fuzzing. However, generative fuzzing also has

strong advantages over mutation-based fuzzing, such as not requiring to accumulate

seemingly interesting test data, which can be a time-consuming task. Furthermore,

generative fuzzing allows to accurately generate test data for specific scenarios while

mutation-based fuzzing either requires to find such cases by chance or manually. An

implementation of the generative fuzzing approach of this thesis can be found in Sec-

tion 3.3. However, techniques rooted in mutation-based fuzzing can be applied to data

models, thereby allowing effective negative testing in combination with mutation-based

fuzzing. This exact combination has been implemented for this thesis and is described

in Section 3.4.

Even though fuzzing allows to effectively generate test data, it has the disadvantage of

skipping one important part of testing software: verifying that specified requirements

are implemented. In the subsequent section the software testing technique model-based

testing is introduced, which is able to fill this gap by requiring the validation of the

system’s output after feeding the system generated test data.

10 Background

Figure 2.2: Fundamental Components of Model-Based Testing

2.2 What Is Model-Based Testing?

Model-based testing is a software testing technique which derives tests from a model

that is based on the requirements on the system under tests. It is therefore a form

of black-box testing. Furthermore, Utting et al. define in [21] model-based testing to

be “the automation of the design of black-box tests”, i.e., model-based testing does not

only produce the input data for the execution of the system under test, but it must also

generate executable test cases that include checks for the output of the system under

test. An extensive list of case studies and references has been gathered by Utting et

al. in [21], which showcase various benefits of model-based testing. Among them are

reduced testing cost and time, as well as improved test quality, i.e., higher coverage of

requirements testing.

The fundamental components of a model-based tester, according to [21], are the Test

Case Generator, the Test Script Generator and the Test Execution Tool. These

components, as well as their typical interactions, are depicted in Figure 2.2. The test

case generator uses the model to generate test cases for the system under test. These

test cases may directly be executed. However, their form should be abstract in order

to be able to reuse them in different environments. The test script generator then

takes these test cases and transform them into test scripts which are either directly

executable on the system under test, which is called online testing, or applicable using

the test execution tool, which is called offline testing. The application of these test

scripts outputs the final test results, i.e., whether a test case has passed the execution

on the system under test.

Model-based testing and generation-based fuzzing, as introduced in Section 2.1, utilize

a data model to be able to derive and execute tests. Hence, it is only fitting to compare

both techniques:

• The fuzz generator of the fuzzer has the same behaviors and responsibilities as

the model and test case generator of a model-based tester.

2.3 What Is Mutation Testing? 11

• The delivery mechanism of the fuzzer has the same behaviors and responsibilities

as the test script generator and the test execution tool of the model-based tester.

• The online testing variant of model-based testing can also be directly compared

to feedback-driven fuzzing. Both techniques executed their cases directly on the

system and require some kind of monitoring of the system under test. The feed-

back of the monitoring can then be incorporated into the test cases, e.g., to check

if an error message occurred, and guide the generation of the next test case.

Even though we can directly compare generation-based fuzzing to model-based test-

ing, we can also observe three major differences: Model-based testing is much stricter

concerning the model which is used to generate test cases. It has to be based on the

requirements of the system under test. Furthermore, the validation of the system’s out-

put, which is a requirement for model-based testing, is not necessary for a fuzzer, but

can be adopted by the monitoring system. Lastly, model-based testing strives to gen-

erate reusable test cases which are semi-executable, while fuzzing is often described of

only generating inputs which can be used as parameters for test cases or the execution

of the system under test.

These differences make model-based testing an attractive addition to fuzzing to com-

pletely cover the whole spectrum of software testing. As a result, this thesis introduces

with the Tavor framework in Chapter 3 and the Tavor format in Chapter 4 ca-

pabilities to define and structure functional test cases which include the validation of

requirements. Furthermore, Chapter 5 introduces with the Tavor CLI functionality

to communicate with the systems under test. These additions allow the utilization of

model-based testing which are showcased in the evaluation presented in Chapter 7.

Since both, fuzzing and model-based testing, allow to generate test cases to form test

suites, a suitable method for evaluating these test suites must be employed. The sub-

sequent section introduces mutation testing, which allows to measure the effectiveness

of a test suite to detect faults in the system under test.

2.3 What Is Mutation Testing?

Mutation testing is, according to an extensive survey by Jia et al. [14], a “fault-based

testing technique which can be used to measure the effectiveness of a test set in terms

of its ability to detect faults”. The technique introduces faults, which are represented as

syntactical changes to the program’s binary or source code called mutations, to create

faulty programs named mutants. Each mutant is then tested by executing an existing

test set of the program. If the result of running the test set with the mutant differs

12 Background

from the result of running the test set with the original fault-free program, then the

mutant has been killed, i.e., it has been detected by the test set. If the mutant has

not been killed, either the test set needs to be extended to detect the modification or

the mutant is equal to the original program. The effectiveness of the test set can then

be calculated by the number of killed mutants by the total amount of tested mutants.

This metric is called the mutation score which can be used to directly compare two

distinct test sets for the same program. Hence it can, for instance, be used to compare

handwritten to automatically generated test sets of programs. A mutation score of 1.0

is most desirable since this means that a test set killed all mutations.

Significant to the field of mutation testing are two hypothesis defined by DeMillo et

al. [12]: the Competent Programmer Hypothesis and the Coupling Effect. They imply

that it should be sufficient to examine only a subset of simple faults of the overall

possible program faults, to be effective in finding real faults [14].

• The Competent Programmer Hypothesis states that“programmers are competent,

which implies that they tend to develop programs close to the correct version”[14].

It can be therefore assumed that the existing faults in a program are simple.

Therefore, it is sufficient to introduce simple faults by mutation testing because

it mimics the faults that are made by competent programmers.

• The Coupling Effect states that“test data that distinguishes all programs differing

from a correct one by only simple errors is so sensitive that it also implicitly

distinguishes more complex errors” [12]. Therefore, it is sufficient to examine

only simple errors since they are coupled with complex errors in the program

under test.

The fundamental components of mutation testing can be derived from the traditional

process described in [12, 14], namely: the list of Mutation Operators to apply modifi-

cations and a Test Set of the program under test. These components, as well as their

typical interactions, are depicted in Figure 2.3. First the original program P is executed

against the test set T , producing the test result R. Then each mutation operator M

takes the original program under test P and applies its modifications. The outcome

is a set of modified programs P ′, the so called mutants. These modified programs P ′

are then executed against the test set T . The produced test results R′ of this step are

compared to the original test result R. If the results are equal, the mutant P ′, and

therefore its modifications, has not been detected by the test set T .

Although the definition of mutation testing states that it is applied to detect faults in

programs, it can also be used to uncover implementation flaws such as dead code. Fur-

thermore, mutation testing is mostly described to solely cover techniques for program

source code. However, it has also been used to mutate program specifications [14]. The

2.4 What Is Delta-Debugging? 13

Figure 2.3: Fundamental Components of Mutation Testing

latter direction is called specification mutation, which is a black-box or grey-box testing

technique depending on what program parts are used, while the first direction is called

program mutation which solely focuses on the program binary or source code and is

therefore a white-box testing technique [14].

This thesis utilizes mutation testing in Chapter 7 to evaluate the effectiveness of gener-

ated test suites. The direction of program mutation is used, to emphasize how much of

the system under test is actually covered. Since everything that has been implemented

for this thesis is written in the programming language Go, it is only fitting to include

in the evaluation of this thesis at least one scenario of a Go program. Chapter 6 in-

troduces go-mutesting to perform the mutation testing part for the evaluation of the

mentioned scenario.

Determining the effectiveness of test suites is just one discipline that needs to be con-

sidered while generating test cases. Another discipline arises when individual test cases

are executed. The execution of a test case either verifies that the system under test

behaves as defined by the test case, or the test case fails which highlights a fault that

must be investigated. One possible method to aid in the time-consuming and com-

plicated process of investigating and patching faults is the reduction of failing test

cases. The subsequent section introduces delta-debugging, an automatic technique to

systematically reduce data such as test cases.

2.4 What Is Delta-Debugging?

Delta-debugging is defined by Zeller in [22] as an “automatic technique that narrows

down a cause by running automated experiments”. The typical use case is the reduction

of input data which lets a program fail during execution. Less data has the benefit of

having to consider less context during debugging a problem. Therefore, delta-debugging

makes it possible for the user to focus only on relevant parts of the failure-inducing data.

Note that finding the minimal representation, which still provokes the same program

14 Background

Figure 2.4: Fundamental Components of Delta-Debugging

behavior of the original data, is not guaranteed by process of delta-debugging [10, 11].

However, in practice every reduction of the context that is needed to debug a problem

is already an improvement. Furthermore, delta-debugging can be used to reduce and

isolate anything, given appropriate implementations of the delta-debugging phases. For

instance a solution might be reduced to be more readable or a huge formula is rewritten

to a smaller formula which has the same behavior.

The fundamental components of a delta-debugger, which can be derived from the origi-

nal algorithm [22], are the Reduction Algorithm and the System Under Test. These

components, as well as their typical interactions, are depicted in Figure 2.4. First the

original data D is executed with the system under test. The resulting execution deter-

mines the original behavior B which must be preserved during the reduction. Next the

original data D is fed into the reduction algorithm. The algorithm determines which

parts of the data should be reduced for the current reduction iteration, and how the

selected part is reduced, i.e., removed or substituted. The reduced data D′ is then

executed with the system under test. The resulting behavior of the execution B′ is

compared to the behavior of the execution with the original data B. The result of this

comparison is fed back into the reduction algorithm. If both behaviors are the same,

the original behavior got preserved and the reduction algorithm continues with the

next reduction iteration. Otherwise the last reduction is reverted and the algorithm

proceeds. This reduction loop continues until predefined conditions are met, e.g., a

timeout occurs or the algorithm does not find new parts to reduce.

Considering the main components and workflow of delta-debugging, we can define the

following three phases:

2.4 What Is Delta-Debugging? 15

• The search phase decides which part of the data will be reduced next.

• The reduction phase removes repetitions and optional data or replaces data with

something else, e.g., uninteresting complex functions are replaced with constant

values.

• The testing phase checks if the reduced data still provokes the original failure.

The original delta-debugging algorithm [22] reduces the given data at the character

level, ignoring the syntactical structure of the data. Hence, making it likely to produce

invalid data, leading to a high amount of rejected reduction iterations. By making

the search phase aware of the data’s structure an immense reduction in iterations

can be achieved, dramatically speeding up the delta-debugging process [18, 10, 11].

Additionally, making the reduction phase aware of the content itself, can be very ef-

ficient in reducing the original data greatly while also reducing the runtime of the

process [10, 11].

Making the delta-debugging implementation aware of the data’s structure and content,

basically giving the implementation an almost or even complete model of the provided

data, is one of the goals of this thesis. Section 3.5 describes the approach and im-

plementation which completes the goal of combining fuzzing and delta-debugging by

utilizing the same underlying model.

16 Background

17

Chapter 3

The Tavor Framework

The main goal of Tavor is to provide functionality for the automatic generation, alter-

ation and reduction of test data which conforms to a predefined structure. Programs

oftentimes need to process complex data structures that allow for an enormous number

of possible variants. Such programs are therefore hard to test, since a tester has to

consider every important variant for testing purposes. To construct the input data

manually is time-intensive and error-prone. Tavor can be used to automate the gener-

ation of this data, to alter existing data and to apply delta-debugging to systematically

reduce existing data according to a predefined structure and its constraints.

Figure 3.1: Tavor’s Subsystems

Figure 3.1 depicts the interactions of the Tavor subsystems. In order to interact with

an external program a user first needs to define a data model which describes the

structure of the expected inputs to the program. The Tavor framework provides its

own format to define such data models, which covers all functionality of the framework.

Please refer to Chapter 4 for a detailed description of the Tavor format and its

capabilities. Next, the Tavor CLI can be used to interact with an external program.

Interactions such as fuzzing or delta-debugging are also provided by the Tavor CLI,

which is described in more detail in Chapter 4. The Tavor CLI relies heavily on the

algorithms and data structures provided by the Tavor framework. The framework’s

18 The Tavor Framework

design goals as well as its components and their interactions are the main focus of the

subsequent sections of this chapter.

3.1 Components

The Tavor framework offers various components which are depicted in Figure 3.2.

There are three utility components, i.e., Tokens, Parsers and Logging, as well as three

components offering access to different kinds of algorithms, i.e., Fuzzing Strategies,

Fuzzing Filters and Reducing Strategies.

Figure 3.2: Components of the Tavor Framework

In order to combine both, fuzzing and delta-debugging, all implemented methods of the

Tavor framework operate on one internal model-based structure. This structure

is basically a graph of nodes that are called token graphs throughout the Tavor

framework. Each node represents an instance of a token of a framework-defined

type. A token graph can either be directly instantiated or by parsing a format file

using the Parsers component of the Tavor framework. The Logging component

provides extensive logging for debugging the handling of tokens. The granularity of

logged output can be controlled by specifying the desired log level, i.e., the debug

level reports the widest range of information while the error level only informs about

occurred errors.

Instead of focusing on only one technique Tavor’s components have been kept generic.

Dedicated techniques and heuristics can be implemented and executed independently.

All of these components operate on tokens. In order to generate permutations of a

specific token, i.e., unique arrangements of the token’s values, fuzzing strategies

are used. A token itself is not fixed to a static definition but can be changed by

fuzzing filters to apply additional techniques such as boundary-value analysis of

ranges. For delta-debugging so called reducing strategies can be implemented and

used.

3.2 Tokens 19

Every algorithm of the Tavor framework has to be deterministic, since determinism

has the advantage that it eases debugging problems and enables the reproduction of

results that are sent to external programs. Therefore, no functionality is allowed to

have its own source or seed of randomness. Instead, a common interface that defines

a random generator is used throughout the framework. An implementation of this

interface has to be deterministic given the same seed of randomness. The decision of

keeping code deterministic was also applied to concurrent code and tests, making it

possible to reproduce the same output given the same random seed and version of the

framework.

The following subsections present Tavor’s fundamental implementation decision as

well as its main components Tokens, Fuzzing Strategies, Fuzzing Filters and Re-

ducing Strategies in more detail.

3.2 Tokens

The basic building blocks of the Tavor framework are its tokens. These tokens differ

from lexical analysis tokens in the following way: They represent not just a group of

characters, but different kinds of data with additional properties and abilities. Tokens

can be constant integers and strings of all kind as well as dynamic data such as integer

ranges, sequences and character classes. Furthermore, tokens can encapsulate other

tokens to group them together and to create building blocks that can be reused to,

for example, repeat a group of tokens. Tokens can have states, conditions and can

perform operations such as arithmetic. They can create new tokens dynamically and

can depend on other tokens to generate data. Tokens are basically the foundation of

the framework and every algorithm for parsing, fuzzing and delta-debugging is relying

on them.

A permutation of a token is a specific arrangement of its values. Every token type has

its own arrangement implementation and every token instance can have its own values.

However, the set of permutations is unique for a specific token type and values, as is the

order of these permutations. For example a token holding a range of numbers from “4”

to “6” has 3 possible permutations: “4”, “5” and “6”. The first permutation of this token

is “4” and the third permutation is “6”. Even though this demonstrates that a token can

represent many permutations, every token can hold only one permutation at any given

time. Therefore, every token implementation should differentiate between an internal

and external representation. Since it is necessary to save the possible values internally

but to forward the current value externally. This distinction is especially important

for token types that generate new tokens out of their internal representation. The

20 The Tavor Framework

original internal tokens should not be connected to the external ones, since it would be

otherwise possible to change the internal representation without any contract.

Many of the algorithms in the Tavor framework build upon the assumption that

the processed token graphs are acyclic. This decision allows for easier implementations

and usage since no guards and functionality have to implemented to deal with infinitely

running algorithms and unwanted repetitions. Hence, while the internal structure al-

lows tokens to have loops in their graphs, each loop must be unrolled before it can

be used with the algorithms of the Tavor framework, i.e., the bodies of repetitions

are copied N-times instead of the original repetition. An example for a token graph

with a loop is given in Figure 3.3 which is then unrolled twice resulting in the graph of

Figure 3.4.

Idle Action

Figure 3.3: Example for a Graph With a Loop

IdleIdle ActionIdle Action

Figure 3.4: Example for an Unrolled Graph

Every token implements at least the basic Token Interface, which specifies methods

for generating, replicating, permutating and parsing. Additional token interfaces add

specific functionality to a token. The List Interface, for example, states that a token

can have child tokens and specifies methods to access them.

The Token Interface is the base interface of all tokens. Its operations can be grouped

into the following categories:

• Generation to output the external representation of the token.

• Replication to create an exact copy of the token.

• Permutation to permutate the token.

• Parsing to parse arbitrary input to permutate the token.

Subsection 3.2.1 presents an example token implementation which exemplifies the

above-mentioned fundamental token concepts. Subsequently Subsection 3.2.2 elabo-

3.2 Tokens 21

rates on advanced token concepts, which are for instance necessary to model repetitions

or constraints.

3.2.1 Example Implementation - The Smiley Token

This subsection illustrates the implementation of a basic Tavor Token, thus explaining

the fundamental token operations by example. Since the Tavor framework is written

in the programming language Go, the following implementations are written in Go as

well. Go is an open source programming language created at Google. The language

is garbage collected which allows the following examples to be nearly uncluttered of

memory handling. Furthermore, Go’s C-like syntax should be widely readable with

the exceptions of three operators: The short variable declaration operator “:=” declares

and initializes a variable using the value and variable type of the right-hand side of

the operator. The range operator allows the programmer to iterate over an array using

a for-loop, e.g., for i, p := range people iterates over the variable people with i

holding the index and p holding the item of the current iteration. Lastly, the “go”

operator starts the encapsulated function call in a new coroutine.

Consider a token defining a smiley which has eyes, a mouth and can have a nose. The

token should be able to generate different permutations of smilies and even parse them.

This example uses two different kinds of eyes: “:” and “;”, an optional nose “-” and

three different kinds of mouths: “)”, “(” and “D”. Thus, we allow for instance the smiley

“;-D”, but not “:-<”. This example should in general show how easy it is to create new

token types. It must be noted that this example could be easily implemented with the

available token types or with the Tavor format shown in Listing 1.

Listing 1 Smiley Tavor Format

1 START = [:;] ?("-") [)(D]

Listing 2 shows the basic data structure of the Smiley Token. Since the Smiley Token

has to hold three different types of information, it is necessary to create a structure.

Instead of directly using the characters for the eyes and mouth in the structure, only

indices are used. This is not necessary but helps to separate the constant data from

the permutation of the token. Using this data structure the smiley “;-D” would be rep-

resented with the composite literal Smiley{eyes: 1, nose: true, mouth: 2}. The

structure must implement the Token Interface, which is grouped into method categories

as described in Section 3.2. The implementations of these categories are now presented

in the remainder of this section.

22 The Tavor Framework

Listing 2 Smiley Data Structure

1 var (

2 eyes = ":;"

3 mouths = ")(D"

4)

5

6 type Smiley struct {

7 eyes int

8 nose bool

9 mouth int

10 }

The Generation category of the Token Interface deals with the output of the current

permutation. To implement this category at least the String method has to be imple-

mented, which returns the textual representation of the token’s current permutation.

The String method for the Smiley Token is shown in Listing 3, and returns for the

smiley Smiley{eyes: 1, nose: true, mouth: 2} the string “;-D”. Since the internal

representation should not be accessible by the token’s user, no safeguards, e.g., for

accessing array items by their indices, are necessary.

Listing 3 Smiley String Method

1 func (s *Smiley) String() string {

2 nose := ""

3 if s.nose {

4 nose = "-"

5 }

6

7 return string(eyes[s.eyes]) + nose + string(mouths[s.mouth])

8 }

The Replication category deals with replicating tokens, i.e., with creating copies of

tokens. The Clone method is the only replication function required by the Token

Interface. Note that the new token must be independent of the original token, i.e., that

each Clone function needs to perform a deep rather than a shallow copy of its data. For

the Go programming language this means that token internal slices, maps, structures

and token children must be copied as well. The implementation of the Clone method

for the Smiley Token is shown in Listing 4.

The Permutation category handles the set of permutations for a token as well as its

current permutation. The method Permutations defines how many permutations a

single token holds. The Smiley Token has a constant number of 12 permutations,

since the amount of eyes, mouths and noses is constant. Other tokens such as ranges

3.2 Tokens 23

Listing 4 Smiley Clone Method

1 func (s *Smiley) Clone() token.Token {

2 return &Smiley{

3 eyes: s.eyes,

4 nose: s.nose,

5 mouth: s.mouth,

6 }

7 }

of integers depend on their configuration. The implementation of the Permutations

method for the Smiley Token is shown in Listing 5.

Listing 5 Smiley Permutations Method

1 func (s *Smiley) Permutations() uint {

2 return uint(len(eyes) * 2 * len(mouths))

3 }

The method PermutationsAll returns the number of permutations of the token it-

self and all its children. Since the Smiley Token has no children, it is the same as

Permutations which is shown in Listing 6. However, it is important to note that cal-

culating the amount of permutations is not always a straightforward task. Consider

for instance the Concatenation Token representing a sequence of tokens, which requires

all of its children to be present, and the One Token, which requires exactly one of

its children to be present. These two tokens have very different permutation calcu-

lations. For the Concatenation Token the product of its children’s PermutationsAll

result is calculated using
∏token.NumChildren

i=1 Token.Child(i).P ermutationsAll() while

for the One Token the sum of its children’s PermutationsAll result is calculated using∑token.NumChildren
i=1 Token.Child(i).P ermutationsAll().

Listing 6 Smiley PermutationsAll Method

1 func (s *Smiley) PermutationsAll() uint {

2 return s.Permutations()

3 }

The Permutation method completes the Permutation category. It sets a distinct per-

mutation of the token, i.e., calling the method with the integer 11 results in Smi-

ley{eyes: 1, nose: true, mouth: 2} which represents the ;-D smiley. The imple-

mentation of the Permutation method for the Smiley Token is shown in Listing 7,

and has been intentionally been made inefficiently to keep the example simple.

24 The Tavor Framework

Listing 7 Smiley Permutation Method

1 func (s *Smiley) Permutation(i uint) error {

2 if i < 0 || i >= s.Permutations() {

3 return NewPermutationErrorIndexOutOfBound()

4 }

5

6 p := uint(0)

7 for eyes := range eyes {

8 for _, nose := range []bool{false, true} {

9 for mouth := range mouths {

10 if i == p {

11 s.eyes = eyes

12 s.nose = nose

13 s.mouth = mouth

14

15 return nil

16 }

17

18 p++

19 }

20 }

21 }

22

23 return nil

24 }

Finally, the Parsing category, which is the last category of the Token Interface, deals

with parsing the token from an input. Listing 8 shows the Parse method of the Smiley

Token. The implementation may look very verbose, but it is necessary to handle every

syntax error to generate adequate parsing errors. Note that these messages could be

further improved by not only stating that something was expected, but actually giving

examples on what has been expected.

The Smiley Token can then be used to create structures like with any other token of

the framework. However, to give an easier example, it will be used alone. Listing 9

creates a new Smiley Token, permutates over all permutations and parses a string.

Each step is printed to STDOUT. Resulting in the output shown in Listing 10.

Please note, that the smiley token has been used to demonstrate, which standard

methods each token type needs to implement. Of course, the Tavor framework

already offers a wide range of token types allowing to represent arbitrary formats.

Chapter 4 gives an overview of the format options that are already implemented by the

tokens of the Tavor framework.

3.2 Tokens 25

Listing 8 Smiley Parse Method

1 func (s *Smiley) Parse(parser InternalParser, cur int) (int, []error)

{↪→

2 if cur+2 > parser.DataLen {

3 return cur, []error{errors.New("Out of data for a smiley")}

4 }

5

6 if i := strings.IndexRune(eyes, parser.Data[cur]); i != -1 {

7 s.eyes = i

8 } else {

9 return cur, []error{errors.New("Expected some eyes")}

10 }

11 cur++

12

13 if parser.Data[cur] == '-' {

14 s.nose = true

15 cur++

16 } else {

17 s.nose = false

18 }

19 if cur >= parser.DataLen {

20 return cur, []error{errors.New("Out of data for a mouth")}

21 }

22

23 if i := strings.IndexRune(mouths, parser.Data[cur]); i != -1 {

24 s.mouth = i

25 } else {

26 return cur, []error{errors.New("Expected a mouth")}

27 }

28 cur++

29

30 return cur, nil

31 }

3.2.2 Advanced Token Concepts

While Tavor actually lacks the Smiley Token introduced in Subsection 3.2.1, it offers

a wide range of different token types, which can be used to model arbitrary formats.

The following categories of tokens give an excerpt of the different tokens supported by

Tavor:

• Primitive Tokens do not reference other tokens, i.e., they are vertices in the

token graph without any outgoing edges. These tokens solely implement the basic

Token Interface. The plainest types are the Integer and String Tokens, which

represent constant data of numbers and texts, e.g., “1234” and “”Hello World”.

26 The Tavor Framework

Listing 9 Working With the Smiley Token

1 func main() {

2 s := Smiley{}

3

4 fmt.Print("Permutations:")

5 for i := uint(0); i < s.Permutations(); i++ {

6 s.Permutation(i)

7 fmt.Print(" ", s.String())

8 }

9 fmt.Println()

10

11 p := NewInternalParser(":-D")

12 _, errs := s.Parse(p, 0)

13 if errs != nil {

14 panic(errs)

15 }

16

17 fmt.Println("Parsed:", s.String())

18 }

Listing 10 Output of Smiley Example

1 Permutations: :) :(:D :-) :-(:-D ;) ;(;D ;-) ;-(;-D

2 Parsed: :-D

Other examples of this category, such as the as RangeInt which allows to define

a range of integers, are dynamic, i.e., can have more than one permutation, but

can represent only one permutation at any given time. Another example is the

CharacterClass Token, most commonly known from regular expressions, which

allows to define character class definitions such as [ACE] allowing either one of

the characters “A”, “C” or “E”.

• List Tokens contain a list of child tokens. Additionally to the basic Token In-

terface these tokens also implement the List Interface, which provides methods

to operate on the token’s children. At the moment of writing the token types

Concatenation, Once, One and Repeat are currently supported. The Concate-

nation (resp. Once) Token requires all children to be present in the defined order

(resp. an arbitrary order). The One Token allows to define lists were exactly one

child token is present in every permutation. Finally the Repeat Token is used to

repeat defined tokens for a specified amount of times.

• Constraint Tokens are used to bind tokens to constraints, e.g., the Optional

Token expresses that the wrapped token may or may not be present.

3.2 Tokens 27

d

a

b
2-4x

c

Figure 3.5: Automaton of Simple Format Definition

• Expression Tokens are used to define formulas, consisting of one or more token,

which can be resolved to a single value, which is again a token. Such tokens can

be for example arithmetically such as ArithmeticAdd, ArithmeticSub, Arith-

meticMul and ArithmeticDiv which allow simple calculations of numbers. The

BooleanTrue and BooleanEqual are another example of expression tokens, which

belong to the scope of boolean algebra.

• Statement Tokens are used to handle control flows in token graphs, e.g., the If

Token uses a boolean expression to guard a child token which is only active if the

expression is true.

• Variable Tokens have been implemented in order to be able to reuse and interact

with generated values at another place in a token graph.

Every token type and interface can have its own token attributes, which are used to

access meta information about a token. Each List token, for instance, provides the

attributes Count to retrieve to the number of its child tokens, Item(i) to refer to its

i-th child and Unique to refer to an arbitrary but unique child of the list.

Consider Figure 3.5, it shows an automaton which allows an “a” character, followed by

two to four “b”, an optional “c” and a concluding “d”. The token graph representing

this format is shown in Figure 3.6. It is rooted in a Concatenation Token which has

four child tokens. The starting and concluding tokens are simply constant strings, i.e.,

they need to be present in every permutation. The repetition of “b” is expressed using

a Repeat Token with the configuration from=2 and to=4. In order to model that the

String Token “b” is optional it is wrapped in an Optional Token.

Most algorithms of the Tavor framework traverse a token graph and perform a

certain operation on each traversed token. Auxiliary functions are provided by the

framework to fulfill this purpose. One of these functions is Walk which is depicted as

pseudo code in Listing 11. It receives two input parameter: the root Token which needs

28 The Tavor Framework

Figure 3.6: Token Graph of Simple Format Definition

to be traversed and the function walkFunc which is called for each traversed token. A

queue is used to systematically traverse the token graph. Remember, no cycles are

allowed within a token graph. Hence, no loop-detection needs to be implemented. To-

kens that implement the Forward Interface, which reference a single token, are handled

in Line 14, which pushes the referenced child for later processing onto the queue. The

List Interface is implemented by those token types who refer to a list of child tokens,

hence the loop from Lines 16-18 is used to add all referenced children onto the queue.

3.3 Fuzzing Strategies

The Tavor framework provides the concept of fuzzing strategies to generate permu-

tations of a token graph according to a specific algorithm. There are two fundamental

ways of token fuzzing. One is to deterministically choose one possible permutation, the

other is to choose randomly out of all permutations of a token. All fuzzing strategies

need to implement the following interface:

type Strategy func(root Token, r rand.Rand) (chan bool, error)

This interface defines a single function, which initializes the strategy and then starts

the first fuzzing iteration in a new coroutine. If an error is encountered during the

initialization of the strategy, the error return argument is not nil. On success a channel

is returned, which controls the fuzzing process. In the Go programming language

channels are used to communicate among coroutines. For each completed iteration of

the fuzzing strategy a value is returned by the channel. The caller of the strategy needs

to put back a value into the channel, to initiate the calculation of the next fuzzing

iteration. This passing of values is needed to avoid data races within the token graph.

3.3 Fuzzing Strategies 29

Listing 11 Token Graph Walk Function

1 func Walk(root Token, walkFunc func(token Token) error) error {

2 queue := NewQueue()

3 queue.Push(root)

4

5 for !queue.Empty() {

6 token := queue.Pop()

7

8 if err := walkFunc(token); err != nil {

9 return err

10 }

11

12 switch t := token.(type) {

13 case Forward:

14 queue.Push(t.Get())

15 case List:

16 for i := t.Len() - 1; i >= 0; i-- {

17 queue.Push(t.Get(i))

18 }

19 }

20 }

21

22 return nil

23 }

Note that the channel must be closed either when there are no more iterations, or in

case the caller of the strategy wants to end the fuzzing process.

The Tavor framework provides the following default fuzzing strategies:

• The Random strategy generates exactly one permutation of the passed in token

graph by permuting each reachable token randomly. The determinism is depen-

dent on the random generator and is therefore deterministic if the same random

seed is used for initializing the random generator.

• The AllPermutations strategy deterministically generates all available permuta-

tions of a token.

• The AllmostAllPermutations strategy generates a subset of all available permuta-

tions by not covering all possible permutations of Repeat Tokens. This capability

is especially helpful when less permutations are needed than provided by the

AllPermutations strategy.

30 The Tavor Framework

• The PermuteOptionals strategy searches the graph for tokens implementing the

Optional Interface and permutates over them by deactivating or activating

them. The permutations always start from the deactivated states in order to

generate minimum data first.

In order to provide a better understanding of the concept of fuzzing strategies we walk

through an example implementation of a fairly basic fuzzing strategy in Section 3.3.1.

Additionally, we offer in Section 3.3.2 the pseudo code of the AllPermutations strategy,

which is provided by the Tavor framework, and illustrate the algorithm using a

walk-through for an example token graph.

3.3.1 Basic Example Fuzzing Strategy

Consider a fuzzing strategy, which traverses the token graph looking for Integer tokens.

Each integer having a value between 1 and 10 is incremented by one therefore replacing

the original value. This strategy falls in the category of mutation-based fuzzing, since

it does change the original model. It is also stateless since there is no need to keep

track of current events between iterations. The graph is simply traversed and changed

once per fuzzing iteration.

Listing 12 depicts the pseudo code of the sample fuzzing strategy. First the channel to

steer the fuzzing strategy is created in Line 2. Next a coroutine is started, see Lines 4-

28, which makes use of the auxiliary function Walk to traverse the token graph. For each

traversed token the function defined in Lines 8-19 is called, which is responsible to adapt

the content of the currently traversed token. In case it is a Integer token holding a value

between 1 and 10 the current token is adapted. After the traversal of the token graph

the completion of the current iteration is reported to the continueFuzzing channel if

at least one token has been adapted. Otherwise the channel is closed and the coroutine

terminates.

One way to execute this strategy is by using the pseudo code shown in Listing 13.

Note that the implemented strategy does not need a random generator, hence, this

argument for the function can be nil. The produced output of this program is shown

in Listing 14, showing that the initial permutation 7 9 is fuzzed four times untill all

constant integers have reached the value 11.

The last step when creating a fuzzing strategy is to make the strategy known to the

Tavor framework. In order to do so, a register function is provided, which allows

to register fuzzing strategies based on an identifier. This is especially needed for the

Tavor CLI, which can execute a specific fuzzing strategy defined by a command line

3.3 Fuzzing Strategies 31

Listing 12 Sample Fuzzing Strategy

1 func NewSampleStrategy(root Token, r rand.Rand) (chan bool, error){

2 continueFuzzing := make(chan bool)

3

4 go func() {

5 for {

6 found := false

7

8 err := Walk(root, func(token Token) error {

9 intToken, ok := token.(*Integer)

10 if !ok { return nil }

11

12 v := intToken.Value()

13 if v >= 1 && v <= 10 {

14 found = true

15 intTok.SetValue(v++)

16 }

17

18 return nil

19 })

20 if err != nil { panic(err) }

21 if !found { break }

22

23 continueFuzzing <- true

24 if _, ok := <-continueFuzzing; !ok { return }

25 }

26

27 close(continueFuzzing)

28 }()

29

30 return continueFuzzing, nil

31 }

argument. The sample fuzzing strategy can be registered with the Tavor framework

using the code shown in Listing 15.

3.3.2 The AllPermutations Fuzzing Strategy

The AllPermutations fuzzing strategy is used to generate all permutations of a token

graph in a deterministic manner. Consider the token graph in Figure 3.7, which de-

scribes a format allowing one or two “a” characters followed by “b”, “c” or “d” and

concluded by an Optional Token “e”. Every token can tell how many permutations it

has, i.e., the Concatenation Token has just one permutation as it always requires each

32 The Tavor Framework

Listing 13 Callee of Example Fuzzing Strategy

1 func main() {

2 var root token.Token = lists.NewConcatenation(

3 NewInteger(7),

4 NewString(" "),

5 NewInteger(9),

6)

7

8 continueFuzzing, err := NewSampleStrategy(root, nil)

9 if err != nil { panic(err) }

10

11 for i := range continueFuzzing {

12 fmt.Println(root.String())

13 continueFuzzing <- i

14 }

15 }

Listing 14 Command Line Output of Example Fuzzing Strategy

1 8 10

2 9 11

3 10 11

4 11 11

of its children to be present. The Optional Token on the other hand is capable of two

permutations, i.e., either its child token “e” is active or inactive.

In order to provide a better understanding on how the AllPermutations strategy oper-

ates, we first take a look at the computation of the number of possible permutations of

the token graph. Consider Table 3.1, it lists the formulas for calculating the number

of possible permutations per token type. Applying these formulas to the token graph

shown in Figure 3.7, results in (11 + 12) ∗ (1 + (1 + 1)) ∗ (1 + 1) = 2 ∗ 3 ∗ 2 = 12. These

12 supported permutations are listed in Listing 16.

Table 3.1: Computing PermutationsAll for Different Token Types

Token Type Formula

Concatenation
∏token.NumChildren

i=1 Token.Child(i).P ermutationsAll()

Repeat
∑To

i=From Token.Child().P ermutationsAll()i

One
∑token.NumChildren

i=0 Token.Child(i).P ermutationsAll()

Optional 1 + token.Child().P ermutationsAll()

String 1

3.3 Fuzzing Strategies 33

Listing 15 Registering the Sample Fuzzing Strategy

1 func init() {

2 strategy.Register("SampleStrategy", NewSampleStrategy)

3 }

Figure 3.7: AllPermutations Example Token Graph

To iterate over all permutations of a token graph we view each token as a single digit in

its own numeral system. In common numeral systems every digit has a fixed range. For

instance, the decimal numeral system allows digits from 0 to 9. When incrementing

a number over its range in one of those systems, a digit propagates an overflow to

its neighboring higher digit and resets itself to the first digit of its range. Figure 3.8

illustrates this propagation in the decimal numeral system on the calculations 0+1 = 1,

where no propagation takes place, 9 + 1 = 10, where one digit propagates and 99 + 1 =

100, where two digits propagate their overflow. A very similar concept is applied on

token graphs when iterating over their permutations. In contrast to common number

systems, each token may have a different range of values, i.e., an Optional Token can

have the values 0 and 1 while a Repeat Token from 0 to 10 may have values from 0

to 10. In common numeral systems each digit has at most two neighboring digits, in

comparison each token in a token graph may have a parent, siblings as well as child

tokens which all need to be considered when calculating the next permutation.

For calculating the next fuzzing iteration, i.e., the next permutation of the token graph,

the AllPermutations strategy applies the following procedure on each token:

Figure 3.8: Incrementing in the Decimal Numeral System

34 The Tavor Framework

Listing 16 Permutation of AllPermutations Example Token Graph

1 ab

2 aab

3 ac

4 aac

5 ad

6 aad

7 abe

8 aabe

9 ace

10 aace

11 ade

12 aade

• If a token has children, first try to increment the permutation of its children. In

case no overflow takes place, the next permutation has been successfully calcu-

lated.

• If there are no children, or incrementing their current permutation results in an

overflow, try to increment the current token’s permutation. In case no overflow

takes place, the next permutation has been successfully calculated.

• If incrementing the permutation of the current token results in an overflow, prop-

agate this overflow either to the neighboring higher sibling, or in case there are

no siblings, the parent token. If the current token is the root token, this means

the last permutation has been reached.

Figure 3.9 depicts the individual steps of the AllPermutations fuzzing strategy for the

token graph shown in Figure 3.7. The solid arrows symbolize an increment instruction

for a token, and the dashed arrows are used to depict the propagation of an overflow.

The token graph is initialized with value 0 for all of its tokens, which represents the

permutation“ab”. In order to step to the next permutation first an increment command

is sent to the root token in iteration 0, which propagates this increment to its first child

token the Repeat Token, which in turn also propagates to its child the String Token “a”.

A String Token has only one permutation, hence, the increment command overflows

setting the Repeat Token to value 1, resulting in the permutation “aab”. In iteration

1 the same computation takes place, except that this time also the Repeat Token

overflows setting the first One token to value 1, resulting in permutation “ac”. This

process continues until iteration 11, where the root token itself reports an overflow,

hence no more permutations are available.

3.4 Fuzzing Filters 35

Figure 3.9: AllPermutations Iterations

Please refer to Appendix A Listing 83 and Listing 84 for the pseudo code of the AllPer-

mutations fuzzing strategy.

3.4 Fuzzing Filters

In order to mutate a token graph, i.e., apply mutation-based fuzzing, the Tavor

framework offers fuzzing filters. Fuzzing filters do not change a specific permuta-

tion, but alter all permutations that may be generated with a specific token graph. All

fuzzing filters need to implement the following interface:

type Filter func(token Token) (Token, error)

This interface specifies a generic function, which applies the given filter onto a single

token that is passed to the function. Therefore, the function’s concern is only one

token at a time. If an error is encountered during the filter execution, the error return

argument is uninitialized. On success a replacement for the token is returned. If this

replacement is not nil, it will replace the original token. Consider, for instance, a

very basic filter that replaces each occurrence of the string “old” with the new constant

string “new”. A possible implementation of this filter is shown in Listing 17.

The Tavor framework offers a register function for fuzzing filters, which works along

the same lines as the register function for fuzzing strategies. It allows to register filters

based on an identifier, which can later on be used within the framework. The sample

36 The Tavor Framework

Listing 17 Sample Filter

1 func NewSampleFilter(token Token) (Token, error) {

2 c, ok := token.(*String)

3 if !ok || c.String() != "old" {

4 return nil, nil

5 }

6

7 return NewString("new"), nil

8 }

filter of Listing 17 can be registered with the Tavor framework using the code shown

in Listing 18.

Listing 18 Registering the Sample Filter

1 func init() {

2 filter.Register("SampleFilter", NewSampleFilter)

3 }

Applying a filter can be done manually or using the ApplyFilters function. An excerpt

of this function is shown in Listing 19. ApplyFilters traverses the graph using a queue

of pairs holding the token to process and its parent. The root token of the input token

graph is special, in the sense, that it does not have a parent. The inner loop in Lines 5-

23 successively applies the passed in filters and alters the input token graph in case a

replacement for one of its tokens has been found. Line 22 pushes the child tokens of the

currently processed token onto the queue, ensuring that the whole graph is traversed.

An example use case for fuzzing filters is the boundary-value analysis software testing

technique, which commonly uses the first and last values of a range of values instead of

the whole range. This reduces the amount of values that need to be tested. Consider

a function which has one input parameter of the type integer. The parameter’s valid

values range from 1 to 100, i.e., there are 100 possible test candidates and thus 100

permutations. Boundary-value analysis may reduce these permutations to 1, 50 and

100, i.e., just three instead of 100 cases are tested. Additional to the first and last

values, the middlemost value. The Tavor framework provides an implementation of

this technique with the PositiveBoundaryValueAnalysis fuzzing filter. This fuzzing

filter traverses the whole internal structure and replaces every range token with at

most five boundary values, e.g., a range from -10 to 10 would result into -10, -1, 0,

1 and 10 therefore including the transition from negative to positive values. Another

fuzzing filter, the NegativeBoundaryValueAnalysis, changes every range token to two

integers, i.e., one representing its lower bound subtracted by one, and the other one,

representing its upper bound incremented by one. Thus, resulting in values which are

not valid in the original model but are useful to generate invalid data for testing. For

3.5 Reducing Strategies 37

Listing 19 Auxiliary Function ApplyFilters

1 func ApplyFilters(filters []Filter, root Token) Token {

2 queue := NewQueue()

3 queue.Push(&Pair{token: root, parent: nil})

4

5 for !queue.Empty() {

6 pair := queue.Pop()

7

8 for i := range filters {

9 replacement, _ := filters[i](pair.token)

10

11 if replacement != nil {

12 if pair.parent == nil {

13 root = replacement

14 } else {

15 pair.parent.Replace(pair.token, replacement)

16 }

17

18 break

19 }

20 }

21

22 addChildrenToQueue(queue, pair.token)

23 }

24

25 return root

26 }

the integer range from the previous example this would mean that the two integers 0

and 101 are generated.

3.5 Reducing Strategies

A reducing strategy in the Tavor framework is a specific delta-debugging algorithm,

which can be applied on the current permutation of a token graph. Individual reducing

strategies may vary on the heuristic for walking through the token graph or on how

the individual tokens are reduced. The reduction method is depending on the token

type. For example a constant integer cannot be reduced any further but a repetition

of optional strings can be minimized or even left out. All reducing strategies need to

implement the following interface:

type Strategy func(root Token) (chan bool, chan<- Feedback, error)

38 The Tavor Framework

Every reducing strategy instance has to be associated on construction with exactly one

token. This allows an instance to hold a dedicated state of the given token graph, which

makes optimizations for multiple reducing operations and iterations possible. During

construction a reducing strategy starts its first reduction step in a new coroutine and

provides the following return arguments to control the reduction process:

1. A channel to synchronize the reduction progress. The reducing strategy writes

to this channel to signal that a new reduced permutation is available, i.e., the

current reduction iteration is completed. The caller of the strategy function is

responsible to write to this channel as soon as it is able to process the next

iteration. This passing of values is needed to avoid data races within the token

graph. The channel must be closed when there are no more steps or the caller of

the strategy wants to end the reduction process. Note that this can also occur

right after receiving the channel, i.e., when there are no reductions at all.

2. A channel to receive feedback on the current iteration. The feedback answer

Good communicates to the reducing strategy that the current iteration produced

a successful result, e.g., that the result has the same outcome when it is used or is

better than the last good result. The meaning of the feedback and the response of

the strategy to the feedback are purely dependent on the application. Responses

could be for example to proceed with a given optimization path or to simply end

the whole reduction process, since it can be enough to find just one solution. The

feedback answer Bad communicates exactly the opposite of Good to the strategy.

This answer is often more complicated to handle, since it means that in some

scenarios a revert of the current iteration to the last good iteration has to occur

before the reduction process can continue.

3. An error indicating that the initialization of the strategy has not been successful.

A reducing strategy may for instance return an error, in case the input token

contains loops, as they are not supported by the Tavor framework.

The Tavor framework offers as for the fuzzing strategies and filters a register func-

tion, which allows to register reducing strategies based on an identifier. This is espe-

cially needed for the Tavor CLI, which can execute a specific reducing strategy defined

by a command line argument.

In order to provide a better understanding of the interactions between a reducing

strategy and its caller, we walk through an example implementation of a fairly basic

reducing strategy in Subsection 3.5.1. Additionally, we offer in Section 3.5.2 the pseudo

code of the linear reducing strategy, which is provided by the Tavor framework.

3.5 Reducing Strategies 39

3.5.1 Basic Example Reducing Strategy

Consider a reducing strategy that searches the token graph for Repeat Tokens holding

internally a String Token, reducing the repetition by one token for every reduction

iteration. This reducing strategy is very simple and should demonstrate that reducing

strategies can be added to the Tavor framework in a straight forward manner. It is

a stateless strategy since every iteration can be executed independently of the previous

one. Additionally, it is guaranteed to end, since only a finite amount of tokens is

targeted without generating new ones.

Listing 20 shows the pseudo code for reducing repetitions of String Tokens. First

the two channels for synchronization purposes are initialized. Next, a coroutine is

defined in Lines 5-27, which makes use of the auxiliary function Walk of the Tavor

framework, which receives two input parameters: the root token of the token graph

that should be traversed and a function, which is called for each traversed token. This

function is defined from Lines 6-24 and is responsible for the actual reduction process

and synchronization with the caller. First, it checks in Line 7 whether the currently

traversed token token is a Repeat Token referencing a String Token. If this is the case,

the Repeat Token is stored in repeat and ok equals true. The loop from Lines 10-21

iterates over the number of available reductions, i.e., repeat.Reduces(), and tries in

Line 13 to reduce the current token repeat by one of its referenced child tokens. This

reduction is then reported in Line 16 to the caller by writing to the continueReducing

channel. The feedback from the caller is processed in Line 17. Please note that this

call blocks until the caller has written to the feedbackReducing channel. Finally, after

the walk of the token graph has been completed the two synchronization channels are

closed in Line 26.

Listing 21 shows a matching counterpart to the sample reducing strategy of Listing 20.

First it initializes a concatenation list, which contains four Repeat Tokens each refer-

encing a String Token in Lines 2-11. Next, it constructs the sample reducing strategy

in Line 14. It concludes with processing the reduce steps in Lines 17-27, signaling

the reducing strategy it should keep reducing until a length smaller or equal to ten is

reached. When this function is executed it produces the output shown in Listing 22,

which shows that the Walk function first visits the Repeat Token referencing the string

“a”, which is reduced until no “a” is left. Next the Repeat Token referencing the String

Token “b” is processed, which is reduced until its minimum length of one is reached.

This process continues until the token doc holds the value “bcccccccdd”, which has the

target length of 10.

40 The Tavor Framework

Listing 20 Reduce String Token Repetitions

1 func NewSampleStrategy(root Token) (chan bool, chan<-

ReduceFeedbackType, error) {↪→

2 continueReducing := make(chan bool)

3 feedbackReducing := make(chan ReduceFeedbackType)

4

5 go func() {

6 err := Walk(root, func(tok Token) error {

7 repeat, ok := isRepeatingString(tok)

8 if !ok { return nil }

9

10 for i := repeat.Reduces() - 1; i >= 0; {

11 found := false

12 l := len(repeat.String())

13 found, i := reduceByOne(repeat, l, i)

14 if !found { break }

15

16 continueReducing <- true

17 feedback, ok := <-feedbackReducing

18 if feedback == strategy.Good { return Done }

19 if !ok { return nil }

20 if _, ok := <-continueReducing; !ok { return nil }

21 }

22

23 return nil

24 })

25 if err != nil && err != Done { panic(err) }

26 close(continueReducing); close(feedbackReducing)

27 }()

28

29 return continueReducing, feedbackReducing, nil

30 }

Finally, the strategy can be registered as a framework-wide usable strategy using the

code shown in Listing 23. This registration is, for instance, necessary in order to use

the sample strategy when working with the Tavor CLI.

3.5.2 The Linear Reducing Strategy

The Linear reducing strategy reduces data based on a linear search. In contrast to the

sample strategy from the previous section, this strategy does not rely on specific token

types for reduction, but solely operates on the following interfaces:

3.5 Reducing Strategies 41

Listing 21 Callee of Example Reducing Strategy

1 func main() {

2 aRepeat := NewRepeat(NewString("a"), 0, 100)

3 aRepeat.Permutation(6)

4 bRepeat := NewRepeat(NewString("b"), 1, 100)

5 bRepeat.Permutation(4)

6 cRepeat := NewRepeat(NewString("c"), 7, 100)

7 cRepeat.Permutation(8)

8 dRepeat := NewRepeat(NewString("d"), 1, 100)

9 dRepeat.Permutation(1)

10

11 var root Token = lists.NewConcatenation(aRepeat, bRepeat, cRepeat,

dRepeat)↪→

12 fmt.Println(root.String())

13

14 continueFuzzing, feedbackReducing, err := NewSampleStrategy(root)

15 if err != nil { panic(err) }

16

17 for i := range continueFuzzing {

18 out := root.String()

19 fmt.Println(out)

20

21 if len(out) <= 10 {

22 feedbackReducing <- strategy.Good

23 } else {

24 feedbackReducing <- strategy.Bad

25 }

26 continueFuzzing <- i

27 }

28 }

• The Reduce Interface is implemented by tokens which may be reduced. The

method Reduces() int is used to determine the number of available reductions

and the method Reduce(i int) is available to set a specific reduction.

• The Forward Interface is implemented by tokens which wrap other tokens. The

method Get() is provided by this interface in order to access the wrapped token.

• The List Interface is implemented by tokens that wrap several tokens. The

method Len() informs about the number of wrapped child tokens and the method

Get(i int) returns a child specified by its index i.

Consider Listing 24, it shows the top level implementation of the Linear reducing strat-

egy. It starts off by creating the two synchronization channels contin and feedback.

As with the sample reducing strategy the actual reduction is performed in a coroutine.

42 The Tavor Framework

Listing 22 Command Line Output of Example Reducing Strategy

1 aaaaaabbbbbcccccccccccccccdd

2 aaaaabbbbbcccccccccccccccdd

3 aaaabbbbbcccccccccccccccdd

4 aaabbbbbcccccccccccccccdd

5 aabbbbbcccccccccccccccdd

6 abbbbbcccccccccccccccdd

7 bbbbbcccccccccccccccdd

8 bbbbcccccccccccccccdd

9 bbbcccccccccccccccdd

10 bbcccccccccccccccdd

11 bcccccccccccccccdd

12 bccccccccccccccdd

13 bcccccccccccccdd

14 bccccccccccccdd

15 bcccccccccccdd

16 bccccccccccdd

17 bcccccccccdd

18 bccccccccdd

19 bcccccccdd

Listing 23 Registering the Sample Strategy

1 func init() {

2 strategy.Register("SampleStrategy", NewSampleStrategy)

3 }

Line 5 uses the auxiliary function getReductionListFromTree(root), which traverses

the token graph referenced by root and returns a list of tokens which can be reduced.

This list of tokens is passed on to the auxiliary function reduce(contin, feedback,

list), which reduces these tokens and communicates over the channels contin and

feedback with the caller of the Linear reducing strategy.

The pseudo code of the auxiliary function getReductionListFromTree is shown in

Listing 25. It uses a queue to traverse the token graph rooted in the token root. The

loop starting in Line 7 searches for tokens implementing the Reduce Interface and

adds them to the list of reducible tokens. Tokens wrapping child tokens are dealt with

in Lines 9-14 by unwrapping them and adding them to the queue for later procession.

Listing 26 shows the pseudo code of an excerpt of the reduce method. It walks through

the tokens stored in list and tries to find a suitable reduction of the current token in

the loop from Lines 3-12. The auxiliary function nextStep handles the synchronization

with the reducing strategy caller via the channels contin and feedback, which is done

along the same lines as for the sample reducing strategy in the previous subsection.

3.5 Reducing Strategies 43

Listing 24 Linear Reducing Strategy

1 func NewLinear(root token.Token) (chan bool, chan<-

ReduceFeedbackType, error) {↪→

2 contin := make(chan bool)

3 feedback := make(chan ReduceFeedbackType)

4 go func() {

5 list := getReductionListFromTree(root)

6 if !reduce(contin, feedback, list) {

7 return

8 }

9 close(contin)

10 close(feedback)

11 }()

12 return contin, feedback, nil

13 }

Please note that c.Reduce(c.Reduces()-1) is always equal to the initial value of c,

i.e., if no suitable reduction is found the last iteration of the inner loop performs the

restoration of the initial value of c. Finally the switch-statement in Line 13 is respon-

sible for recursively calling the reduce method to Forward and List tokens. Consider,

for instance, a token graph which has as its root a Repeat Token referencing another

reducible token. The root Repeat Token is reducible, hence it will be in the list of

reducible tokens during the first call of method reduce. Its referenced child is not part

of that list, hence a recursive call of method reduce is necessary to also process this

token.

44 The Tavor Framework

Listing 25 Traversing of the Token Graph

1 func getReductionListFromTree(root Token) (list []ReduceToken) {

2 queue := NewQueue()

3 queue.Push(root)

4 for !queue.Empty() {

5 token := queue.Pop()

6 switch t := token.(type) {

7 case ReduceToken:

8 list = append(list, token)

9 case ForwardToken:

10 queue.Push(t.Get())

11 case ListToken:

12 for i := t.Len() - 1; i >= 0; i-- {

13 queue.Push(t.Get(i))

14 }

15 }

16 }

17 return list

18 }

Listing 26 Performing the Reduction

1 func reduce(contin chan bool, feedback <-chan ReduceFeedbackType, tree

[]ReduceToken) bool {↪→

2 for _, c := range tree {

3 for i := 0; i < c.Reduces(); i++ {

4 c.Reduce(i)

5 contin, feedback := nextStep(contin, feedback)

6 if !contin {

7 return false

8 } else if feedback == Good {

9 break

10 }

11 c.reduction++

12 }

13 switch t := c.(type) {

14 case ForwardToken:

15 children := getReductionListFromTree(c.Get())

16 reduce(contin, feedback, children)

17 case ListToken:

18 for i := t.Len() - 1; i >= 0; i-- {

19 children := getReductionListFromTree(c.Get(i))

20 reduce(contin, feedback, children)

21 }

22 }

23 }

24 return true

25 }

45

Chapter 4

Tavor Format

The Tavor format is an EBNF-like notation which allows the definition of data,

such as file formats and protocols, without the need of programming. It is the default

format of the Tavor CLI of Chapter 5 and supports every feature of the framework,

which has been introduced in Chapter 3. Each of the demonstrated features of the

Tavor format is required to fully define the AIGER format.

The format is Unicode text encoded in UTF-8 and consists of terminal and non-terminal

symbols which are called tokens throughout the Tavor framework. A more general

definition of tokens can be found in Section 3.2.

4.1 Token Definition

Every token in the format belongs to a definition of non-terminal token which con-

sists of a unique case-sensitive name and its definition part. Both are separated by

exactly one equal sign. Syntactical white spaces are ignored. Every token defini-

tion is by default declared in one line. A line ends with a new-line character.

To give an example, the format in Listing 27 declares the START token with the String

Token “Hello World” as its definition.

Listing 27 Tavor’s Hello World

1 START = "Hello World"

Token names have the following constraints: Each token name has to start with a

letter, and can only consist of letters, digits and the underscore sign “ ”. Additionally,

a token name has to be unique. It is also not allowed to declare a token and never

use it. The START token is the only exception, which is used as the entry point of the

46 Tavor Format

format. Hence it defines the beginning of the format and is therefore required for every

format definition.

Sequential listed tokens in the definition part of a token definition are automatically

concatenated. The example in Listing 28 concatenates to the string “This is a String

Token and this 123 was a number token.”.

Listing 28 Example for a Token Concatenation

1 START = "This is a String Token and this " 123 " was a number token."

A token definition can be sometimes too long or poorly readable, it can be therefore

split into multiple lines by using a comma before the newline character as shown in

Listing 29. The token definition ends at the string “definition.” since there is no

comma before the newline character. Listing 29 also highlights that syntactical white

spaces are ignored and can be used to make a format definition more human-readable.

Listing 29 Example for a Multi-Line Token Definition

1 START = "This",

2 "is",

3 "a",

4 "multi line",

5 "definition."

The Tavor format supports two kinds of comments. Line comments start with the

character sequence “//” and end at the next new-line character. General comments

start with the character sequence “/*” and end at the character sequence “*/”. A

general comment can therefore contain new-line characters and can be used between

token definition and tokens. Both kinds of comments are illustrated in Listing 30.

Listing 30 Example for Different Kinds of Comments

1 /*

2

3 This is a general comment

4 which can have

5 multiple lines.

6

7 */

8

9 START = "This is a string." // This is a line comment.

10

11 // This is also a line comment.

4.2 Terminal Tokens 47

4.2 Terminal Tokens

Terminal tokens are the constants of the Tavor format. The format supports two

kinds of terminal tokens: numbers and strings. Every other token that is not a

terminal token, such as tokens of definitions, is called a non-terminal token.

Number tokens allow only positive decimal integers, which are written as a sequence

of digits as shown in Listing 31.

Listing 31 Example for a Number Token

1 START = 123

String Tokens are character sequences between double quote characters and can con-

sist of any UTF-8 encoded character except the new-line, the double quote and the

backslash characters which have to be escaped with a backslash character. An example

can be seen in Listing 32.

Listing 32 Example for a String Token

1 START = "The next word is \"quoted\" and next is a new line\n"

Since Tavor is using Go’s text parser as foundation of its format parsing, the same

rules for “interpreted string literals” as defined in Go’s language specification [5] apply

to String Tokens.

Empty String Token are forbidden and lead to a format parsing error. The reason for

this exceptions is the way tokens are utilized during parsing and delta-debugging, and

is described in the repeat groups of Paragraph 4.5 in more detail.

4.3 Embedding of Tokens

Non-terminal tokens can be embedded in the definition part by using the name of

the referenced token. The example in Listing 33 embeds the token “Text” into the

START token. Token names declared in the global scope of a format definition can

be used throughout the format regardless of their declaration position. Terminal and

non-terminal tokens can be mixed as illustrated in Listing 34.

The Tavor framework and therefore the Tavor format differentiate between a

token reference, which is the embedding of a token in a definition, and a token

48 Tavor Format

Listing 33 Example for Embedding Tokens

1 START = Text

2

3 Text = "Some text"

Listing 34 Example for Terminal and Non-Terminal Tokens Mixed in One Format

1 Dot = "."

2

3 First = 1 Dot

4 Second = 2 Dot

5 Third = 3 Dot

6

7 START = First ", " Second " and " Third

usage, which is the execution of a token during an operation such as fuzzing or delta-

debugging. Listing 35 illustrates the difference between a token reference and a

token usage. The format defines two tokens called “Choice” and “List”. There exists

one token reference of “Choice”, which can be found in the “List” definition, and two

for “List”, which are both in the START token definition. Although “Choice” is in a

repeat group, which in this example repeats the token “Choice” exactly twice, it is

only referenced once. “List” has two token usages in this format while “Choice” has

4. Every “List” token does have two “Choice” usages because of the repeat group in

the definition of “List”.

Listing 35 Example for a Token Reference and a Token Usage

1 Choice = "a" | "b" | "c"

2

3 List = +2(Choice)

4

5 START = "1. list: " List "\n",

6 "2. list: " List "\n"

4.4 Alternations

Alternations are defined by the pipe character “|” which separates two alternation

terms. The example in Listing 36 defines that the token START can either hold the

strings “a”, “b” or “c”. An alternation term has its own scope which means that a

sequence of tokens can be used.

4.5 Groups 49

Listing 36 Example for the Alternation Token

1 START = "a" | "b" | "c"

Alternation terms can be empty which allows more advanced definitions of formats.

Listing 37 illustrates how to use an alternation to define a loop which can either hold

the empty string or the strings “a”, “b”, “ab”, “aab” or any amount of “a” characters

ending with an optional “b” character.

Listing 37 Example for Loop Using an Alternation

1 A = "a" A | B |

2 B = "b"

3

4 START = A

4.5 Groups

Tokens can be arranged using token groups by using parenthesis beginning with the

opening parenthesis character “(” and ending with the closing parenthesis character

“)”. A group is a token on its own and can be therefore mixed with other tokens.

Additionally, a group starts a new scope between its parenthesis and can therefore

hold a sequence of tokens. The tokens between the parenthesis are called the group

body. Listing 38 illustrates the usage of a token group by declaring that the START

token can either hold the string “a c” or “d c”. Groups can be nested as illustrated

in Listing 39, which defines a number with one to three digits. Groups can have

modifiers which give a group additional abilities. The following sections introduces

these modifiers.

Listing 38 Example for a Group Token

1 START = ("a" | "d") " c"

Optional group

The optional group has the question mark“?” as modifier and allows the whole group

token to be optional. The START token in Listing 40 can either hold the strings ”a” or

”a b”.

50 Tavor Format

Listing 39 Example for Nested Groups

1 Digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

2

3 START = Digit (Digit (Digit |) |)

Listing 40 Example for an Optional Group

1 START = "a" ?(" b")

Repeat group

The default modifier for the repeat group is the plus character “+”. The repetition

is executed by default at least once. In Listing 41 the string “a” is repeated and the

START token can therefore hold any amount of “a” characters but at least one.

Listing 41 Example for a Repeat Group

1 START = +("a")

Since repeated empty tokens lead to infinite steps during parsing and delta-debugging,

a parsing error is issued if such tokens are encountered. This includes optional

groups or alternations with at least one empty term inside a Repeat Token. The

repeat group repeats by default from one to infinite times. The repetition can be

altered with arguments to the modifier. Listing 42 repeats the string “a” exactly twice.

The START token can therefore only hold the string “aa”. It is also possible to define a

repetition range. Listing 43 repeats the string “a” at least twice but at most four times.

This means that the START token can either hold the strings “aa”, “aaa” or “aaaa”.

The “from” and “to” arguments can be empty too. They are then set to their default

values. Listing 44 repeats the string “a” at least once and at most four times. Listing 45

repeats the string “a” at least twice. Listing 46 illustrates the optional repeat group

modifier. The START token can either hold the strings “a”, “ab”, “abb” or any amount

of “b” characters prefixed by an ”a” character.

Permutation group

The“@” is the permutation modifier which is combined with an alternation in the group

body. Each alternation term will be executed exactly once but the order of execution is

non-relevant. In Listing 47 the START token can either hold “123”, “132”, “213”, “231”,

“312” or “321”.

4.6 Character Classes 51

Listing 42 Example for a Fixed Repeat Group

1 START = +2("a")

Listing 43 Example for a Ranged Repeat Group

1 START = +2,4("a")

4.6 Character Classes

Character class tokens can be directly compared to character classes of regular

expressions used in most programming languages. A character class token begins

with the left bracket “[” and ends with the right bracket “]”. The content between the

brackets is called a pattern and can consists of almost any UTF-8 encoded character,

escape character, special escape character and range. In general the character class

token can be seen as a shortcut for an alternation. The definition in Listing 48

illustrates the usage of a character class by defining that the START token holds

either the strings “a”, “b” or “c”.

Escape Characters

Table 4.1 holds all escape characters which are UTF-8 encoded characters that are

not directly allowed within a character class pattern. Their equivalent escape se-

quence has to be used instead. Listing 49 defines that the START token can hold only

white space characters.

Table 4.1: Escape Characters for Character Classes

Character Escape sequence

“-” “\-”
“\” “\\”
form feed “\f”
newline “\n”

return “\r”
tab “\t”

Since some characters can be hard to type and read the “\x” escape sequence can be

used to define them with their hexadecimal code points. Either only two hexadecimal

characters are used in the form of “\x0A” or when more then two hexadecimal digits

52 Tavor Format

Listing 44 Example for an Empty “from” Argument for a Ranged Repeat Group

1 START = +,4("a")

Listing 45 Example for an Empty “to” Argument for a Ranged Repeat Group

1 START = +2,("a")

are needed the form “\x{0AF}” has to be used. The second form allows up to eight

digits and is therefore fully Unicode ready. Unicode usage is illustrated in Listing 50,

which either holds the Unicode character “/” or “,”.

Character Class Ranges

Character class ranges can be defined using the “-” character. A range holds all

characters defined by UTF-8 starting from the character before the “-” to ending at

the character after the “-”. Both characters have to be either an UTF-8 encoded or

an escaped character. The starting character must have a lower value than the ending

character. The usage of Character classes is illustrated in Listing 51 which defines

a number with one digit.

Special Escape Characters

Special escape characters combine many characters into one escape character.

Table 4.2 lists all implemented special escape characters.

Table 4.2: Special Escape Characters for Character Classes

Escape character Character class Description

“\d” “[0-9]” Holds a decimal digit character

“\s” “[\f\n\r\t]” Holds a white space character

“\w” “[a− zA− Z0− 9]” Holds a word character

4.7 Token Attributes

Some tokens define attributes which can be used in a definition by prefixing the dollar

sign “$” to their name and appending a dot followed by the attribute name. Listing 52

4.7 Token Attributes 53

Listing 46 Example for an Optional Repeat Group

1 START = "a" *("b")

Listing 47 Example for a Permutation Group

1 START = @(1 | 2 | 3)

illustrates token attributes using the “Count” attribute, which holds the count of

the token’s direct children. The format holds for example the string ”The number 56

has 2 digits”.

Some token attributes can have arguments. A token argument list begins with

the opening parenthesis “(” and ends with the closing parenthesis “)”, and holds “token

argument parameters” which are separated by commas. All list tokens have for

example the “Item” attribute, which holds one child of the token. The “Item” attribute

has one argument which is the index of the child starting from the index zero, and is

illustrated in Listing 53. The format holds the string ”The letter with the index 1 is

b”.

A list token is a token which has in its definition either only a sequence of tokens

or exactly one repeat group token. Table 4.3 shows the token attributes that can

be utilized by list tokens.

Table 4.3: Token Attributes for List Tokens

Attribute Arguments Description

“Count” - Holds the count of the token’s direct children.

“Item” “i” Holds a direct child of the token with the index “i”.

“Unique” - Chooses at random a direct child of the token and em-

beds it. The choice is unique for every reference of the

token.

Scope of Attributes

The Tavor format allows the usage of token attributes as long as the referenced

token exists in the current scope.

Two kinds of scopes exist: The global scope is the scope of the whole format defini-

tion. An entry of the global scope is set by the nearest child token reference to the

54 Tavor Format

Listing 48 Example for a Character Class Token

1 START = [abc]

Listing 49 Example for Escape Characters in Character Classes

1 START = +([\t\n\r\f])

START token. The local scope is the scope held by a definition, group or any other

token which holds its own scope. Local scopes are initialized with entries from their

parent scope at the time of the creation of the new local scope. Listing 54 illustrates

this behavior which can for example hold the string “1 a 1(1 aa 2)1 aaa 3”. The List

token is used trice in this example. The first usage leads to the value “a”, the second

to “aa” and the third to “aaa”. Depending on which list is visible in the current scope

“$List.Count” results in another value. This example showcases that the scope of token

Inner is not visible in the scope of the START token.

4.8 Typed Tokens

Typed tokens are a functional addition to regular token definitions of the Tavor

format. They provide specific functionality which can be utilized by embedding them

like regular tokens or through their additional token attributes. Typed tokens can

be defined by prefixing the dollar sign “$” to their name. They do not have a format

definition on their right-hand side. Instead, a type and optional arguments written as

key-value pairs, which are separated by a colon, define the token. Listing 55 illustrates

typed tokens with the definition of an integer token. The format definitions holds

additions with random integers as numbers such as “47245 + 6160 + 6137”.

The range of the “Int” type can be bounded using arguments for the definition as shown

in Listing 56, where the token “Number” is an integer within the range one to ten.

Typed Token Int

The Int type implements a random integer. Its optional token arguments are listed

in Table 4.4 and its token attributes are listed in Table 4.5.

4.8 Typed Tokens 55

Listing 50 Example for Hexadecimal Code Points in Character Classes

1 START = [\x2F\x{263A}]

Listing 51 Example for a Character Class Range

1 START = [0-9]

Table 4.4: Optional Token Arguments for the ‘‘Int” Typed Token

Arguments Description

“from” First integer value (defaults to 0)

“to” Last integer value (defaults to 231 − 1)

Table 4.5: Token Attributes for the ‘‘Int” Typed Token

Attribute Arguments Description

“Value” - Embeds a new token based on its parent

Typed Token Sequence

The Sequence type implements a generator for integers. Its optional token arguments

are listed in Table 4.6 and its token attributes are listed in Table 4.7.

Table 4.6: Optional Token Arguments for the ‘‘Sequence” Typed Token

Arguments Description

“start” First sequence value (defaults to 1)

“step” Increment of the sequence (defaults to 1)

56 Tavor Format

Listing 52 Example for a Token Attribute Using the ‘‘Count” Attribute

1 Number = +([0-9])

2 START = "The number " Number " has " $Number.Count " digits"

Listing 53 Example for Attribute Parameters Using the ‘‘Item” Attribute

1 Letters = "a" "b" "c"

2 START = "The letter with the index 1 is " $Letters.Item(1)

Table 4.7: Token Attributes for the ‘‘Sequence” Typed Token

Attribute Arguments Description

“Existing” - Embeds a new token holding one existing value of the

sequence

“Next” - Embeds a new token holding the next value of the se-

quence

“Reset” - Embeds a new token which on execution resets the se-

quence

4.9 Expressions

Expressions can be used in token definitions and allow dynamic and complex oper-

ations using operators who can have different numbers of operands. An expressions

starts with the dollar sign “$” and the opening curly brace “{” and ends with the closing

curly brace “}”. Listing 57 illustrates the simplest expression which is an addition.

Every operand of an operator can be a token. The usual dollar sign for a token

attribute can be omitted inside an expression as illustrated in Listing 58.

Arithmetic Operators

Arithmetic operators which are shown in Table 4.8 have two operands between the

operator sign. Operators always embed the right side operand which means that that

“2 * 3 + 4” will result in “2 * (3 + 4)” and not “(2 * 3) + 4”.

4.9 Expressions 57

Listing 54 Example for Scopes

1 List = +,10("a")

2

3 Inner = "(" $List.Count " " List " " $List.Count ")"

4

5 START = $List.Count " " List " " $List.Count,

6 Inner,

7 $List.Count " " List " " $List.Count

Listing 55 Example Typed Token Using an Integer Token

1 $Number Int

2

3 Addition = Number " + " (Number | Addition)

4

5 START = Addition

Listing 56 Example for Typed Token Attributes

1 $Number Int = from: 1,

2 to: 10

3

4 Addition = Number " + " (Number | Addition)

5

6 START = Addition

Listing 57 Example Expression

1 START = ${1 + 2}

Listing 58 Example for a Token Attribute Inside an Expression

1 $Number Int

2

3 START = ${Number.Value + 1}

58 Tavor Format

Table 4.8: Arithmetic Operators

Operator Description

“+” Addition

“-” Subtraction

“*” Multiplication

“/” Division

Include Operator

The include operator parses an external Tavor format file and includes its START

token. It takes a string as its only operand which defines the file path of the to be

included Tavor format file. The file path can be absolute or relative. Listing 59

includes the Tavor format file “number.tavor”.

Listing 59 Example for Include Operator

1 START = ${include "number.tavor"}

Path Operator

The path operator traverses a list token based on the described structure. The

structure defines the starting value of the traversal, the value which identifies each en-

try of the list token, how the entries are connected and which values are ending values

for the traversal. The path operator has the format “path from (<starting value>)

over (<entry identifier>) connected by (<entry connections>) without(<ending val-

ues>)”. All values are expressions. Furthermore, the entry connections and end-

ing values are lists of expressions. The entry identifier, entry connections

and ending values have the variable “e” in their scope which holds the currently tra-

versed entry of the list token.

Listing 60 defines a list of connections called “Pairs”. Each entry in the list “Pairs”

defines the identifier as its first token and the connection as its second token. The

used path operator arguments define that all entries are traversed beginning from the

value “2” and ending at the value “0”. The example holds the string “103123->231”.

4.10 Variables 59

Listing 60 Example for Path Operator

1 START = Pairs "->" Path

2

3 Path = ${Pairs path from (2) over (e.Item(0)) connect by (e.Item(1))

without (0)}↪→

4

5 Pairs = (,

6 (1 0),

7 (3 1),

8 (2 3),

9)

Not-in Operator

The not-in operator queries the “Existing” token attribute of a sequence to not

include the given list of expressions. A list of expressions begins with the opening

parenthesis “(” and ends with the closing parenthesis “)”. Each expression is defined

without the expression frame “${...}”. Expressions are separated by a comma. List-

ing 61 illustrates the not-in operator by issuing two sequence entries and excluding

the entry with the value “2”. The format therefore holds the string “1, 2 -> 1”.

Listing 61 Example for the Not in Operator

1 $Id Sequence

2

3 START = $Id.Next ", " $Id.Next " -> " ${Id.Existing not in (2)}

4.10 Variables

Every token of a token definition can be saved into a variable which consists of

a name and a reference to a token usage. Variables follow the same scope rules as

token attributes. It is therefore possible to, for example, define the same variable

name more than once in one token sequence. They also do not overwrite variable

definitions of parent scopes. Variables can be defined by using the “<” character

after the token that should be saved, then defining the name of the variable and

closing with the “>” character. Variables have a range of token attributes which

are listed in Table 4.9. Listing 62 illustrates the usage of variables by saving the

String Token “text” into the variable “var”. The token “Print” uses this variable

by embedding the referenced token. The format therefore holds the string“text->text”.

Tokens which are saved to variables are by default relayed to the generation. This

60 Tavor Format

Table 4.10: Operators for the If Statement Condition

Operator Usage Description

“==” “<token> == <token>” Returns true if the value of op1 is equal to
op2

“defined” “defined <name>” Returns true if name is a defined variable

means that their usage generates data as usual. Since this is sometimes unwanted, an

equal sign “=” after the “<” character can be used to omit the relay.

Listing 62 Example for a Token Variable

1 START = "text"<var> "->" Print

2

3 Print = $var.Value

Table 4.9: Token Attributes of Variable Tokens

Attribute Arguments Description

“Count” - Holds the count of the referenced token’s direct child

“Index” - Holds the index of the referenced token in relation to

its parent

“Item” “i” Holds a child of the referenced token with the index “i”

“Reference” - Holds a reference to a token which is needed for some

operators

“Value” - Embeds a new token based on the referenced token

4.11 Statements

Statements allow the Tavor format to have a control flow in its token definitions

depending on the used tokens and values. All statements start with the opening curly

brace “{” and end with closing curly brace “}”. The statement operator must be

defined right after the closing curly brace.

The if statement allows to embed conditions into token definitions and defines

an if body which is a scope on its own. The token body lies between an opening {if

<condition>} statement and an ending {endif} statement. The condition can be

formed using the if statement’s operators which are listed in Table 4.10. Each if

body creates a new scope. Listing 63 illustrates the if statement by generating the

character “A” only if the variable “var” is equal to “1”.

4.11 Statements 61

Listing 63 Example for the If Statement

1 Choose = 1 | 2 | 3

2

3 START = Choose<var> "->" {if var.Value == 1}"A"{endif}

Additional to the if statement, the statements else and else if can be used. They

can only be defined inside an if body and always belong to the if statement that

the body belongs to. Both statement operators create a new if body.

62 Tavor Format

63

Chapter 5

Tavor CLI

The Tavor CLI is the command line interface (CLI) for the Tavor framework.

It is therefore the user interface for non-programmers to utilize the capabilities of the

framework for fuzzing and delta-debugging. Commands and arguments have to be

specified for the binary using the following format:

<general arguments> <command> <command arguments>

General arguments, which are listed in detail in Listing 85 of Appendix B, are mostly

just activating the output of textual logs for informing the user or to set global con-

stants. Arguments are applied during initialization or the invocation of a CLI command.

Examples for global constants are the --seed argument, which sets the seed for the ran-

dom generator of the CLI to make all executions deterministic, and the --max-repeat

argument, which sets the maximum repetition for unrolling loops. The CLI acts on a

Tavor format file which is specified by the --format-file argument.

The Tavor CLI’s main purpose is the invocation of the following CLI commands:

• The graph command converts the given format file into a graphical representation.

• The fuzz command produces fuzzed outputs from the given format file.

• The validate command applies the given format file to a specified input file.

• The reduce command applies delta-debugging for the given format file to a spec-

ified input.

The following sections describe these commands, their arguments, workflow and usage

in more detail.

64 Tavor CLI

Figure 5.1: Workflow for the Graph Command of the Tavor CLI

5.1 Command graph

The graph command of the Tavor CLI converts a given Tavor format file to a

graphical representation of a finite-state machine (FSM). This functionality is needed

because textual representations of graphs, such as the Tavor format, are often too

difficult to mentally visualize. Listing 90 of Appendix B presents the available argu-

ments for this command. Most notable is the --filter argument which allows to

define fuzzing filters before the graphical conversion is executed. The command

outputs the textual DOT graph description language 1, which can be further processed

into image formats, e.g., by using the Graphviz toolset 2.

Figure 5.1 illustrates the workflow and the interactions of components for the graph

command. First the user-specified Tavor format file is read in from the file system

and parsed using the format parser of the framework, which results into a token graph.

Then optional fuzzing filters are applied to the graph. As last step in the workflow

the graph converter component of the framework is used, to convert the token graph

to textual DOT formated data for the FSM which is streamed to the STDOUT file

descriptor of the CLI.

The algorithm for the conversion of the token graph to DOT data is composed by the

following two phases:

1http://www.graphviz.org/content/dot-language
2http://www.graphviz.org

http://www.graphviz.org/content/dot-language
http://www.graphviz.org

5.1 Command graph 65

Listing 64 Convert Token Graph to Simple Graph Structure

1 func buildGraph(token, graph) start, end {

2 start, end = {}, {}

3 switch type(token) {

4 Optional:

5 token' = token.Child()

6 start', end' = buildGraph(token', graph)

7

8 start.AddOptional(start')
9 end.AddOptional(end')
10 Concatenation:

11 prev = {}

12 for i = 0; i < token.NumChildren; i++ {

13 token' = token.Child(i)

14 start', end' = buildGraph(token', graph)

15

16 graph.AddEdges(prev, start')
17

18 if start'.ContainsOptional() {

19 start'.Add(prev)
20 }

21 prev = start'
22

23 if i == 0 {

24 start = start'
25 } else if i == token.NumChildren-1 {

26 end = end'
27 }

28 }

29 Scope:

30 token' = token.Child()

31 start' end = buildGraph(token', graph)

32 String:

33 graph.AddState(token)

34

35 start = {token}

36 end = {token}

37 }

38 return start, end

39 }

66 Tavor CLI

• Phase one traverses the token graph using a recursive depth-first search, which

builds upon the assumption, that the used data structure does not contain any

loops. As mentioned in Subsection 3.2.2, a loop unrolling step is performed after

the format has been parsed to make sure that there are no loops in the token

graph. Since each token type has its own representation and internal data struc-

ture, each type has to be treated differently for the graphical representation using

its own implementation. The pseudo code for handling Optional, Concatenation,

Scope and String Tokens is shown in Listing 64. The traversal function receives

the current token to process as well as the graph data structure which needs

to be extended. As return values it delivers the set of start and end states of

the extended graph data structure. When traversing an Optional Token, the re-

turned start and end states need to be marked as optional. In case of processing a

Concatenation Token, edges need to be added to the graph data structure which

connect the individual children of the Concatenation Token. The returned start

(resp. end) states are the start (resp. end) states of the first (resp. last) child of

the Concatenation Token. When traversing a Scope Token a call to process its

only child is performed. Whenever a String Token is processed, a state is added

to the resulting graph. As String Tokens are leaves of the token graph no further

recursive calls are necessary.

• Phase two uses the extended graph structure as well as the returned start and

end states of phase one to print a DOT representation of the input token graph.

End states are depicted using double lines around their label. Optional vertices

are shown by using dashed incoming and outgoing arrows. Additional labels and

states, which are not included in the pseudo code, are used to depict other tokens

such as repeating groups and ranges.

The Tavor format in Listing 65 exemplifies how the graph command works. The

format results in the DOT data depicted in Listing 87 of Appendix B, which is convert-

ible into the FSM illustrated in Figure 5.2. All tokens of the format, which are depicted

in the graphics as states, are sequential but the tokens B and F are optional, and the

group DE is repeated at least twice but at most four times. States are connected using

different types of edges, which are depicted as differently styled arrows in the graphics.

The FSM depicted in Figure 5.2 starts with the small dot at the top of the graphics.

Since B is optional, its incoming and outgoing arrows are dotted. In contrast, the arrow

from A to C is solid and is therefore mandatory. However, since A has two outgoing

arrows, only one of them has to be taken. Figure 5.2 also illustrates repetition of the

DE group, which is indicated by the small dot with an ingoing arrow that has a label

with the repetition amount. This arrow causes a loop, therefore marking the repetition.

Finally, the accepting state after the repetition has a double bordered circle. Each path

of a graph must end in such an accepting state, or else it is not a valid path, i.e., it

5.2 Command fuzz 67

Listing 65 Example Tavor Format for
the Graph Command

1 START = A ?(B) C +2,4(D E) ?(F)

2

3 A = "a"

4 B = "b"

5 C = "c"

6 D = "d"

7 E = "e"

8 F = "f"

f

2-4x

a

d

b

c

e

Figure 5.2: Example Graphics for the
Graph Command

is not considered by the fuzzing and delta-debugging processes. In this example, it is

also possible to go from the accepting state after the repetition to the F token which

is optional but also ends in an accepting state.

5.2 Command fuzz

The fuzz command of the Tavor CLI generates permutations, which conform to a

specified format. Additionally, it is capable of forwarding these permutations to external

programs, thus allowing to systematically execute a system under test with a stream

of inputs for some predefined structure.

Figure 5.3 illustrates the workflow and the interactions of components for the fuzz

command. It starts along the same lines as the graph command, by first parsing the

Tavor format file into a token graph and by applying optional fuzzing filters

on that graph. It then proceeds with its fuzzing loop, which uses a specified fuzzing

strategy to generate consecutive permutations. These permutations are written either

to the file system or the STDOUT file descriptor. External programs may process these

permutations and in turn interact with the Tavor CLI using their exit codes or via

STDIN.

The fuzzing loop of the fuzz command is highly configurable via command line options,

which are listed in Listing 88 of Appendix B. It may either interact with executables

68 Tavor CLI

Figure 5.3: Workflow for the Fuzz Command of the Tavor CLI

or scripts. When working with executables their exit codes as well as their STDOUT

and STDERR file descriptors are processed by the fuzzing loop. In case the --exit-

on-error option is set the fuzzing loop will terminate in case an unexpected output is

encountered in any of the afore mentioned communication channels. When using scripts

the communication with the fuzzing loop is solely performed via STDIN and STDOUT.

The fuzzing loop writes permutations separated by a predefined separator to STDIN of

the script and waits until the script signals via its STDOUT that it has processed the

current permutation. Success or failure, are signaled by using the constants “Yes” and

“No”.

When using the Tavor CLI to immediately fuzz an external program there are two

ways to proceed, which are depicted in Figure 5.4. Either the program under test is

directly passed on to the Tavor CLI, or an interposed validation executable is used.

To communicate directly with the program under test has the advantage that only the

expected input format is required to start fuzzing. But also has the downside that

the built-in validating capabilities of the Tavor CLI are restricted to specifying return

codes as well as regular expressions on delivered outputs in STDOUT and STDERR. In

case a more thorough validation is required, which cannot be accomplished by the afore

mentioned validation capabilities, we advise to use interposed executables or scripts.

Consider for instance a program which sorts CSV files by specific columns. An inter-

posed validation function or script could not only check that the program under test

(a) Direct fuzzing of a program (b) Usage of an interposed validation executable

Figure 5.4: Fuzzing of External Programs

5.3 Command validate 69

exits without errors, but could additionally verify that the output CSV is indeed sorted

and its content corresponds to the input CSV file. Several examples of customized

scripts and executables are provided at 3.

5.3 Command validate

The validate command of the Tavor CLI checks that a given input file conforms to

a specified format file. This functionality can be helpful since for instance the reduce

command only applies delta-debugging on valid inputs, or in the general case it can be

used to examine an input, which was not generated through the given format file.

Figure 5.5 illustrates the workflow and the interactions of components for the validate

command. It starts off by parsing the specified Tavor format file to its corresponding

token graph. In the next step this token graph is used to parse the specified input file.

In case the input file can be parsed successfully, it conforms to the specified format file.

The CLI exits with the exit status 0 if the input file conforms to the format file, or

exits with an exit status unequal to 0 if it does not conform.

Please refer to Listing 86 of Appendix B for a list of available arguments of the validate

command.

Figure 5.5: Workflow for the Validate Command of the Tavor CLI

5.4 Command reduce

The reduce command applies delta-debugging to a given input according to a specified

Tavor format file, i.e., given an input which results in certain program behavior, this

3https://github.com/zimmski/tavor/tree/master/examples/fuzzing

https://github.com/zimmski/tavor/tree/master/examples/fuzzing

70 Tavor CLI

capability may be used to systematically reduce the given input while preserving the

same behavior.

Figure 5.6 depicts the workflow and the interactions of components for the reduce

command. It starts similar to the validate command by first parsing the Tavor

format file to its associated token graph. This graph is then used to parse the given

input data, i.e., the initial input needs to correspond to the specified format. Next,

the reduction loop starts by feeding the initial input data to an external resource and

capturing its responses. These initial responses are consecutively used by the reduction

loop to guide the generation of reduced inputs, i.e., only reductions resulting in these

responses are investigated for further reductions.

Figure 5.6: Workflow for the Reduce Command of the Tavor CLI

Various options are available for the reduce command, which are listed in Listing 89 of

Appendix B. The reduce command works along the same lines as the fuzz command,

i.e., it may interact with scripts or executables using exit codes as well as STDERR,

STDOUT and STDIN as communication channels. Options such as --exec-match-

stderr allow to define the expected structure of outputs written to those channels.

Please refer to 4 for example scripts and executables for performing delta-debugging.

4https://github.com/zimmski/tavor/tree/master/examples/deltadebugging

https://github.com/zimmski/tavor/tree/master/examples/deltadebugging

5.4 Command reduce 71

Listing 66 Delta-Debugging Pseudo Code for Scripts

1 func deltaDebugScript(tokenGraph, reduceStrategy) {

2 continue, feedback = reduceStrategy(tokenGraph)

3

4 for i = range continue {

5 stdin.Write(tokenGraph.String())

6 stdin.Write(inputSeparator)

7

8 result = stdout.ReadLine()

9 switch result {

10 case "YES\n":

11 feedback <- Good

12 case "NO\n":

13 feedback <- Bad

14 }

15

16 continue <- i

17 }

18 }

Consider Listing 66, which outlines the pseudo code of the reduction loop when working

with scripts. A token graph, which holds the parsed input data, as well as the reducing

strategy, for reducing the input data, are passed on to function deltaDebugScript.

The reducing strategy receives in Line 2 the token graph to operate on, and returns

two channels. In order to communicate that the current processing step is finished the

channel continue is used, i.e., the call in Line 4 blocks until the reducing strategy

has produced another permutation. The channel feedback is used to signal whether

the current permutation still triggers the expected behavior, thus steering the reducing

strategy.

72 Tavor CLI

73

Chapter 6

The go-mutesting Framework

This chapter presents go-mutesting, a framework for performing mutation testing on

source code of the programming language Go. Its main purpose is to find source code,

which is not covered by any tests. The implementation of go-mutesting with all its

assets has been open sourced and is freely available at [4].

6.1 Motivation

The generation of test suites for existing software systems is a major use case of Tavor.

One way of evaluating the quality of these test suites is to use mutation testing [14],

i.e., the software under test gets modified and the generated test suite is verified by

checking whether at least one test case fails and therefore if it catches the modifications.

A more thorough description of mutation testing can be found in Section 2.3.

At the time of implementation of Tavor, there has not been any adequate mutation

testing tool for the programming language Go. All three existing tools manbearpig [7],

mutator [8] and Golang-Mutaton-testing [6] have severe disadvantages:

• Only one type or even just one case of mutation is implemented.

• Only one mutation operator can be applied per execution. (manbearpig,

Golang-Mutaton-testing)

• The mutation of code is done by directly modifying the characters composing the

code. This can lead to lots of invalid mutations, e.g., because of syntax errors.

(Golang-Mutaton-testing)

• New mutation operators are not easily implemented and integrated since no com-

mon functionality nor API can be utilized.

74 The go-mutesting Framework

Figure 6.1: Architecture of Go-Mutesting

• Only one package or file can be analyzed per execution.

• Other scenarios than go test cannot be applied.

• Proper cleanup or the handling of fatal failures is not implemented.

• No automatic tests exist to ensure that the algorithms are working at all.

• Another language than Go is used for the implementation and it is therefore not

possible to utilize the up-to-date language parser. (Golang-Mutaton-testing)

Due to these insufficiencies we created the go-mutesting framework, which as de-

scribed in the following sections, overcomes all highlighted disadvantages.

6.2 Components

Figure 6.1 depicts the main components of the go-mutesting framework. The user

defines a set of files τ which should be mutated, and optionally a set of exec commands

κ which should be executed for each modification. Such modifications during mutation

testing are called mutants. The framework applies its individual mutation operators

called mutators µ on each file τ , resulting in a set of mutated files τ ′ for each mutator-

file pair. Each mutated file τ ′ is then written to the file system and executing the

individual exec commands κ. After these executions are finished the framework prints

the total number of mutants, the number of passing mutants and each failing mutant

with their associated source code patches. We consider a mutant to pass in case the test

suite failed for its mutation, which means that the mutant has therefore been killed.

Additional to the statistical output of mutants, go-mutesting calculates and outputs

the mutation score. Which is a metric on how many mutants have been killed by

6.3 Mutators 75

the test suite and therefore states the quality of the test suite. The mutation score is

calculated by dividing the number of passed mutants by the number of total mutants.

If we had for example a total of eight mutants, where six are passing then the mutation

score would be 6/8 = 0.75. A score of 1.0, which is most desirable, means that all

mutants have been killed.

6.3 Mutators

The mutation operators of the go-mutesting framework are called mutators, and are

used to introduce small deltas into the source files at hand. Mutators operate directly

on the AST of a file and must offer two kinds of operations:

• The Change operation adapts the AST node at hand.

• The Reset operation restores the original AST node.

Working directly on the AST has the advantage, that the introduced mutations are

syntactical valid, i.e., compilable source code. Currently the following mutators are

supported by the framework:

• The if-mutator replaces the body of an if-branch with a NOOP statement, which

creates an empty usage for every identifier of the substituted body. This is neces-

sary, since the programming language Go marks unused identifiers as syntactical

errors.

• The else-mutator replaces the body of an else-branch with a NOOP statement.

• The case-mutator replaces the body of a case-clause with a NOOP statement.

• The remove-expression-mutator modifies the binary logical operators AND and

OR. The AND operator is mutated by replacing its left and right operands with the

constant true. The OR operator is dealt with along the same lines by using the

constant false. For instance, the binary logical expression var1 && var2 results

in the two mutations true && var2 and var1 && true.

• The remove-statement-mutator modifies statements, such as assignments and

the increment/decrement statement, by replacing them with a NOOP statement.

76 The go-mutesting Framework

The above list of available mutators can easily be extended. A new mutator simply

needs to provide the two mutation operations Change and Reset. Additionally, each

mutator needs to be registered with the mutator registry of go-mutesting in order

to be applied during mutation testing.

6.4 Exec Commands

Exec commands are used by go-mutesting to define the actions which should be

taken for each individual mutant. Consider for instance a package with the following

files: LinkedList.go and LinkedList_test.go, where LinkedList.go is a linked list

implementation and LinkedList_test.go is the corresponding file for its tests. For

each mutant that go-mutesting produces for the file LinkedList.go, a temporary

file with the modifications of the mutant is written. Afterwards the specified exec

command is called, executing the tests within LinkedList_test.go.

A built-in exec command is provided by go-mutesting, which implements the follow-

ing behavior:

1. Temporarily overwrite the original file, in our example LinkedList.go, with its

mutated content.

2. Execute all tests of the package under test, which are in our example located in

LinkedList_test.go.

3. Restore the original file.

4. Report whether the mutant has been successfully killed.

Customized exec commands can be specified as command line parameters of go-

mutesting. Environment variables such as MUTATE_CHANGED and MUTATE_ORIGINAL

are used to communicate the path of the original as well as the mutated file to the exec

command. In order to report success or failure, the following exit codes need to be used

by exec commands:

• Exit code 0 indicates that the mutant was killed, i.e., that the test led to a failed

test after the mutation was applied.

• Exit code 1 indicates that the mutant is alive, i.e., that this could be a flaw in

the test suite or even in the implementation.

6.4 Exec Commands 77

• Exit code 2 indicates that the mutant was skipped, since other problems have

been found such as compilation errors.

• An exit code greater than 2 indicates that the mutant produced an unknown exit

code, which might be a flaw in the exec command.

Two examples of customized exec commands are provided by go-mutesting at 1:

test-current-directory.sh may be used to execute all tests of the current direc-

tory and test-mutated-package.sh to execute all tests originating from the specified

package.

1https://github.com/zimmski/go-mutesting/tree/master/scripts/exec

https://github.com/zimmski/go-mutesting/tree/master/scripts/exec

78 The go-mutesting Framework

79

Chapter 7

Evaluation

The evaluation performed in the context of this thesis is threefold: First we present

a case study, which demonstrates the major capabilities of the Tavor framework

and how the framework can be applied to software programs using the example of a

coin vending machine. Next we evaluate the generic fuzzing capabilities of Tavor by

comparing it with aigfuzz [2], a dedicated fuzzer for the AIGER formats [9]. Finally we

fuzz the JSON format and compare these generations with the manually written test

suite of Go’s JSON package.

7.1 Case Study: Coin Vending Machine

A coin vending machine is the typical example for showcasing the practicality of model-

based testing. In this section we introduce such a coin vending machine to give a step-

by-step guide to the techniques presented in this thesis and to show how they can be

applied to real world applications. The example is intentionally kept simple so that

the basic functionality of each technique can be demonstrated. Source code that is not

relevant for the demonstration but necessary for completeness can be found in Tavor’s

“A Complete Example” documentation [1].

The description of the demonstration is divided into the following subsections:

• Subsection 7.1.1 defines our use-case of the coin vending machine and its imple-

mentation.

• Subsection 7.1.2 defines the keyword-driven testing approach for defining test

cases and to test the implementation.

• Subsection 7.1.3 defines our test cases using the Tavor Format, and generates

and executes a test suite using the fuzz command of Tavor.

80 Evaluation

Figure 7.1: Example Automaton of the Coin Vending Machine

• Subsection 7.1.4 executes the generated test suite and identifies missing test cases

by applying code coverage metrics and go-mutesting.

• Subsection 7.1.5 introduces some intentional bugs and reduces failing test cases

that trigger these bugs using the reduce command of Tavor.

7.1.1 Definition of the Coin Vending Machine

In this case study we consider a basic coin vending machine, which accepts coins of

two different kinds: coin25 and coin50 representing credits of value 25 and 50. The

coin vending machine keeps track of the currently accepted credit and vends if a credit

of 100 is reached. One option to model this behavior, using a finite state machine,

is shown in Figure 7.1. Please note, that the given state machine could be defined

more efficiently using state variables commonly used in model-based testing. While the

Tavor framework supports such state variables, the Tavor format does not yet

fully implement them. One possible direction of future work are such advancements of

the Tavor format. Please refer to Chapter 8.2 for more details on proposed future

extensions.

In order to test the coin vending machine of our case study, an approach called keyword-

driven testing is applied, which is explored in the next section.

7.1.2 Keyword-Driven Testing

The software testing technique keyword-driven testing, introduced by Fewster et

al. in [13], also known as table-driven testing or action word based testing, separates the

documentation of a test case from its implementation. Usually a sequence of keywords

is used to specify the course of a test case, i.e., the sequence of keywords Credit0,

Coin50, Credit50, Coin50, Credit100, Vend, Credit0 specifies a sequence of ac-

tions to be executed for testing the coin vending machine. The implementation of the

7.1 Case Study: Coin Vending Machine 81

individual actions for each keyword, such as Coin50, is separated from the test case.

Thus, making it possible to write test cases without any programming knowledge.

In order to apply keyword-driven testing a format needs to be defined, which specifies

the structure of a keyword-driven test case. A test case can then be saved into a single

file called a keyword-driven file. Additionally, an executor is needed, which maps the

individual keywords of such tests to concrete actions.

The Tavor framework offers the package keydriven, which provides various func-

tionality to effectively apply keyword-driven testing. The function ReadKeyDrivenFile

is used to parse a keyword-driven file and the type Executor is used to map keywords to

their actions. Please consider Listing 67, which outlines the most important types and

functions of package keydriven. Next, we use this functionality to define an executor

for the coin vending machine, whose interface is shown in Listing 68. The interface of

coin vending machine offers the functions Credit, Coin and Vend. For testing such a

machine we introduce three keywords for our keyword-driven files with the following

semantics: The keyword credit is used for validating the credit amount currently held

by the vending machine, the keyword coin triggers the action of inserting a coin into

the vending machine and finally the keyword vend invokes the vending action. Please

note, that the keywords coin and credit need integer arguments specifying the coin

credit amount.

Listing 67 Functionality of Package Keydriven

1 // ReadKeyDrivenFile reads in a keyword-driven file.

2 func ReadKeyDrivenFile(file string) ([]Command, error)

3

4 type Executor interface {

5 // Register adds a given key-action pair to the executor.

6 Register(key string, action Action) error

7 // Execute executes a set of keyword-driven commands.

8 Execute(cmds []Command)

9 }

10

11 // NewExecutor initializes and returns a new executor.

12 func NewExecutor() *Executor

The executor connects the keyword-driven files, each representing a test scenario, with

the implementation under test. It reads, parses and validates keyword-driven files,

executes sequentially each key with its arguments by invoking actions of the implemen-

tation and validates these actions. A test passes if each action executes without any

problems. The pseudocode for an executor for the coin vending machines of the case

study is shown in Listing 69. Please note, that the pseudocode does not include any

error handling for the keyword-driven files and command line arguments in order to

82 Evaluation

Listing 68 Interface of the Coin Vending Machine Module

1 type VendingMachine interface {

2 // Credit returns the current credit of the coin vending machine.

3 Credit() int

4 // Coin inserts a coin into the coin vending machine and increases

its credit.↪→

5 Coin(credit int) error

6 // Vend executes a vend of the machine if enough credit (100) was

put in and returns true.↪→

7 Vend() bool

8 }

keep the code listing short. The main method subsequently parses the keyword-driven

file, initializes the executor and executes the read commands. The actual connection

between keywords and actions is made in function initExecutor, which registers for

each keyword a callback function using the functionality of the provided package key-

driven. Consider for instance the registration of the keyword credit, which includes

one parameter denoting the expected amount of credit.1 When this keyword is encoun-

tered, the defined expected credit is compared with the currently held credit of the coin

vending machine. In case these two values diverge, an error is returned, indicating that

the test scenario failed.

The next step for testing the coin vending machine is to generate keyword-driven files,

which is done in the next section by applying Tavor’s format and fuzzing capabilities.

7.1.3 Tavor Format and Fuzzing

A valid keyword-driven file for the Tavor framework needs to adhere to the following

conditions: Each line starts with and holds at most one keyword. Each keyword may

be followed by zero, one or more arguments, where each argument is preceded by a

tab character. Finally each line ends with the new-line character. Combining the state

machine shown in Figure 7.1, the defined keys and the rules for the keyword-driven

format together, results in the Tavor format shown in Listing 70.

This format file can now be easily fuzzed using the Tavor binary, resulting in outputs

such as Listing 71. Since there is a loop in the specified format, the graph can be

traversed more than once, resulting in longer keyword-driven files which execute the

action vend more than once. The default fuzzing strategy Random can create all possible

permutations of a format but since it is random, it will need enough time to do so.

1Validating the presence and type of keyword parameters has awas skipped to keep the pseudocode
short.

7.1 Case Study: Coin Vending Machine 83

Since even random events often lead to choosing the same path in a graph, many

duplicated results will be generated using the Random fuzzing strategy. To work around

this problem the AllPermutations strategy can be used which, as its name suggests,

generates all possible permutations of a graph. This strategy should be used wisely

since even small graphs can have an enormous amount of permutations. Also, since the

example graph has a loop, we can state that there is an infinite amount of permutations.

To work around this additional problem, the --max-repeat argument, which enforces a

maximum for traversals and repetitions of loops, is used with a suitable value. Choosing

a good value for --max-repeat is challenging, because high values may result in many

repetitive permutations that will not improve the testing process. Choosing a small

value on the other hand can lead to a bad coverage, which means that some scenarios

are not tested.

The chosen Tavor Format for testing the coin vending machine of this case study

is fairly easy to understand as it contains only a single loop. We choose the value

2 for --max-repeat to ensure that the repetitive part of the state machine is exe-

cuted at least once. By executing the following command: tavor --format-file

vending.tavor --max-repeat 2 fuzz --strategy AllPermutations --result-

folder testset --result-extension ".test". A total of 31 keyword-driven files

is generated and stored in folder testset. Each written test file is named by Tavor

according to its MD5 hash with the specified extension .test.

Since all components for testing the given state machine are now defined the next

step is to execute the actual tests using the executor. One option to do this, is by

invoking the program of Listing 69 for each test file, e.g., go run executor.go test-

set/fba58bb35d28010b61c8004fadcb88a3.test.

Executing each keyword-driven file separately is tedious. A better solution would be

to extend the executor, but this would also mean more restrictions and more flaw

possibilities in the executor code. Alternatively a simple Bash script which executes

each keyword-driven file of the folder testset and immediately exits if the execution

of a file fails can be used. An example for such a Bash script is shown in Listing 72.

Executing this script reveals no errors, i.e., all tests passed. In the next section we

introduce some defects into the implementation of the coin vending machine and check

whether the test suite is able to reveal them.

84 Evaluation

Listing 69 Example Executor for a Coin Vending Machine

1 func main() {

2 cmds := keydriven.ReadKeyDrivenFile(os.Args[1])

3 executor := initExecutor()

4 if err := executor.Execute(cmds); err != nil {

5 os.Exit(exitFailed)

6 }

7 os.Exit(exitPassed)

8 }

9

10 func initExecutor() *keydriven.Executor {

11 executor := keydriven.NewExecutor()

12 machine := implementation.NewVendingMachine()

13 executor.Register("credit", func(key string, parameters ...string)

error {↪→

14 expected := strconv.Atoi(parameters[0])

15 got := machine.Credit()

16 if expected != got {

17 return fmt.Errorf("Credit should be %d but was %d", expected,

got)↪→

18 }

19 return nil

20 })

21 executor.Register("coin", func(key string, parameters ...string)

error {↪→

22 if err := machine.Coin(strconv.Atoi(parameters[0])); err != nil {

23 return err

24 }

25 return nil

26 })

27 executor.Register("vend", func(key string, parameters ...string)

error {↪→

28 if vend := machine.Vend(); !vend {

29 return fmt.Errorf("Could not vend")

30 }

31 return nil

32 })

33 return executor

34 }

7.1 Case Study: Coin Vending Machine 85

Listing 70 Tavor Format for Coin Vending Machine

1 START = Credit0 *(Coin25 Credit25 | Coin50 Credit50)

2

3 Credit0 = "credit" "\t" 0 "\n"

4 Credit25 = "credit" "\t" 25 "\n" (Coin25 Credit50 | Coin50 Credit75)

5 Credit50 = "credit" "\t" 50 "\n" (Coin25 Credit75 | Coin50 Credit100)

6 Credit75 = "credit" "\t" 75 "\n" Coin25 Credit100

7 Credit100 = "credit" "\t" 100 "\n" Vend Credit0

8

9 Coin25 = "coin" "\t" 25 "\n"

10 Coin50 = "coin" "\t" 50 "\n"

11

12 Vend = "vend" "\n"

Listing 71 Key-Driven File for the Coin Vending Machine Test Scenario

1 credit 0

2 coin 25

3 credit 25

4 coin 50

5 credit 75

6 coin 25

7 credit 100

8 vend

9 credit 0

Listing 72 Key-Driven Test Script

1 #!/bin/bash

2 shopt -s nullglob

3 for file in testset/*.test

4 do

5 echo "Test $file"

6 ./executor $file

7 if [$? -ne 0]; then

8 echo "Error detected, will exit loop"

9 break

10 fi

11 done

86 Evaluation

7.1.4 Mutation Testing

Although the test suite introduced in Subsection 7.1.3 passes, it is no guarantee that

it verifies all functionality of the implementation of the coin vending machine. The

first step to determine the quality of the test suite is to look at its code coverage. By

converting the given test cases to ordinary Go test cases we can record their code

coverage using the commandgo test -coverprofile=coverage.out followed by the

command go tool cover -html=coverage.out to display the coverage information.

Using this approach we determined that only three lines are not covered of an overall

of 18 coverable lines. These three lines handle two negative cases of the coin vending

machine: the first is the insertion of an unknown coin, i.e., an unknown coin amount,

and the second is the invocation of the vending action, even though an amount of

100 credits has was reached. Both scenarios are not implemented in our model for

generating test cases and are not implemented in the executor. Hence, new keywords

would need to be introduced to generate and handle these scenarios. The shown code

coverage and our interpretation of the results therefore match our model. However,

code coverage only determines that a statement was executed but does not prove that

a statement has actuawas verified.

The main purpose of mutation testing is to determine the quality of a test suite at

hand by determining whether statements are tested by a given test suite. This tech-

nique, as well as go-mutesting, a framework for applying it, was introduced in detail

in Chapter 6. We apply mutation testing on our implementation and test suite by

invoking the command TESTSET=./testset/ go-mutesting coin. Please note, that

“./testset/” states the relative path to the directory holding the generated test cases

and “coin” defines the Go package that should be analyzed. The relevant parts of the

output for this command can be found in Listing 92 of Appendix C. Since the imple-

mentation is rather simple, only a small amount of mutations can be applied. A total

of five mutations were applied by go-mutesting, of whom three were killed by the

generated test suite. This results in a mutation score of 3/5 = 0.6. Investigating the

two alive mutations shows the same result as with the code coverage analysis, i.e., only

two negative cases are not covered. Hence, the used model to generate test cases applies

to all possible positive test scenarios.

The remainder of this section discusses different flaws that can be introduced into

the implementation of the coin vending machine, and checks, whether the previously

generated test suite catches them. The following defects were introduced separately to

the coin vending machine implementation:

1. The Coin method no longer increases the credit: This flaw can easily be

introduced either by removing the addition in the Coin method, or by using a

7.1 Case Study: Coin Vending Machine 87

non-pointer type as receiver for the Coin method which leaves the state of the

machine untouched.

2. The Vend method no longer decreases the credit: This flaw can be intro-

duced along the same lines as the previous one, by either removing the subtraction

in method Credit or by using a non-pointer type as a receiver.

3. Every second 25 coin no longer increases the credit: The defect type

”works once but not twice” can be found in many programs. To emulate this kind

of defect an additional state member was introduced to the coin vending machine

implementation in order to trigger such a defect on every second call of method

Coin with value 25.

Please note, that the first two defect types are automatically introduced using go-

mutesting. The third defect type on the other hand is not yet supported by the

framework and needs to be introduced by hand.

The test suite from Section 7.1.3 was executed individually for each of the above flaws.

Each defect type was successfully revealed, showcasing that the Tavor framework

can be used to generate test suites with little effort, that are able to catch these im-

plementation flaws. Besides its support for fuzzing and keyword-driven testing, the

Tavor framework may be also used to apply delta-debugging in order to decrease

debugging times. Applying delta-debugging to the coin vending machine case study is

the content of the subsequent section.

7.1.5 Delta-Debugging

Delta-debugging, introduced in Section 2.4, is a technique to automatically reduce

error revealing inputs in order to make debugging easier for developers. Consider, for

instance, a very long keyword-driven file revealing a defect. A developer would need

to walk through a very long path through the state machine before she is able to find

the cause of the problem. Often not the whole keyword-driven file is necessary to

successfully reproduce the problem. When this is the case delta-debugging comes in

handy to automatically reduce these keyword-driven files. The final result of the delta-

debugging process should be a minimal test case, which still triggers the same defect

as the original test case. This can be automatically or semi-automatically done by the

reduce command of the Tavor binary. The binary uses our Tavor format file to

parse and validate the given keyword-driven file and for reducing its data according

to the rules defined by the format file. For instance optional content like repetitions

88 Evaluation

can be reduced to a minimal repetition. In the coin vending machine case study the

iterations of the vending loop can be reduced.

When executing test case testset/fba58bb35d28010b61c8004fadcb88a3.test,2 for

the third defect type of Section 7.1.4, then the output in Listing 73 is generated. The

introduced defect is triggered in the second vending iteration, because every second 25

coin does not increase the machine’s credit counter.

Listing 73 Key-Driven Test Output

1 credit [0]

2 coin [50]

3 credit [50]

4 coin [50]

5 credit [100]

6 vend []

7 credit [0]

8 coin [50]

9 credit [50]

10 coin [25]

11 credit [75]

12 coin [25]

13 credit [100]

14 Error: Credit should be 100 but was 75

First the semi-automatic method of the Tavor reduce command is applied to the test

case at hand. The given format file is used to reduce the given input. Every reduction

step displays the question ”Do the constraints of the original input still hold for this gen-

eration?”to the user. The user’s task is to inspect and validate the reduced output of the

original data and decide by giving feedback if the defect is triggered (yes) or not (no).

The following command starts this process: tavor -format-file vending.tavor

reduce -input-file testset/fba58bb35d28010b61c8004fadcb88a3.test. Please

refer to Listing 91 of Appendix C for the generated outputs of this command.

Semi-automatic processes can be tedious for big data especially due to the manual

validation. The Tavor binary does therefore provide several methods to reduce the

given inputs in a fully automated manner. The executor written in Section 7.1.2 was

reused for this process. The reduction process is aided by the executor by exiting

with different status codes on success or failure. The following command starts

the fully automated delta-debugging process: tavor -format-file vending.tavor

reduce -input-file testset/fba58bb35d28010b61c8004fadcb88a3.test -exec

"./executor TAVOR_DD_FILE" -exec-argument-type argument -exec-exact-

exit-code. Each exit status code of the executor is compared to the original

2This test case was generation in Section 7.1.3.

7.2 Fuzzing the AIGER ASCII Format 89

exit status code. If it is not equal, the reduction process will try an alternative

reduction step until a reduction path is found that which leads to the minimum. The

output of the execution of this command is shown in Listing 74.

Listing 74 Fully Automated Delta-Debugging for Coin Vending Machine

1 credit 0

2 coin 50

3 credit 50

4 coin 25

5 credit 75

6 coin 25

7 credit 100

8 vend

9 credit 0

The fully automated delta-debugging step concludes our case study, which demonstrates

the major capabilities of the Tavor framework and how they can be applied to

facilitate model-based testing, fuzzing and delta-debugging on software programs.

7.2 Fuzzing the AIGER ASCII Format

One of the major claims of the Tavor framework is to be a generic fuzzing tool,

i.e., by providing the respective Tavor format, inputs of any format may be fuzzed.

To evaluate this claim we compare the generations of aigfuzz [2], a dedicated fuzzer

for the AIGER formats [9], with the generations of Tavor. In Subsection 7.2.1 we

shortly introduce the AIGER ASCII format, subsequently Subsection 7.2.2 outlines

the details of the experimental setup and finally Subsection 7.2.3 presents the results

and conclusions we draw from this evaluation.

7.2.1 Introducing the AIGER ASCII Format

The AIGER ASCII format is used to model and-inverter graphs, containing inputs,

outputs, latches, and-gates and inverters. We will discuss the structure and constraints

of this format using its Tavor format definition shown in Listings 75 and 76.3

3Please note, that the Tavor format definition was split up into two listings due to its length.

90 Evaluation

Listing 75 Tavor Format Denoting the AIGER ASCII Format Part One

1 $Variable Sequence = start: 2,

2 step: 2

3 ExistingLiteral = 0, // false

4 | 1, // true

5 | $Variable.Existing,

6 | ${Variable.Existing + 1} // +1 means a NOT for this

input↪→

7 Inputs = *(Input)

8 Input = $Variable.Next "\n"

9 Latches = *(Latch)

10 Latch = $Variable.Next " " ExistingLiteral "\n"

11 Outputs = *(Output)

12 Output = ExistingLiteral "\n"

13 ExistingLiteralAnd = 0, // false

14 | 1, // true

15 | ${Variable.Existing not in (AndCycle)},

16 | ${Variable.Existing not in (AndCycle) + 1} // +1

means a NOT for this input↪→

17

18 // AndCycle finds all paths beginning from the variable andLiteral

19 AndCycle = ${andList.Reference path from (andLiteral) over (e.Item(0))

connect by (e.Item(2) / 2 * 2, e.Item(4) / 2 * 2) without (0, 1)}↪→

20 Ands = *(And)

21 And = $Variable.Next<andLiteral> " " ExistingLiteralAnd " "

ExistingLiteralAnd "\n"↪→

22

23 Header = "aag ",

24 (, // M

25 ${Inputs.Count + Latches.Count + Ands.Count},

26 | ${Inputs.Count + Latches.Count + Ands.Count + 1}, // M does

not have to be exactly I + L + A there can be unused

Literals

↪→

↪→

27) " ",

28 $Inputs.Count " ", // I

29 $Latches.Count " " , // L

30 $Outputs.Count " ", // O

31 $Ands.Count "\n" // A

7.2 Fuzzing the AIGER ASCII Format 91

Listing 76 Tavor Format Denoting the AIGER ASCII Format Part Two

1 Body = Inputs,

2 Latches,

3 Outputs,

4 Ands<andList>

5

6 Comments = "c\n",

7 *(Comment)

8 Comment = *([\w]) "\n"

9

10 Symbols = +0,$Inputs.Count(SymbolInput),

11 +0,$Latches.Count(SymbolLatch),

12 +0,$Outputs.Count(SymbolOutput)

13

14 SymbolInput = "i" $Inputs.Unique<=e> $e.Index " " +([\w]) "\n"

15 SymbolLatch = "l" $Latches.Unique<=e> $e.Index " " +([\w]) "\n"

16 SymbolOutput = "o" $Outputs.Unique<=e> $e.Index " " +([\w]) "\n"

17

18 START = $Variable.Reset,

19 Header,

20 Body,

21 ?(Symbols),

22 ?(Comments)

Variables in the AIGER ASCII format are indexed using positive even integer values

greater or equal to two, this coherence is modeled by using a sequence in the token

Variable. Inverters in the AIGER ASCII format are denoted by setting the least

significant bit of a literal, due to this reason only even integers are used for variables.

Let us assume literal 2 denotes an input to the and-inverter graph, then the literal 3

is used to denote the negation of this input. All existing literals for the and-inverter

graph are defined in token ExistingLiteral. The constants TRUE and FALSE are

denoted using the literals 0 and 1. Additionally, all variables and their negations are

part of all available existing literals.

The inputs and outputs of the and-inverter graph are represented by a single valid

variable. A latch is defined by first listing its current state followed by its next state

separated by a whitespace character. The AIGER ASCII format poses by far the most

constraints on used and-gates. An and-gate is defined by first listing its left-hand

side literal followed by its two right-hand side literals each separated by whitespace

characters, e.g., for storing the result of the AND operation on the two variables 2 and

4 in variable 6 one would need to write 6 2 4. This coherence is captured by token

And. The AIGER ASCII format allows the connection of several and-gates, i.e., the

left-hand side literal of an and-gate, or its negation, may be used in the right-hand

side literal of another and-gate. However, it is prohibited to model cycles of and-gates

92 Evaluation

in the and-inverter graph. Hence, the tokens ExistingLiteralAnd and AndCycle are

necessary to ensure no cycles are generated by Tavor.

The header of the AIGER ASCII format starts with the string aag followed by five

integers M I L O A separated by whitespace characters. Where M denotes the number

of variables, I the number of inputs, L the number of latches, O the number of outputs

and A the number of and-gates. The header is followed by the body of the format,

listing consecutively the definitions of inputs, latches outputs and and-gates. The body

is succeeded by an optional symbol table and an optional comment section. A symbol

table is used to connect symbols, which are ASCII strings, to specific inputs, outputs or

latches. Please note, that at most one symbol can be connected to a specific variable. In

order to connect the first input with symbol my_input we need to denote i0 my_input.

For more details on the constraints and structure of the AIGER ASCII format, please

refer to [9].

During the conduction of this evaluation we observed, that while it is possible to repre-

sent the AIGER ASCII format with the Tavor framework, it is a challenging task

to come up with the correct format definition and semantics. Of course, it is still more

time consuming to write a dedicated AIGER ASCII format fuzzer than defining its

Tavor format, since a lot of boilerplate code and algorithms have to be created to

handle the fuzzing part of the defined structures. Additionally, data structures as well

as the architecture of such a dedicated fuzzer have to be defined and implemented in-

stead of simply defining the syntax and semantics of a format, as can be done using the

Tavor format. In the next subsections we will compare the generations of Tavor

using the format defined in this subsection with the generations of the aigfuzz fuzzer.

7.2.2 Experimental Setup

This subsection describes the experimental setup of this evaluation in detail. First

we describe the hardware of the evaluation, then we outline how the test sets were

generated and finally we describe the compilation and execution details.

Hardware

The generation of the test sets as well as their compilation and execution, have been

executed in a KVM VM with OpenSUSE 42.3 as the hypervisor and guest operat-

ing system. The VM consisted of 4 virtual cores of an Intel Xeon CPU E3-1275 v5

with 3.60GHz, 16GB of DDR4 ECC RAM with a clock frequency of 2400 MHz and a

dedicated volume to two Toshiba XG3 M.2 NVMe drives in a software RAID1 config-

uration.

7.2 Fuzzing the AIGER ASCII Format 93

Test Set Generation

In order to compare the generations of aigfuzz with the generations of the Tavor

framework, three different test sets were created. The first test set was generated

using the command aigfuzz -a, in order to generate only AIGER ASCII format files

using the aigfuzz tool. The remaining two test sets were created with the Tavor

framework using the format introduced in Listings 75 and 76. One is generated using

the random fuzzing strategy, where the parameter defining the maximum number of

loop unrollings max-repeat is set to 10, in order to ensure that also large files are being

generated. The other test set is generated using the AlmostAllPermutations fuzzing

strategy, with max-repeat set to 14.

For the randomly generated test sets a maximum of unique 10.000 test cases were gener-

ated. And for the AlmostAllPermutations test set of Tavor all tests were created, i.e.,

204 tests. Please note, that the number of possible tests for this fuzzing strategy is finite

as it is bounded through the definition of max-repeat. Each of the generated test sets is

stored in its own folder, where each generated file is stored named by its MD5 checksum

using the file extension .test, e.g., b6fe6a6049c39ab112f778769e92cc76.test.

Compilation and Execution

The comparison of the three test sets is performed by measuring the code coverage they

reach in the AIGER toolset, which provides various executables operating on AIGER

ASCII files. For this experiment we used the AIGER toolset in version 1.9.4. from

http://fmv.jku.at/aiger/.

In order to compile the toolset, we first created the default Makefile of the toolset by

running ./configure. Next this Makefile has been adapted to do compilations using

Clang in version 4.0.1., by setting CC=clang-4.0.1. Additionally, we changed the envi-

ronment variable CFLAGS to -O3 -DNDEBUG -fprofile-instr-generate -fcoverage-

mapping to make the coverage information for each execution available, and the address

sanitizer option -fsanitize=address was appended to CFLAGS, enabling the detection

and reporting of memory errors during runtime. Finally we ran make to compile all

binaries of the toolset with the defined configuration.

The LLVM developer tools were used to make the coverage information for

this evaluation available. To run for instance the aigand tool on test case

12666cece4dbf5bfc1e1d46c02819da of the Random fuzzing strategy the follow-

ing command needs to be executed: LLVM_PROFILE_FILE=./aiger/outa.profraw

./aiger/aigand ./aiger/tavor-random/12666cece4dbf5bfc1e1d46c02819da.test.

This command stores the coverage information of this execution in file

./aiger/outa.profraw. Before this file can be used, it needs to be indexed

4Higher values for max-repeat are currently not supported for the AIGER format in combination with
the AlmostAllPermutations fuzzing strategy due to an error in the generation of permutations.

http://fmv.jku.at/aiger/

94 Evaluation

Figure 7.2: Code Coverage Example

using the following command llvm-profdata merge -sparse outa.profraw -o

outa.profdata.

Figure 7.2 depicts the relevant data which has been gathered for a single run. Code

regions may span multiple lines, i.e., for blocks without any control flow. But it is

also possible that a single line contains several regions, e.g., in if(a || b). Lines

inform about the lines of code that have been covered. Please refer to [3], for a detailed

description of the used coverage tool and its workflows.

Since we run each test case separately per tool, we need to merge the code coverages for

the individual runs in order to gain the cumulative coverage of a test set. To merge two

code coverages the following command was executed: llvm-profdata merge -sparse

foo1.profraw foo2.profdata -o foo3.profdata.

For automatically running each generated test on the tools of the AIGER toolset and

computing their cumulative coverage per test set, a Go script has been devised. The

pseudocode outlining the contents of this script is shown in Listing 77. It iterates over

the three test sets and cleans up their execution directory using the auxiliary function

cleanupExecutionDirectory. For each of the AIGER tools used for this evaluation

the tests of a test set are executed using the auxiliary function execute, which returns

the coverage c as well as exit status e of the execution. These code coverages and

exit states are stored and cumulated per tool and test set. Finally, the results of the

evaluation are printed out for examination.

7.2.3 Results and Conclusions

The statistic of the generated test sets is presented in Table 7.1, where column Name

denotes the name of the test set using the naming convention <tool>-<fuzzing strat-

egy>, Cases holds the number of unique tests in the test set, Invalid informs about

the number of invalid generations, i.e., those not conforming to the format specifica-

tion, Size(MB) holds the required disk space of the test set in megabytes and Time(s)

informs about the time needed to generate the test set using the respective tool in sec-

onds. When comparing the test set aigfuzz-random with tavor-random we observe

that Tavor’s generation is almost twice as fast as the generation of aigfuzz, which may

be a result of the generated test set size. The tests generated by aigfuzz are 3.5 times

7.2 Fuzzing the AIGER ASCII Format 95

Listing 77 Pseudo Code for the Script for Performing the AIGER Evaluation

1 testSets := [...]string{"aigFuzz -a", "tavarRandom", "tavorAllPerms"}

2 tools := [...]string{"aigand", "aigbmc -m", "aigflip", "aiginfo", ...}

3

4 for _, ts := range testSets {

5 cleanupExecutionDirectory(ts)

6 for _, tool := range tools {

7 for _, t := range testsOfTestSet(ts) {

8 c, e := execute(tool, t)

9

10 cumulateCoverage(ts, tool, c)

11 cumulateExitStatus(ts, tool, e)

12

13 cleanup(t)

14 }

15 }

16 }

17

18 printResults()

Table 7.1: Comparison of the Test Set Generation of the AIGER Evaluation

Name Cases Invalid Size(MB) Time(s)

aigfuzz-random 10000 0 1125 143.90

tavor-random 10000 918 40 82.70

tavor-aap 204 0 0.8 1.40

larger than the ones generated by Tavor. Additionally, Tavor generated 918 invalid

tests which has not been done on purpose. Hence, either the format specification or

the Tavor framework contains a bug. By far the smallest test set, with 204 tests, is

represented by tavor-aap, which has been generated with the AlmostAllPermutations

fuzzing strategy.

The 16 commands which were used for this evaluation are listed in Table 7.2. On

average these commands span 3400 lines of code and contain 1830 code regions per

command.

The execution results of this experiment are shown in Table 7.3. The lines-missed

resp. regions-missed inform about source code lines resp. regions which have not

been covered by the test set. Columns lines-percentage resp. regions-percentage

inform about the covered lines resp. regions in percent. Next, the column Address-

Sanitizer denotes the number of executions for which LLVM’s AddressSanitizer has

been able to detect a problem. The number of runs for which an AIGER command ex-

ited with an exit status not equal to zero are captured in column ExitStatusNotZero.

96 Evaluation

Table 7.2: Comparison of the Commands of the AIGER Evaluation

Command Lines Regions

aigand 3259 1749

aigbmc 3477 1934

aigflip 3264 1751

aiginfo 3164 1704

aigmiter 3332 1825

aigmove 3272 1783

aignm 3164 1704

aigor 3237 1743

aigsim 3832 2101

aigsplit 3342 1768

aigtoaig 3370 1794

aigtoblif 3491 1887

aigtocnf 3323 1799

aigtodot 3348 1796

aigtosmv 3388 1820

aigunroll 4123 2167

Finally, column FileNotApplicable denotes the number of test cases that have not

been accepted, because their structure is not suitable for the respective command.

The experiment shows that Tavor’s random fuzzing strategy reaches 2.6% to 15.26%

more coverage than aigfuzz. Even though, Tavor generated substantially smaller files

in less time. Since the coverage difference is considerable more than a few lines, the

assumption that the invalid test cases generated by Tavor are solely responsible for

the higher coverage can be neglected. Additionally, Tavor’s random fuzzing strategy

also led to more executions with exit states unequal to zero, which sometimes were due

to the invalid test cases. For the commands aigtocnf and aigunroll there were cases

which are valid but still led to non-zero exit states. Hence, Tavor did cover substantially

more paths than aigfuzz. Furthermore, a fault found by LLVM’s AddressSanitizer was

discovered during the execution of Tavor’s test suites for the command aigflip which

aigfuzz did not find.

In comparison Tavor’s AlmostAllPermutations fuzzing strategy reached for 13 com-

mands in average 3.32% more line coverage than aigfuzz. For the command aigunroll

a coverage of 61.38% was reached which even surpasses Tavor’s random fuzzing strat-

egy by 34.68%. However, the line coverage of the commands aigflip and aigmiter

did not exceeded the coverage of aigfuzz. Since these results have been generated with

only max-repeat set to 1, it can be assumed that a better coverage can be reached than

with the random fuzzing strategy when setting max-repeat to a higher value. How-

ever, the results for this test set are already astonishing since the coverage, surpassing

7.2 Fuzzing the AIGER ASCII Format 97

Table 7.3: Comparison of the Test Set Execution of the AIGER Evaluation

Command Test Set LM LP RM RP AS ESNZ FNA
aigand aigfuzz-random 1822 44.09 972 44.43 0 0 0
aigand tavor-aap 1682 48.39 908 48.08 0 0 0
aigand tavor-random 1326 59.31 753 56.95 0 918 0
aigbmc aigfuzz-random 2185 37.16 1243 35.73 0 0 0
aigbmc tavor-aap 2096 39.72 1209 37.49 0 0 0
aigbmc tavor-random 1716 50.65 1043 46.07 0 918 0
aigflip aigfuzz-random 1857 43.11 994 43.23 0 0 0
aigflip tavor-aap 3142 0.00 1692 0.00 99 99 0
aigflip tavor-random 1367 58.12 780 55.45 4099 5017 0
aiginfo aigfuzz-random 2104 33.50 1165 31.63 0 0 0
aiginfo tavor-aap 2050 35.21 1148 32.63 0 0 0
aiginfo tavor-random 1997 36.88 1114 34.62 0 918 0
aigmiter aigfuzz-random 1552 53.42 880 51.78 0 0 0
aigmiter tavor-aap 1580 52.58 891 51.18 0 10 10
aigmiter tavor-random 1342 59.72 781 57.21 0 1763 845
aigmove aigfuzz-random 1903 41.84 1024 42.57 0 0 0
aigmove tavor-aap 1761 46.18 953 46.55 0 0 0
aigmove tavor-random 1414 56.78 810 54.57 0 918 0
aignm aigfuzz-random 2092 33.88 1158 32.04 0 0 0
aignm tavor-aap 1996 36.92 1116 34.51 0 0 0
aignm tavor-random 1985 37.26 1107 35.04 0 918 0
aigor aigfuzz-random 1816 43.90 968 44.46 0 0 0
aigor tavor-aap 1678 48.16 905 48.08 0 0 0
aigor tavor-random 1322 59.16 749 57.03 0 918 0
aigsim aigfuzz-random 2459 35.83 1404 33.17 0 0 0
aigsim tavor-aap 2354 38.57 1359 35.32 0 0 0
aigsim tavor-random 1980 48.33 1200 42.88 0 918 0
aigsplit aigfuzz-random 1850 44.64 993 43.83 0 0 0
aigsplit tavor-aap 1673 49.94 905 48.81 0 0 0
aigsplit tavor-random 1360 59.31 779 55.94 0 918 0
aigtoaig aigfuzz-random 2042 39.41 1078 39.91 0 0 0
aigtoaig tavor-aap 1952 42.08 1030 42.59 0 0 0
aigtoaig tavor-random 1588 52.88 879 51.00 0 918 0
aigtoblif aigfuzz-random 2242 35.78 1268 32.80 0 0 0
aigtoblif tavor-aap 2102 39.79 1194 36.72 0 0 0
aigtoblif tavor-random 2050 41.28 1173 37.84 0 918 0
aigtocnf aigfuzz-random 2326 30.00 1284 28.63 0 9967 9967
aigtocnf tavor-aap 2257 32.08 1255 30.24 0 201 201
aigtocnf tavor-random 2219 33.22 1233 31.46 0 9933 9015
aigtodot aigfuzz-random 2229 33.42 1230 31.51 0 0 0
aigtodot tavor-aap 2126 36.50 1192 33.63 0 0 0
aigtodot tavor-random 2095 37.43 1168 34.97 0 918 0
aigtosmv aigfuzz-random 2189 35.39 1222 32.86 0 0 0
aigtosmv tavor-aap 2085 38.46 1176 35.38 0 0 0
aigtosmv tavor-random 2063 39.11 1160 36.26 0 918 0
aigunroll aigfuzz-random 3130 24.08 1648 23.95 0 9758 9758
aigunroll tavor-aap 1593 61.36 912 57.91 0 10 10
aigunroll tavor-random 3023 26.68 1597 26.30 0 9161 8243

LM=lines-missed, LP=lines-percentage, RM=regions-missed, RP=regions-percentage,
AS=AddressSanitizer, ESNZ=ExitStatusNotZero, FNA=FileNotApplicable

98 Evaluation

aigfuzz for 14 out of 16 commands, has been reached with substantially less test cases

and generation time than with the other test sets.

All things considered, one explicit bug has been found in the AIGER toolset and contin-

uous better line and regional coverage has been reached with Tavor’s random fuzzing

strategy in direct comparison to aigfuzz a dedicated fuzzer for the AIGER format. Ad-

ditionally, Tavor’s AlmostAllPermutations fuzzing strategy reached better coverage

for 14 out of 16 commands with its specific test case generation. Both fuzzing strate-

gies reached these achievements with substantially smaller sized test cases and far less

time for generating their test sets. In summary, this evaluation proved that Tavor as

a generic fuzzer can keep up against a dedicated fuzzer, and that even a small amount

of small-sized test cases can outperform a bigger test set.

7.3 Fuzzing the JSON Format

Handling sophisticated formats, such as the AIGER format presented in Section 7.2, is

just one area where a generic fuzzer must excel. Another area are simple formats with-

out any semantics but with lots of variety and recursive data structures. This section

takes a look at the widely used JSON format, to evaluate that the Tavor framework

can also efficiently define and fuzz such formats. The evaluation compares 3 generated

test sets of Tavor with the manually written test suite of the JSON implementation

encoding/json of the programming language Go. In Subsection 7.3.1 we shortly in-

troduce the JSON format, subsequently Subsection 7.3.2 outlines the details of the

experimental setup and finally Subsection 7.3.3 presents the results and conclusions we

draw from this evaluation.

7.3.1 Introducing the JSON Format

The JSON (JavaScript Object Notation) format is a human-readable text format to

depict JavaScript’s data structures such as strings, numbers, arrays and name-value

pairs. Even though JSON’s name might suggest that it is bound to the programming

language JavaScript, it is language-independent. Nowadays JSON is widely used for

saving data and most commonly utilized for the communication between services. The

format has been officially defined in RFC 71595. We will discuss the structure and

constraints of this format using its Tavor format definition shown in Listing 78.

Please note, that reading the RFC and defining this format took about 3 hours.

5https://tools.ietf.org/html/rfc7159

https://tools.ietf.org/html/rfc7159

7.3 Fuzzing the JSON Format 99

Listing 78 Tavor Format Denoting the JSON Format

1 START = Value

2 Array = WS beginArray ?(Value *(valueSeparator Value)) endArray WS

3 Object = WS beginObject ?(Member *(valueSeparator Member)) endObject

WS↪→

4 Member = WS String WS nameSeparator Value // Member name, should be

unique per object↪→

5 Number = WS ?("-") (0 | [1-9]*([0-9])) ?("." +([0-9])) ?([eE] ?("-" |

"+") +([0-9])) WS↪→

6 String = WS "\"" *(Char) "\"" WS

7 Char = CharUnescaped | CharEscaped

8 CharUnescaped = [\x20-\x21] | [\x23-\x5B] | [\x5D-\x{10FFFF}] //

10FFFF -> 21bit of unicode↪→

9 CharEscaped = "\\" (,

10 "\"", // quotation mark

11 | "\\", // reverse solidus

12 | "/", // solidus

13 | "b", // backspace

14 | "f", // form feed

15 | "n", // line feed

16 | "r", // carriage return

17 | "t", // tab

18 | "u" +4([a-fA-F0-9]), // 4 hex digits

19)

20 Value = (,

21 Object | Array | Number | String,

22 | WS "false" WS, // must be lower case

23 | WS "null" WS, // must be lower case

24 | WS "true" WS, // must be lower case

25)

26 // Helper

27 beginArray = "["

28 beginObject = "{"

29 endArray = "]"

30 endObject = "}"

31 nameSeparator = ":"

32 valueSeparator = ","

33 WS = *([\t\n\r])

100 Evaluation

The basic building block of the JSON format is a Value which represents every possible

data structure of the format. A Value can be simple data such as a Number or a

String, it can be a boolean value (false, true), the empty value null or it can contain

combined values such as an Array or an Object, which defines name-value pairs. All

of these definitions can be surrounded by whitespace characters. Even though, the

value types Number and String store just simple data values, their representation can

be rather complex, since they allow a variety of definitions, e.g., a String can consist

of escaped and unescaped characters spanning the complete Unicode spectrum. For

more details on the constraints and structure of the JSON format, please refer to RFC

7159.

During the conduction of this evaluation we observed that while Tavor is capable

of fuzzing the format defined in Listing 78, it generates lots of test cases which look

different to a human but exercise the same paths in a JSON implementation. To work

around this problem, we defined a smaller format shown in Listing 79. The following

reductions were made in comparison to the original format: first whitespace characters

were completely removed from the generation, second the character generation was

reduced to hold only the min and max permutations of the different character sets and

lastly the number representation was reduced to a minimum set of interesting values.

These manual reductions allowed to generate a smaller set of interesting test cases in

a short amount of time. In the next subsections we will compare the generations of

Tavor using the format defined in this subsection with the manually written test suite

of the encoding/json package, the official implementation of the JSON format of the

programming language Go.

7.3.2 Experimental Setup

This subsection describes the experimental setup of this evaluation in detail. First we

outline how the test sets were generated and finally we describe the execution details.

The hardware for the evaluation has the same setup as with the AIGER evaluation

described in Subsection 7.2.2.

Test Set Generation

In order to compare the manually written test suite of the JSON implementation en-

coding/json of the programming language Go with the generations of the Tavor

framework, three different test sets were created. The fuzzing strategy AlmostAllPer-

mutations was used for all three test sets with max-repeat set to 1, 2 and 3 using

the format introduced in Listing 79. Since this fuzzing strategy tries to generate

targeted test cases and is bound to max-repeat, and finite set of test cases will be

generated. Each of the generated test sets is stored in its own folder, where each gen-

7.3 Fuzzing the JSON Format 101

Listing 79 Tavor Format Denoting a Minimum of the JSON Format

1 START = Value

2 Array = beginArray ?(Value *(valueSeparator Value)) endArray

3 Object = beginObject ?(Member *(valueSeparator Member)) endObject

4 Member = String nameSeparator Value

5 Number = "0" | "-0" | "949" | "999" | "-544" | "0.0" | "-0.0" | "0.4"

| "0.00" | "0.40" | "-0.04" | "0e0" | "0e4" | "0E9" | "0e-9" |

"0e+0" | "0e+9" | "0E-9" | "0E+0" | "0E+4" | "0e00" | "100E+99" |

"140E+99" | "-999.99E+99"

↪→

↪→

↪→

6 String = "\"" *(Char) "\""

7 Char = CharUnescaped | CharEscaped

8 CharUnescaped = [\x20\x21\x23\x5B\x5D\x{10FFFF}]

9 CharEscaped = "\\" ("\"" | "\\" | "/" | "b" | "f" | "n" | "r" | "t"

| "u" ("0000" | "FFFF"))↪→

10 Value = Object | Array | Number | String | "false" | "null" | "true"

11 beginArray = "["

12 beginObject = "{"

13 endArray = "]"

14 endObject = "}"

15 nameSeparator = ":"

16 valueSeparator = ","

erated file is stored named by its MD5 checksum using the file extension .test, e.g.,

833f52bdb291f5915a6620fdaefe48bc.test. Additionally to the three generated test

set, we also included a combination of these three test sets and the manually written

test suite as the fifth “combined” test set.

Execution

The comparison of the generated test sets to the manually written test suite of encod-

ing/json is twofold. First we measure the code coverage they reach in the implementa-

tion of encoding/json, afterwards we perform mutation testing using go-mutesting,

which was introduced in Chapter 6. For this experiment we used Go in version 1.7.1

from https://golang.org/dl/.

Each generated test set is executed using its own Go test function, which loads all test

cases and executes each of them separately using the function testCase of Listing80.

The test case function testCase calls only two functions of the encoding/json im-

plementation, namely Marshal and Unmarshal, and checks their execution for errors.

Therefore, it can be assumed that the generated test cases will cover far less of the

implementation as the manually written test suite. Furthermore, since the generation

only include valid cases, no error paths will be executed. Hence, a direct comparison

of the code coverage is not appropriate. However, the results of the killed mutations

during mutation testing can be directly compared, since they indicate tested paths in

the implementation.

https://golang.org/dl/

102 Evaluation

Listing 80 Test Function for Generated JSON Data

1 func testCase(t *testing.T, data []byte) {

2 var o interface{}

3 err := Unmarshal(data, &o)

4 if err != nil {

5 t.Fatal(err)

6 }

7 _, err = Marshal(o)

8 if err != nil {

9 t.Fatal(err)

10 }

11 }

Since all test sets as well as the manually written test suite are implemented using

Go test functions, the execution of the evaluation can be done using Go’s testing

tool and go-mutesting. The encoding/json implementation was copied in its own

GOPATH environment and the test sets have been added to each execution. To ex-

ecute a test set and measure its coverage the command GOPATH=$PWD/testset go

test json -coverprofile=testset.coverage was used, where $PWD/testset indi-

cates the folder to the given test set, json defines the package which should be tested

and testset.coverage determines the coverage file for the test set. The execution of

mutation testing was similarly performed using the command GOPATH=$PWD/testset

go-mutesting json.

7.3.3 Results and Conclusions

The statistic of the generated test sets is presented in Table 7.4, where column Name

denotes the name of the test set, Cases holds the number of unique tests in the test

set, Size(MB) denotes the required disk space of the test set in megabytes and Time(s)

informs about the time needed to generate the test set in seconds. The max-repeat-

1 includes no recursive data structures, while max-repeat-2 and max-repeat-3 include

such structures and will therefore presumably reach more coverage. However, the later

two test sets also include far more test cases and took more time to generate. Espe-

cially max-repeat-3 is a substantially larger test set and consumed a big amount of

computational power for the generation of its test cases.

The implementation of encoding/json consists of 1649 coverable statements, and

go-mutesting found 1284 exercisable mutation of whom 147 are skipped because

of various reasons, e.g., some mutations lead to uncompilable code. The execution

results of this experiment are shown in Table 7.5. The Missed Statements column

informs about statements that are not covered by the test set. Next, the column

7.3 Fuzzing the JSON Format 103

Table 7.4: Comparison of the Test Set Generation of the JSON Evaluation

Name Cases Size(MB) Time(s)

max-repeat-1 46 0.18 0.015

max-repeat-2 1277 5.1 0.912

max-repeat-3 71061 283 457.003

Table 7.5: Comparison of the Test Set Results of the JSON Evaluation

Name MS SCP KM

original 166 89.93 838

max-repeat-1 1211 26.56 148

max-repeat-2 1124 31.84 181

max-repeat-3 1124 31.84 181

combined 166 89.93 840

MS = Missed Statements, SCP =
Statement Coverage in Percentage,
KM=Killed Mutations

Statement Coverage in Percentage detonates in percent how many statements have

been covered. Finally, column Killed Mutations states how many mutations out of

1284 have been killed and are therefore checked by the test set.

The experiment shows that Tavor’s generated test sets reach 26.56% and 31.84%

statement coverage solely by execution two functions of the underlying implementa-

tion, while the original manually written test suite covers 89.93%. Combining the

original test suite with the generated test sets does not lead to any additional state-

ment coverage. Both test set max-repeat-2 and max-repeat-3 have the same coverage

and mutation testing result. Hence, the additional computational time for generating

the third test set with max-repeat set to 3 did not accomplish any additional coverage

for the JSON format. Looking at the mutation testing results reveals that the max-

repeat-1 test set covered 11.52% and max-repeat-2 covered even 14.09% of the overall

mutations. Surprisingly, combining the original test suite with the generated test sets

resulted in 2 additionally killed mutations, i.e., two code paths that were not checked

by the original test suite. Investigating this result reveals that these mutations are

already killed by the max-repeat-1 test set. The first mutation shown in Listing 81

reveals that no test case of the original test suite checks upper-case characters in the

third character of a Unicode escaped character, e.g., the escaped character \uAC3C be-

longs to this class of characters since the character “3” is not an upper-case character.

The second mutation shown in Listing 82 would be checked by parsing an empty JSON

object {} into an object of an empty Go interface. These mutations manifest that a

behavioral change for these two cases would not be caught by the existing test suite.

104 Evaluation

Listing 81 Mutant Killed by Tavor Part One

1 --- /home/symflower/json/json/original/src/json/scanner.go 2017-12-01

18:53:42.663580118 +0100↪→

2 +++ /tmp/go-mutesting-

288106446//home/symflower/json/json/original/src/json/scanner.go.119

2017-12-03 10:43:45.026538957 +0100

↪→

↪→

3 @@ -378,7 +378,7 @@

4 // stateInStringEscU12 is the state after reading `"\u12` during a

quoted string.↪→

5 func stateInStringEscU12(s *scanner, c byte) int {

6 - if '0' <= c && c <= '9' || 'a' <= c && c <= 'f' || 'A' <= c && c <= 'F' {

7 + if '0' <= c && c <= '9' || 'a' <= c && c <= 'f' || false {

8 s.step = stateInStringEscU123

9 return scanContinue

10 }

11 FAIL "/tmp/go-mutesting-

288106446//home/symflower/json/json/original/src/json/scanner.go.119"

with checksum 3b91ecf37738b985eb6fa9a64bb9fcf9

↪→

↪→

Listing 82 Mutant Killed by Tavor Part Two

1 --- /home/symflower/json/json/original/src/json/decode.go 2017-12-01

18:53:43.147579808 +0100↪→

2 +++ /tmp/go-mutesting-

288106446//home/symflower/json/json/original/src/json/decode.go.183

2017-12-03 10:14:54.687623329 +0100

↪→

↪→

3 @@ -998,7 +998,7 @@

4 op := d.scanWhile(scanSkipSpace)

5 if op == scanEndObject {

6 // closing } - can only happen on first iteration.

7 - break

8 +

9 }

10 if op != scanBeginLiteral {

11 d.error(errPhase)

12 FAIL "/tmp/go-mutesting-

288106446//home/symflower/json/json/original/src/json/decode.go.183"

with checksum 684f5c20122977ca389bb307ee0db6f7

↪→

↪→

7.3 Fuzzing the JSON Format 105

All things considered, no additional coverage but two additional killed mutations have

been achieved by this quick evaluation of the JSON format and the official JSON

implementation of the Go programming language. Additionally, one inconsistency has

been cleaned up and one behavioral change has been made due to this evaluation6 in

the Go project. These problems have been found, even though this implementation

has been thoroughly tested since 2009. In summary, this evaluation proved that it is

important to not solely rely on code coverage as a metric for stating the quality of a test

suite but also to use more detailed analysis such as mutation testing. Additionally, we

showed that Tavor fuzzing capabilities can be applied to diverse and highly recursive

formats, and that its generations can lead with little effort to high coverage in a short

amount of time.

6https://codereview.appspot.com/162340043/

https://codereview.appspot.com/162340043/

106 Evaluation

107

Chapter 8

Conclusion

This chapter provides the conclusions we draw from this thesis, by first summarizing

its results and by outlining the directions for future work on Tavor.

8.1 Summary

In general both testing and debugging software are cumbersome as well as error prone

tasks which would strongly benefit from automated techniques. Fuzzing and delta-

debugging are such techniques, which are very well known in literature. In this thesis

we devised the Tavor framework that utilizes both approaches by operating on the

same data model.

Especially in times where programming skills are such a rare trait, tools and techniques

are needed which enable also non-programmers to apply automated testing techniques.

For this reason, we designed the Tavor Format, which is used to specify the data

model on which the Tavor framework operates on. This format enables also testers

without any programming skills to define the data models that are needed for fuzzing

and delta-debugging. Additionally, the Tavor CLI can be used to utilized the capa-

bilities of the Tavor framework without the need to write any source code.

In our evaluation we demonstrated how the Tavor framework, format and CLI may

be combined to efficiently test and debug software programs using the example of a

simple coin vending machine. We used go-mutesting, a by-product of this thesis, to

introduce bugs into the coin vending machine and validate the generated test suite. In

addition to the coin vending machine case study we compared the fuzzing capabilities

of the Tavor framework for the AIGER ASCII format with the aigfuzz command.

In total 16 commands of the AIGER toolset were evaluated to compare the generated

test sets. On average the random fuzzing strategy of the Tavor Framework reached

9.16% more line coverage than aigfuzz. The best result has been obtained for the aigor

108 Conclusion

command, where aigfuzz covered 43.9% and the Tavor Framework 59.16%. Addi-

tionally to the random fuzzing strategy the AlmostAllPermutations fuzzing strategy

was used to accurately generate a small test suite, which reached for 13 commands on

average 3.32% more coverage than aigfuzz and for the command aigunroll 37.28%

more coverage, which surpassed even Tavor’s random fuzzing strategy. Our third

and last evaluation compared the fuzzing capabilities of the Tavor framework to

the manually written test suite of Go’s JSON implementation encoding/json. No

additional statement coverage was achieved. However, using go-mutesting to apply

mutation testing revealed two killed mutations with the test sets generated by Tavor,

i.e., the code paths of these mutations are not checked by the original test suite. There-

fore, if the behavior of the code changes, these cases will not be caught by the manually

written test suite.

The Tavor project as well as go-mutesting have been published as open source

repositories. Both enjoy great popularity in the open source and Go community, even

though they focus on specialized techniques. At the time of writing Tavor is cloned

on average 3.5 times per day by unique persons and holds a rating of 172 stars, i.e.,

172 persons value the publication of this repository. The go-mutesting repository is

cloned on average twice a day and holds 117 stars. Similar popularity can be seen for

the other contributions outlined in Section 1.3. Especially the major contributions to

the go-flags package should be emphasized, since they led to the maintainership of this

package, which holds now a rating of 918 stars and is cloned on average over 750 times

per day. The go-flags package is also now one of the de facto standard packages to

parse command line options and configurations. All of these statistics attest that the

contributions of this master thesis are actively used and therefore significant.

In conclusion we successfully showed that this master thesis meets its goals of providing

a generic fuzzing and delta-debugging framework, which can also be utilized by non-

programmers. However, there are still many options for future improvements of the

Tavor framework which are outlined in the next section.

8.2 Future Work

This master thesis touches a wide variety of topics. Of course, not all of them have been

explored completely. Indeed there is a great number of options for future improvements

of the Tavor Framework. In this section we chose to outline those with the most

impact to the applicability of Tavor.

A substantial improvement to the Tavor framework would be to ensure that the

Tavor format as well as the fuzzing and delta-debugging capabilities of the framework

8.2 Future Work 109

offer the same functionality. The fuzzing capability of the framework is currently the

most advanced concept as it is capable of handling all token types1 of the framework.

While the delta-debugging capability of the framework does support reducing all sorts of

groups, repetitions and character classes, it does not yet support more advanced token

concepts such as variables and attributes. Also the Tavor format is not expressive

enough to model all token concepts, e.g., state variables. However, please keep in mind

that the format does meet its original goal of being expressive enough to model the

AIGER ASCII format.

Another direction of future work is the redesign of the used data structures. Currently,

graph structures are used to represent the formats to operate on. These graph struc-

tures are very well suited for storing formats, but it is cumbersome to ensure that

all dependencies are met while performing operations on them. An example of such

dependencies are token attributes, where changing the value of one token needs to be

propagated to all tokens referencing that value by a token attribute. Rather than us-

ing graph structures for representing formats, we propose to switch to an event-driven

architecture. Whenever a certain token value changes, this change can then be propa-

gated to all registered listeners of a token. This redesign has also the advantage that

most fuzzing and reducing strategies are easier to implement.

Today the goal of fuzzing is mainly to find faults in programs under test. A Tavor

format may be used to describe the structure of the data which should be used as

an input. We strongly believe that a dedicated fuzzing strategy, which aims to execute

all paths through the token graph of a format, is likely to gain higher code coverages

with its generated test suites. Consider for instance a format for fuzzing command line

options of a command. Repeatedly fuzzing a single parameter with different arguments

may soon exhaust all paths that are reachable with this certain parameter. However,

all other parameters of the command would not have been tested yet. The proposed

dedicated fuzzing strategy aims to first visit each token in the token graph at least once,

so that all paths of the token graph are covered, and therefore all parameters of the

command of this example. Hence, resulting in a high code coverage for the program

under test. Please note, that such a strategy is costly to implement. It requires, for

instance, the use of a constraint solver in order to be able to specifically target each

path through the token graph.

Currently a dedicated executor needs to be provided to enhance fuzzing and delta-

debugging in an automated fashion. The addition of an execution layer to the Tavor

framework would have the advantage that these executors no longer need to be pro-

vided by programmers. Such an execution layer in combination with the support for

real loops, instead of unrolling loops, would enable online fuzzing, i.e., the continu-

1Tokens, introduced in Section 3.2, are the basic building blocks of the Tavor Framework.

110 Conclusion

ous feeding of data to a program under test. As long as loop unrolling is used as a

replacement for real loops it is not possible to provide an executable with an endless

stream of randomly generated data. Another useful extension on top of online fuzzing

is feedback-driven fuzzing, where profiling techniques are used to determine which per-

mutations led to further code coverage in the program under test. This information is

then used to guide the fuzzing strategy.

The future extensions presented in this section are just the highlights, which would

bring the most benefits to the end-users of the Tavor framework. There are also

lots of minor feature suggestions in the issue tracker of the Tavor repository, which

can be easily implemented even by novice programmers. We would be delighted if the

work started with this master thesis would be carried on, in order to provide an even

better tool for applying fuzzing and delta-debugging.

111

Appendix A

Tavor Framework Pseudo Codes

Listing 83 Pseudo Code of AllPermutations Fuzzing Strategy

1 func fuzz(contin chan struct{}, list []permLevel) {

2 Step:

3 for {

4 if len(list[0].children) > 0 {

5 fuzz(contin, list[0].children)

6 } else {

7 reportPermutation(contin)

8 }

9

10 list[0].perm++

11

12 if list[0].perm >= list[0].token.Permutations(){

13 for i:=1; i < len(list); i++ {

14 incremented := incrementChild(list[i].children)

15 if incremented {

16 resetTokensBeforeIndex(list, i)

17 continue Step

18 }

19

20 list[i].perm++

21

22 if list[i].perm < list[i].token.Permutations() {

23 resetTokensBeforeIndex(list, i)

24 setEntry(list, i)

25 continue Step

26 }

27 }

28 break Step

29 } else {

30 setToken(list, 0)

31 }

32 }

33 }

112 Tavor Framework Pseudo Codes

Listing 84 Pseudo Code of AllPermutations Fuzzing Strategy Helper Function

1 func incOne(list []permLevel) bool {

2 for {

3 if len(list[0].children) > 0 {

4 if incOne(list[0].children) {

5 return true

6 }

7 }

8

9 list[0].perm++

10

11 if list[0].perm >= list[0].token.Permutations(){

12 for i:=1; i < len(list); i++ {

13 if incrementChild(list[i].children) {

14 resetTokensBeforeIndex(list, i)

15

16 return true

17 }

18

19 list[i].perm++

20

21 if list[i].perm < list[i].token.Permutations() {

22 resetTokensBeforeIndex(list, i)

23 setEntry(list, i)

24

25 return true

26 }

27 }

28 break Step

29 } else {

30 setToken(list, 0)

31

32 return true

33 }

34 }

35

36 return true

37 }

113

Appendix B

Tavor CLI Command Line

Arguments

Listing 85 General Arguments of the Tavor CLI

1 General options:

2 --debug Debug log output

3 --help Show this help message

4 --verbose Verbose log output

5 --version Print the version of this program

6

7 Global options:

8 --seed= Seed for all the randomness

9 --max-repeat= How many times loops and repetitions should be

repeated (default: 2)↪→

10

11 Format file options:

12 --check Checks the syntax of the format file and exits

13 --format-file= Input Tavor format file

14 --print Prints the AST of the parsed format file and

exits↪→

15 --print-internal Prints the internal AST of the parsed format

file and exits↪→

Listing 86 Arguments for Validate the Command of the Tavor CLI

1 [validate command options]

2 --input-file= Input file which gets parsed and validated via

the format file↪→

114 Tavor CLI Command Line Arguments

Listing 87 Example DOT Format for the Graph Command

1 digraph Graphing {

2 node [peripheries = 2]; xc4200e7810 xc4200e75b0; node [peripheries =

1];↪→

3 node [shape = point] START;

4 node [shape = point] xc4200e7800;

5 node [shape = point] xc4200e7810;

6 node [shape = ellipse];

7

8 xc4200e75b0 [label="f"]

9 xc4200e7470 [label="a"]

10 xc4200e74b0 [label="b"]

11 xc4200e74f0 [label="c"]

12 xc4200e7800 [label=""]

13 xc4200e7810 [label=""]

14 xc4200e7530 [label="d"]

15 xc4200e7570 [label="e"]

16

17 START -> xc4200e7470;

18 xc4200e7470 -> xc4200e74b0[style=dotted];

19 xc4200e7470 -> xc4200e74f0;

20 xc4200e74b0 -> xc4200e74f0[style=dotted];

21 xc4200e7530 -> xc4200e7570;

22 xc4200e7800 -> xc4200e7530;

23 xc4200e7570 -> xc4200e7810;

24 xc4200e7810 -> xc4200e7800[label="2-4x"];

25 xc4200e74f0 -> xc4200e7800;

26 xc4200e7810 -> xc4200e75b0[style=dotted];

27 }

115

Listing 88 Arguments for the Fuzz Command of the Tavor CLI

1 [fuzz command options]

2 --exec= Execute this binary with possible arguments to test a generation

3 --exec-exact-exit-code= Same exit code has to be present (default: -1)

4 --exec-exact-stderr= Same stderr output has to be present

5 --exec-exact-stdout= Same stdout output has to be present

6 --exec-match-stderr= Searches through stderr via the given regex. A match has to be

present↪→

7 --exec-match-stdout= Searches through stdout via the given regex. A match has to be

present↪→

8 --exec-do-not-remove-tmp-files If set, tmp files are not removed

9 --exec-do-not-remove-tmp-files-on-error If set, tmp files are not removed on error

10 --exec-argument-type= How the generation is given to the binary (default: stdin)

11 --list-exec-argument-types List all available exec argument types

12 --script= Execute this binary which gets fed with the generation and should

return feedback↪→

13 --exit-on-error Exit if an execution fails

14 --filter= Fuzzing filter to apply

15 --list-filters List all available fuzzing filters

16 --strategy= The fuzzing strategy (default: random)

17 --list-strategies List all available fuzzing strategies

18 --result-folder= Save every fuzzing result with the MD5 checksum as filename in this

folder↪→

19 --result-extension= If result-folder is used this will be the extension of every filename

20 --result-separator= Separates result outputs of each fuzzing step (default: "\n")

1
1
6

T
avor

C
L
I
C
om

m
an

d
L
in
e
A
rgu

m
en
ts

Listing 89 Arguments for the Reduce Command of the Tavor CLI

1 [reduce command options]

2 --exec= Execute this binary with possible arguments to test a generation

3 --exec-exact-exit-code Same exit code has to be present

4 --exec-exact-stderr Same stderr output has to be present

5 --exec-exact-stdout Same stdout output has to be present

6 --exec-match-stderr= Searches through stderr via the given regex. A match has to be present

7 --exec-match-stdout= Searches through stdout via the given regex. A match has to be present

8 --exec-do-not-remove-tmp-files If set, tmp files are not removed

9 --exec-argument-type= How the generation is given to the binary (default: stdin)

10 --list-exec-argument-types List all available exec argument types

11 --script= Execute this binary which gets fed with the generation and should return

feedback↪→

12 --input-file= Input file which gets parsed, validated and delta-debugged via the format file

13 --strategy= The reducing strategy (default: Linear)

14 --list-strategies List all available reducing strategies

15 --result-separator= Separates result outputs of each reducing step (default: "\n")

117

Listing 90 Arguments for the Graph Command of the Tavor CLI

1 [graph command options]

2 --filter= Fuzzing filter to apply

3 --list-filters List all available fuzzing filters

118 Tavor CLI Command Line Arguments

119

Appendix C

Case Study: Coin Vending Machine

Listing 91 Semi Automated Delta-Debugging of Coin Vending Machine Case Study

1 credit 0

2

3 Do the constraints of the original input still hold for this

generation? [yes|no]: no↪→

4 credit 0

5 coin 50

6 credit 50

7 coin 50

8 credit 100

9 vend

10 credit 0

11

12 Do the constraints of the original input still hold for this

generation? [yes|no]: no↪→

13 credit 0

14 coin 50

15 credit 50

16 coin 25

17 credit 75

18 coin 25

19 credit 100

20 vend

21 credit 0

22

23 Do the constraints of the original input still hold for this

generation? [yes|no]: yes↪→

120 Case Study: Coin Vending Machine

Listing 92 Partial Log of Applying Go-Mutesting for the Coin Vending Machine
Case Study

1 PASS "/tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.0" with

checksum 59ff7a970964f4a5bdaaac92d09b8600

↪→

↪→

2 PASS "/tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.1" with

checksum 9bc8a0e74dd28e7377aec58c336d0852

↪→

↪→

3 --- /home/zimmski/go/src/coin/implementation.go 2017-11-22

11:33:03.020149906 +0100↪→

4 +++ /tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.2

2017-11-22 11:39:25.736642702 +0100

↪→

↪→

5 @@ -39,7 +39,8 @@

6 case coin50:

7 v.credit += credit

8 default:

9 - return ErrUnknownCoin

10 + _ = ErrUnknownCoin

11 }

12 return nil

13 FAIL "/tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.2" with

checksum 355ad77c0828056fde05b28d923e440c

↪→

↪→

14 --- /home/zimmski/go/src/coin/implementation.go 2017-11-22

11:33:03.020149906 +0100↪→

15 +++ /tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.3

2017-11-22 11:39:26.040652417 +0100

↪→

↪→

16 @@ -48,7 +48,7 @@

17 // Vend executes a vend of the machine if enough credit (100) has

been put in and returns true.↪→

18 func (v *VendingMachine) Vend() bool {

19 if v.credit < 100 {

20 - return false

21 }

22 v.credit -= 100

23 FAIL "/tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.3" with

checksum 9bf76c4dd255f2c388659111af37a790

↪→

↪→

24 PASS "/tmp/go-mutesting-

291931067//home/zimmski/go/src/coin/implementation.go.6" with

checksum a42a707de248e2cda066676e24484c6b

↪→

↪→

List of Figures 121

List of Figures

2.1 Fundamental Components of Fuzzing . 8

2.2 Fundamental Components of Model-Based Testing 10

2.3 Fundamental Components of Mutation Testing 13

2.4 Fundamental Components of Delta-Debugging 14

3.1 Tavor’s Subsystems . 17

3.2 Components of the Tavor Framework 18

3.3 Example for a Graph With a Loop . 20

3.4 Example for an Unrolled Graph . 20

3.5 Automaton of Simple Format Definition 27

3.6 Token Graph of Simple Format Definition 28

3.7 AllPermutations Example Token Graph 33

3.8 Incrementing in the Decimal Numeral System 33

3.9 AllPermutations Iterations . 35

5.1 Workflow for the Graph Command of the Tavor CLI 64

5.2 Example Graphics for the Graph Command 67

5.3 Workflow for the Fuzz Command of the Tavor CLI 68

5.4 Fuzzing of External Programs . 68

5.5 Workflow for the Validate Command of the Tavor CLI 69

5.6 Workflow for the Reduce Command of the Tavor CLI 70

6.1 Architecture of Go-Mutesting . 74

7.1 Example Automaton of the Coin Vending Machine 80

7.2 Code Coverage Example . 94

122 List of Figures

List of Listings 123

List of Listings

1 Smiley Tavor Format . 21

2 Smiley Data Structure . 22

3 Smiley String Method . 22

4 Smiley Clone Method . 23

5 Smiley Permutations Method . 23

6 Smiley PermutationsAll Method . 23

7 Smiley Permutation Method . 24

8 Smiley Parse Method . 25

9 Working With the Smiley Token . 26

10 Output of Smiley Example . 26

11 Token Graph Walk Function . 29

12 Sample Fuzzing Strategy . 31

13 Callee of Example Fuzzing Strategy . 32

14 Command Line Output of Example Fuzzing Strategy 32

15 Registering the Sample Fuzzing Strategy 33

16 Permutation of AllPermutations Example Token Graph 34

17 Sample Filter . 36

18 Registering the Sample Filter . 36

19 Auxiliary Function ApplyFilters . 37

20 Reduce String Token Repetitions . 40

21 Callee of Example Reducing Strategy . 41

22 Command Line Output of Example Reducing Strategy 42

23 Registering the Sample Strategy . 42

24 Linear Reducing Strategy . 43

25 Traversing of the Token Graph . 44

26 Performing the Reduction . 44

27 Tavor’s Hello World . 45

28 Example for a Token Concatenation . 46

29 Example for a Multi-Line Token Definition 46

30 Example for Different Kinds of Comments 46

31 Example for a Number Token . 47

32 Example for a String Token . 47

33 Example for Embedding Tokens . 48

34 Example for Terminal and Non-Terminal Tokens Mixed in One Format . 48

124 List of Listings

35 Example for a Token Reference and a Token Usage 48

36 Example for the Alternation Token . 49

37 Example for Loop Using an Alternation 49

38 Example for a Group Token . 49

39 Example for Nested Groups . 50

40 Example for an Optional Group . 50

41 Example for a Repeat Group . 50

42 Example for a Fixed Repeat Group . 51

43 Example for a Ranged Repeat Group . 51

44 Example for an Empty “from” Argument for a Ranged Repeat Group . . 52

45 Example for an Empty “to” Argument for a Ranged Repeat Group . . . 52

46 Example for an Optional Repeat Group 53

47 Example for a Permutation Group . 53

48 Example for a Character Class Token 54

49 Example for Escape Characters in Character Classes 54

50 Example for Hexadecimal Code Points in Character Classes 55

51 Example for a Character Class Range 55

52 Example for a Token Attribute Using the ‘‘Count” Attribute 56

53 Example for Attribute Parameters Using the ‘‘Item” Attribute 56

54 Example for Scopes . 57

55 Example Typed Token Using an Integer Token 57

56 Example for Typed Token Attributes . 57

57 Example Expression . 57

58 Example for a Token Attribute Inside an Expression 57

59 Example for Include Operator . 58

60 Example for Path Operator . 59

61 Example for the Not in Operator . 59

62 Example for a Token Variable . 60

63 Example for the If Statement . 61

64 Convert Token Graph to Simple Graph Structure 65

65 Example Tavor Format for the Graph Command 67

66 Delta-Debugging Pseudo Code for Scripts 71

67 Functionality of Package Keydriven . 81

68 Interface of the Coin Vending Machine Module 82

69 Example Executor for a Coin Vending Machine 84

70 Tavor Format for Coin Vending Machine 85

71 Key-Driven File for the Coin Vending Machine Test Scenario 85

72 Key-Driven Test Script . 85

73 Key-Driven Test Output . 88

74 Fully Automated Delta-Debugging for Coin Vending Machine 89

List of Listings 125

75 Tavor Format Denoting the AIGER ASCII Format Part One 90

76 Tavor Format Denoting the AIGER ASCII Format Part Two 91

77 Pseudo Code for the Script for Performing the AIGER Evaluation . . . 95

78 Tavor Format Denoting the JSON Format 99

79 Tavor Format Denoting a Minimum of the JSON Format 101

80 Test Function for Generated JSON Data 102

81 Mutant Killed by Tavor Part One . 104

82 Mutant Killed by Tavor Part Two . 104

83 Pseudo Code of AllPermutations Fuzzing Strategy 111

84 Pseudo Code of AllPermutations Fuzzing Strategy Helper Function . . . 112

85 General Arguments of the Tavor CLI . 113

86 Arguments for Validate the Command of the Tavor CLI 113

87 Example DOT Format for the Graph Command 114

88 Arguments for the Fuzz Command of the Tavor CLI 115

89 Arguments for the Reduce Command of the Tavor CLI 116

90 Arguments for the Graph Command of the Tavor CLI 117

91 Semi Automated Delta-Debugging of Coin Vending Machine Case Study 119

92 Partial Log of Applying Go-Mutesting for the Coin Vending Machine

Case Study . 120

126 List of Listings

List of Tables 127

List of Tables

3.1 Computing PermutationsAll for Different Token Types 32

4.1 Escape Characters for Character Classes 51

4.2 Special Escape Characters for Character Classes 52

4.3 Token Attributes for List Tokens . 53

4.4 Optional Token Arguments for the ‘‘Int” Typed Token 55

4.5 Token Attributes for the ‘‘Int” Typed Token 55

4.6 Optional Token Arguments for the ‘‘Sequence” Typed Token 55

4.7 Token Attributes for the ‘‘Sequence” Typed Token 56

4.8 Arithmetic Operators . 58

4.10 Operators for the If Statement Condition 60

4.9 Token Attributes of Variable Tokens . 60

7.1 Comparison of the Test Set Generation of the AIGER Evaluation 95

7.2 Comparison of the Commands of the AIGER Evaluation 96

7.3 Comparison of the Test Set Execution of the AIGER Evaluation 97

7.4 Comparison of the Test Set Generation of the JSON Evaluation 103

7.5 Comparison of the Test Set Results of the JSON Evaluation 103

128 List of Tables

129

Bibliography

[1] A complete example of Tavor @ONLINE (2017), https://github.com/

zimmski/tavor/blob/master/doc/complete-example.md

[2] The aigfuzz fuzzer for the AIGER ASCII format @ONLINE (2017), https://

github.com/johnyf/aiger_tools/blob/master/aigfuzz.c

[3] The LLVM source-based code coverage documentation @ONLINE (2017), https:

//clang.llvm.org/docs/SourceBasedCodeCoverage.html

[4] The go-mutesting source code repository @ONLINE (2017), https://github.

com/zimmski/go-mutesting

[5] The Go programming language specification @ONLINE (2017), https://golang.

org/ref/spec

[6] The Golang-Mutaton-testing source code repository @ONLINE (2017),

https://github.com/StefanSchroeder/Golang-Mutation-testing

[7] The manbearpig source code repository @ONLINE (2017), https://github.

com/darkhelmet/manbearpig

[8] The mutator source code repository @ONLINE (2017), https://github.com/

kisielk/mutator

[9] Biere, A.: The AIGER And-Inverter Graph (AIG) Format Version 20070427. Tech.

rep., Johannes Kepler University (2007)

[10] Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Pro-

ceedings of the 7th International Workshop on Satisfiability Modulo Theories. pp.

1–5. ACM (2009)

[11] Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT

and QBF solvers. In: International Conference on Theory and Applications of

Satisfiability Testing. pp. 44–57. Springer (2010)

https://github.com/zimmski/tavor/blob/master/doc/complete-example.md
https://github.com/zimmski/tavor/blob/master/doc/complete-example.md
https://github.com/johnyf/aiger_tools/blob/master/aigfuzz.c
https://github.com/johnyf/aiger_tools/blob/master/aigfuzz.c
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://github.com/zimmski/go-mutesting
https://github.com/zimmski/go-mutesting
https://golang.org/ref/spec
https://golang.org/ref/spec
https://github.com/StefanSchroeder/Golang-Mutation-testing
https://github.com/darkhelmet/manbearpig
https://github.com/darkhelmet/manbearpig
https://github.com/kisielk/mutator
https://github.com/kisielk/mutator

130 Bibliography

[12] DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: Help for

the practicing programmer. Computer 11(4), 34–41 (1978)

[13] Fewster, M., Graham, D.: Software test automation. Addison-Wesley Professional

(1999)

[14] Jia, Y., Harman, M.: An analysis and survey of the development of mutation

testing. IEEE transactions on software engineering 37(5), 649–678 (2011)

[15] McNally, R., Yiu, K., Grove, D., Gerhardy, D.: Fuzzing: the state of the art. Tech.

rep., DTIC Document (2012)

[16] Miller, B.P., Koski, D., Lee, C.P., Maganty, V., Murthy, R., Natarajan, A., Steidl,

J.: Fuzz revisited: A re-examination of the reliability of UNIX utilities and services.

Tech. rep., Technical Report CS-TR-1995-1268, University of Wisconsin (1995)

[17] Miller, C., Peterson, Z.N.: Analysis of mutation and generation-based fuzzing.

Independent Security Evaluators, Tech. Rep (2007)

[18] Misherghi, G., Su, Z.: HDD: hierarchical delta debugging. In: Proceedings of the

28th international conference on Software engineering. pp. 142–151. ACM (2006)

[19] Sutton, M., Greene, A., Amini, P.: Fuzzing: brute force vulnerability discovery.

Pearson Education (2007)

[20] Takanen, A., Demott, J.D., Miller, C.: Fuzzing for software security testing and

quality assurance. Artech House (2008)

[21] Utting, M., Legeard, B.: Practical model-based testing: a tools approach. Morgan

Kaufmann (2010)

[22] Zeller, A.: Why programs fail: a guide to systematic debugging. Elsevier (2009)

Linz, am 26.03.2017

Name

Wohnort

Seit 02/2015

04/2012 - 02/2017

04/2011 - 01/2017

10/2008 - 03/2012

05/2008 - 09/2008

2003 - 2008

07/2005 - 09/2005

Seit 2013

2008 - 2013

2007 - 2008

2002 - 2007

Vollständiger Lebenslauf auf Anfrage
markus.zimmermann@symflower.com

Lebenslauf
Markus Zimmermann, B.Sc.

Linz

Auswahl an Erfahrungen
Firma: Symflower (in Gründung), Linz
Position: Geschäftsführer

Firma: nethead - Markus Zimmermann EU, Linz
Position: Freelancer und Consultant

Firma: Software Quality Lab GmbH, Linz
Position: Senior DevOp, Senior Test und Security Consultant

Firma: nethead - Antipa & Zimmermann GesbR, Linz
Position: Geschäftsführer

Firma: Atikon EDV & Marketing GmbH, Linz
Position: Software Engineer

Position: Freelancer

Firma: STIWA Fertigungstechnik Sticht GmbH, Attnang-Puchheim
Position: Praktikant

Ausbildung
Masterstudium Informatik an der Johannes Kepler Universität, Linz
Master Thesis: "Tavor - A Generic Fuzzing and Delta-Debugging Framework"

Bachelorstudium Informatik an der Johannes Kepler Universität, Linz
(mit Auszeichnung abgeschlossen)
Bachelor Thesis: "Tirion - A Complete Infrastructure for Monitoring
Applications during Benchmarks"

Bundesheer

HTL für EDV und Organisation, Grieskirchen
(mit ausgezeichnetem Erfolg abgeschlossen)
Diplomarbeit: "ALOIS - Verwaltungssoftware für die HTL-Grieskirchen"

Eidesstattliche Erklärung

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich

gemacht habe. Die vorliegende Masterarbeit ist mit dem elektronisch übermittelten

Textdokument identisch.

Linz, am

Markus Zimmermann, BSc

	1 Introduction
	1.1 Motivation
	1.2 Goal of Thesis
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 What Is Fuzzing?
	2.1.1 Mutation-based fuzzing
	2.1.2 Generation-based fuzzing

	2.2 What Is Model-Based Testing?
	2.3 What Is Mutation Testing?
	2.4 What Is Delta-Debugging?

	3 The Tavor Framework
	3.1 Components
	3.2 Tokens
	3.2.1 Example Implementation - The Smiley Token
	3.2.2 Advanced Token Concepts

	3.3 Fuzzing Strategies
	3.3.1 Basic Example Fuzzing Strategy
	3.3.2 The AllPermutations fuzzing strategy

	3.4 Fuzzing Filters
	3.5 Reducing Strategies
	3.5.1 Basic Example reducing strategy
	3.5.2 The Linear reducing strategy

	4 Tavor Format
	4.1 Token Definition
	4.2 Terminal Tokens
	4.3 Embedding of Tokens
	4.4 Alternations
	4.5 Groups
	4.6 Character Classes
	4.7 Token Attributes
	4.8 Typed Tokens
	4.9 Expressions
	4.10 Variables
	4.11 Statements

	5 Tavor CLI
	5.1 Command graph
	5.2 Command fuzz
	5.3 Command validate
	5.4 Command reduce

	6 The go-mutesting Framework
	6.1 Motivation
	6.2 Components
	6.3 Mutators
	6.4 Exec Commands

	7 Evaluation
	7.1 Case Study: Coin Vending Machine
	7.1.1 Definition of the Coin Vending Machine
	7.1.2 Keyword-Driven Testing
	7.1.3 Tavor Format and Fuzzing
	7.1.4 Mutation Testing
	7.1.5 Delta-Debugging

	7.2 Fuzzing the AIGER ASCII format
	7.2.1 Introducing the AIGER ASCII format
	7.2.2 Experimental Setup
	7.2.3 Results and Conclusions

	7.3 Fuzzing the JSON Format
	7.3.1 Introducing the JSON format
	7.3.2 Experimental Setup
	7.3.3 Results and Conclusions

	8 Conclusion
	8.1 Summary
	8.2 Future Work

	A Tavor Framework Pseudo Codes
	B Tavor CLI Command Line Arguments
	C Case Study: Coin Vending Machine
	Bibliography

