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Abstract II

Abstract

The thesis presents the tool SmacC, an approach to software verification and SMT
benchmark generation building upon a new state-of-the-art SMT solver, Boolector,
developed at FMV institute at JKU, Linz.
The program gets as input a C program that lies in the supported subset of the
programming language (ANSI) C and transforms the program to SMT formulas. The
SMT representation allows verification of properties that must hold on the program
and the generation of SMT benchmarks by dumping the SMT instances.
Part of the goal of this work includes, on the software verification side, to check the
input code for certain programming errors and additionally prove or disprove assertion
statements in the code.
The other goal of the work was to generate SMT examples for SMT solvers that can be
used either as (regression) tests for newly developed SMT solvers, or as benchmarks to
compare the performance of different SMT solvers that support the underlying formats
(BTOR or SMT-LIB) and theories (bit-vectors, arrays, equality of arrays).
To reach the goals, the tool symbolically executes the programs source code, establish-
ing a (memory-) model for the program, represented as SMT formulas. Then the tool
generates SMT formulas and lets the SMT solver decide if certain properties hold on
the SMT representation of the program. If properties checked do not hold on the SMT
representation, they do not hold on the real program.

Keywords: SMT, Satisfiability Modulo Theories, Boolector, BTOR, Assertion Prov-
ing, Memory Model, Programming Language C, Symbolic Execution, Symbolic Simula-
tion, Benchmarks.
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Introduction 1

Chapter 1

Introduction

1.1 Motivation

The thesis builds upon the SMT solver Boolector that was developed at the Institute
for Formal Models and Verification (FMV) at Johannes Kepler University (JKU) in
Linz, Austria.
One of the goals of logic in computer science is to develop languages to model situations
encountered when designing hardware or software, that allow reasoning about them in
an appropriate way [11].
Boolector is a new kind of verification engine, a Satisfiability Modulo Theories (SMT)
engine, that received a lot of interest in both research and industry recently.
SMT generalizes pure boolean satisfiability (SAT) and provides first-order theories to
express design and verification conditions of interest [5].
SMT solvers are programs that deduce the satisfiability of formulas with respect to
certain background theories (also called background logics).
When the SMT solver Boolector was still in its early days of development benchmarks
for extensive testing were essential.
An earlier tool (CVC2BAF [25]) aimed at the translation of benchmarks from SMT-LIB
and CVC input format to Boolector Ascii Format (BAF), the predecessor of a format
now known as BTOR, to enable the developers of Boolector to use existing benchmarks
for testing.
The term benchmarks denotes a logical formula to be checked for satisfiability with
respect to (maybe combinations of) background theories of interest.
Examples of background theories typically used in computer science include the theory
of real numbers, the theory of integer numbers, and theories of various data structures
such as lists, arrays and bit vectors [20].
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The goal of SmacC is similar to the goal of CVC2BAF. But, instead of translating
benchmarks from other SMT to BTOR , a subset of the programming language C is
transformed to BTOR format.
For SMT benchmarks in other input formats translation to BTOR format is straightfor-
ward because the semantics of both the source format (for example SMT-LIB format)
and the destination format, BTOR, are well defined by the SMT-LIB standard and the
definition of the BTOR format.
BTOR is a quantifier-free word level format for formulas over bit-vectors in combina-
tion with one-dimensional arrays and allows the modeling of SMT problems [6], as does
the SMT-LIB format.
When using (a subset of) the programming language C as input format, translation
becomes more complicated: in the context of a C program, translation to BTOR format
cannot be done in a straightforward approach because the semantics of BTOR and C
differ in many ways.
In this case it is not just a translation of an SMT formula from one format to another,
with corresponding operators existing in both formats, but it requires establishing an
SMT model of the input source that captures the essence of the program and allows
formulating properties of the program as SMT formulas that can then be checked for
satisfiability by Boolector.
When transforming a C program to an SMT formula the following aspects have to be
considered to establish an SMT model representing the program:

• when executed on a processor, a C program modifies the computer memory -
values are read and written from and to memory.

• a C program, when executed, may branch on various points in the program.

• a C program is more than the check for satisfiability of a formula. Multiple SMT
formulas must be constructed and checked to capture the program.

Considering the aspects mentioned above it becomes clear that the translation from C
source code to BTOR format cannot be achieved easily. Viewing it as transformation
consisting of multiple phases, rather than translation in one pass, seems more exact.
The techniques applied to transform an input source file to an SMT model capturing
the program and SMT formulas specifying properties about the model are similar to
those used in compilers and interpreters for programming languages.
The basic idea of the program SmacC is to parse a C program and extract possible
paths through it. For each path a memory-model needs to be formulated in SMT.
Expression- and statement-semantics in the code can be checked on the SMT model.
For example, assertion statements in the code can be verified to hold.
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The name of the tool comes from this basic idea: ”an SMT Memory-model and
Assertion-Checker for C”.
SmacC utilizes SMT solver Boolector to establish an SMT memory-model, check prop-
erties and dump benchmarks in BTOR or SMT-LIB format.

1.2 Introduction to SmacC

SmacC is written in C and uses Boolector as library. This allows incremental usage of
the solver. At the time of writing, the solver is available in binary or library version
for Linux platforms, therefore SmacC only supports Linux platforms, too.
The front-end consists of an input buffer, buffering the input programs source code,
a lexer, tokenizing the input and a parser that parses the source code into abstract
syntax trees (ASTs) and code-lists, respectively.
This compiler-like infrastructure handles only a subset of C (presented later) and is
based on parts of the ’lightweight C compiler’ (lcc) that is presented in the book ’A
Retargetable C Compiler: Design and Implementation’ [13]. It is a compiler for ANSI-
C, therefore also SmacC considers ANSI-C, with some exceptions, when parsing a C
file (the most important exception is that old-style function declarations, still legal in
ANSI-C, are not allowed [16]). Additional limitations are described later.
The code-lists, containing syntax trees, represent execution paths through the pro-
gram. These code-lists are the connection to the back-end of SmacC, that symbolically
executes code-lists, establishing a memory-model in SMT for each path through the
program.
Using the memory-model different checks can be performed to verify certain properties
in the code. These checks can also be dumped to a file as BTOR or SMT-LIB formula
to be used as benchmark for an SMT solver.
The goal is to formulate properties that must hold on the real program as SMT formu-
las and check satisfiability of the property in combination with the SMT representation
of the program.
Loops are handled by loop-unrolling, transforming loops to sequential if statements.
When execution might branch, code-lists for each branch are generated. The supported
C subset does not include floating point numbers and operations, multi-dimensional ar-
rays, storage-class specifiers, typedef, structs and unions or constructs altering program
flow, details will be presented later.
SmacC supports various command line flags to enable and disable various checks and
also control how detailed and in which way the memory-model being established will
be checked for errors.
When an SMT representation of the source code is being established by symbolically
executing the program certain statements and expressions lead to checks.
Per default checks (properties formulated in SMT) are performed on the SMT repre-
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sentation but SmacC can be set to benchmark creation mode, in which case the checks
are not executed but dumped as BTOR or SMT-LIB formulas.
A check is a BTOR formula that must, in some cases, be satisfiable, or unsatisfiable on
the SMT representation. Checks include verifying that a memory access is valid in the
SMT representation (and hence valid in the real C program), verifying that an assertion
holds, showing that an operation does not lead to an error (overflow or division by zero)
and showing that a path condition cannot be satisfied.
One can differ between two kinds of checks:

• Verification Checks

– Assertion Statement: verify that assertion statement cannot fail

– Return Statements: check if the program returns a specified value in all cases
or check if a specified return value is possible

– Path Conditions: check if an if / else condition is unsatisfiable

• Defect Checks

– Assignment: checks validity of address a value is assigned to

– Indirection: checks validity of address being dereferenced

– Division by Zero: checks if division by zero is possible

– Overflow: checks for overflow on arithmetic operations

1.3 Text Overview

In order to check the supplied C code for the mentioned defects or to verify the prop-
erties, it is necessary to construct an SMT instance for it.
Before going into more detail it is necessary to discuss SMT, the SMT solver Boolector
and the BTOR format in more depth in the next chapter. A short overview then leads
to a precise description of the steps that SmacC performs to establish an SMT instance
for the C source code.
After presenting results and benchmarks generated with SmacC, a tutorial that explains
precisely how to use and control SmacC for error checking and benchmark generation
and how to read its output follows in the last chapter.
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Chapter 2

Satisfiability Modulo Theories

2.1 Theories

SMT, with its capability to express formulas not only in pure boolean propositional
logic but also in various first-order theories, has recently become important both in
research and industry. It is used to express designs and verification conditions.
These designs and verification conditions could well be modeled in boolean propositional
logic, but the possibility to use constructs from other theories eases the creation of
models for designs and the formulation of verification goals.
Theories that extend boolean propositional logic are finite or infinite sets of formulas,
characterized by grammatical rules, allowed functions and predicates, and a domain of
values [18].
Most SMT solvers consider only quantifier-free fragments of first-order theories. First-
order theories of interest for verification include equality logic, linear arithmetic, arrays,
bit-vectors, uninterpreted functions and others (detailed grammars, explanations and
examples for each theory given in [18]).
The most important theories for this work are:

• Propositional logic

– True and false as domain

– Example: x1 ∧ (x2 ∨ ¬x3)⇒ x4

• Bit-vectors
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– Domain is the domain of finite bit-vectors, as is in computer systems (se-
mantics of modular arithmetic unlike, for example, unbounded bit-vectors
or natural numbers)

– Semantics of some of the operators are known from programming languages
like C

– Example: ((a >> b)&c < c)

• Arrays

– Expressions over arrays (maps from index types to element types)

– read , write and compare array elements

2.2 BTOR Format

BTOR was developed initially as native format for SMT solver Boolector, supporting
the theory of bit-vectors and theory of one-dimensional arrays with semantics as de-
scribed in SMT-LIB standard 1.2 [5].
In addition it supports an extension that can be used for model checking [5].

Overview

In 1998 SATLIB was created as an online repository of benchmark problems and solvers
for SAT. The motivation was to facilitate and encourage empirical studies of SAT
algorithms that make use of a common set of benchmark instances in order to enhance
the comparability of empirical results [15].
During recent years interest in SMT systems has increased, and found application not
only in formal verification but also in compiler optimization, scheduling and others [19]
The motivation for the creation of the SMT-LIB initiative was to facilitate benchmarks
that allow to evaluate and compare improvements of SMT systems. The initiative aims
to establish a common standard of benchmarks and of background theories [20].
The format established by SMT-LIB is supported by most state-of-the-art SMT solvers
and is used, for instance, at SMT-COMP as input format.

BTOR is a bit-precise word-level format that is easy to parse and has precise semantics.
In its basic form BTOR allows modelling of SMT problems over quantifier-free theory
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of bit-vectors and one-dimensional arrays [6], as supported by SMT solver Boolector.
When using a sequential extension to the basic form it is also possible to express model-
checking problems.
In principle, it is a world-level generalization of the AIGER format [2]. It is strongly
typed, multi-rooted, and has precise semantics [6].

Consider the following example in BTOR:

1 var 32 a
2 constd 32 8
3 constd 32 12
4 saddo 1 1 2
5 saddo 1 2 3
6 and 1 −4 5
7 root 1 6

Listing 2.1: A first BTOR example

Column 1 represents a unique non-negative identifier for the BTOR expression. Col-
umn 2 represents the type (operator), column 3 the bit-width of the expression.
Expression 1 (line 1) declares a 32-bit bit-vector variable that is identified in other
expressions by 1 but also has an optional name field, represented by string ”a”.
Line 2 declares the decimal constant 8 as bit-vector of width 32, represented in twos
complement internally and line 3 declares the decimal constant 12.
The expression in line 4 represents signed addition overflow and exemplifies compu-
tation: line 4 is the result of checking for overflow when adding line 1 (the declared
bit-vector variable with arbitrary value) and line 2 (the constant 8). The bit-width of
saddo expression is 1.
Checking overflow when adding line 2 and 3 results in line 5. Line 6 logically ands line
4 and 5, negating 4. It formulates the property that there is no overflow when adding
the variable to the constant and that there is overflow when adding the two constants.
Line 7 sets formula 6 as boolean root. In order to check the formula with Boolector it
is necessary to supply exactly one root, which has to have bit-width 1. Although other
tools supporting BTOR format may support more than one root expression.

Bit-vectors

BTOR supports arbitrary bit-widths for bit-vectors [6] and allows the construction of
bit-vector variables and constants in decimal, hexadecimal and binary with operators
var, constd, consth and const.
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Constructors for the bit-vector twos complement representations for the numbers 1, -1
and 0 are supported natively. As shown in the example above, operators for constants
and variables both take as third argument the bit-vectors width.
The fourth column represents the value of the bit-vector constant and is mandatory.
The fourth column for variable expressions represents the name of the variable that can
be omitted.
The semantics of bit-vector operators correspond to the semantics defined in SMT-LIB
standard for quantifier-free theory of fix-sized bit-vectors (QF_BV), with the exception
that SMT-LIB standard does not define the result of dividing by zero. The way Boolec-
tor handles division is modeled after how hardware circuits treat unsigned division:
unsigned division by zero in BTOR results in the largest unsigned integer that can be
represented in the operands bit-width.
The bit-width of the first operand of shift operations has to be a power of two. The
bit-width of the second operand needs to be log2 of the bit width of the first operand
[6].
In addition to the operators defined in SMT-LIB standard bit-vector operators include:
redand, redor and redxor reduction operators from hardware description language Ver-
ilog. VHDL rotate operators rol and ror and a set of overflow detection operators, as
presented in the simple BTOR example.

The following tables list all bit-vector operators [6]. Column one lists the class of the
operator, column two the name of the operator. The rest of the columns represent the
operands bit-widths and the bit-width of the resulting expression, respectively:

class operators w1 wr

negation not, neg n n
reduction redand, redor, redxor n 1
arithmetic inc, dec n n

Table 2.1: Table of unary bit-vector operators

Negation operator not is negation in one’s complement whereas neg is negation in two’s
complement representation.
Reduction operators redand, redor, redxor are known from HDL Verilog. Increment
and decrement operators increment respectively decrement a bit-vector by one [1].

Arithmetic, relational, shift and overflow operators can be used in signed or unsigned
versions.
Overflow operators correspond to the arithmetic operators, with the exception of udiv,
as unsigned division cannot overflow. Overflow on signed division happens when divid-
ing the smallest negative integer by -1.
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class operators w1 w2 wr

bitwise and, or, xor, nand, nor, xnor n n n
boolean implies, iff 1 1 1
arithmetic add, sub, mul, urem, srem, n n n

udiv, sdiv, smod
relational eq, ne, ult, slt, ulte, n n 1

slte, ugt, sgt, ugte, sgte
shift sll, srl, sra, ror, rol n log2n n
overflow uaddo, saddo, usubo, n n 1

ssubo, umulo smulo, sdivo
concat concat n1 n2 n1 + n2

Table 2.2: Table of binary bit-vector operators

Consider the following example from [6]:

1 var 32 v1
2 var 32 v2
3 redand 1 1
4 redand 1 2
5 umulo 1 1 2
6 and 1 3 4
7 and 1 6 −5
8 root 1 7

Listing 2.2: Unsatisfiable BTOR example

If all bits of bit-vector variable v1 are set to one redand in line 3 returns 1 as result,
the same holds for the redand operation in line 4.
Line 6 requires both line 3 and line 4 to return 1 to hold, that is, both redand operations
returned 1, hence both variables were set to one on all bits.
Line 5 checks for overflow on unsigned multiplication of variable v1 and v2. Line 7
requires the multiplication not to overflow and that the and-reduction of v1 and v2
both return 1.
The example given above is unsatisfiable because if the left operand (line 6, the ex-
pression that requires all bits set to one in both v1 and v2 to result in 1) of the and
operator in line 7 evaluates to true, then it is not possible that the negation of the right
operand of the and operator in line 7 evaluates to true (if all bits of both v1 and v2 are
set to one then unsigned multiplication will overflow).
There are two more bit-vector operators that do not fit in the above categories, one
being the conditional expression, the only ternary bit-vector operator that represents a
functional if-then-else, as known for example from C-like programming languages. The
last bit-vector operator is used for bit-extraction.
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class operators w1 w2 w3 wr

conditional cond 1 n n n

Table 2.3: Ternary bit-vector operator cond

If the condition holds (evaluates to 1) cond returns the second argument as result of
the expression, the third argument otherwise.

class operators w1 upper lower wr

extract slice n u l u− l + 1

Table 2.4: Bit-extraction operator slice, using imemdiates

Slice operator slice takes as first argument a bit-vector expression and returns the bit-
vector that results when only considering bits between argument upper and lower.

Arrays

The constructor array allows creation of one-dimensional arrays. The first argument
represents the bit-width of array elements, the second argument represents the bit-width
of index-elements or addresses. BTOR supports the array operations read, write, acond

and eq, equality can be applied to both arrays and array elements [6].

Again, consider an example taken from [6]:

1 array 32 4
2 array 32 4
3 array 32 4
4 var 4
5 var 32
6 var 1
7 acond 32 4 6 1 2
8 wr i t e 32 4 7 4 5
9 read 32 8 4
10 eq 1 5 9
11 eq 1 3 8
12 and 1 10 11
13 root 1 12

Listing 2.3: BTOR array example

Lines 1, 2 and 3 declare arrays with elements 32 bits wide and index width of four bits,
that is, three one-dimensional arrays that contain 16 elements of 32 bit.
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In Line 7 array 1 is returned if condition (line 6) holds, array 2 otherwise, resulting in
an array of element-width 32 bit and index-width 4 bit.
A value (line 5) is written to the array resulting from line 7 to an index that is specified
by line 4.
The result of this write operation is an array, index-width 4 bits and element-width 32
bits. Element at position line 4 contains the value of line 5.
The other elements do not change and are equal to the elements in array 1 or 2 de-
pending on condition 6.
Line 9 reads from the freshly constructed array at position 4. it must be equal to the
value that was written to the array (line 5). This property is formulated in line 10.
Line 11 compares the full arrays 1 and 8. The comparison of the arrays (line 11) is
anded with the comparison of values (line 10) and asserted in line 12, finally line 13
declares line 12 as root.

Model Checking Extension

The solver Boolector can also be used as incremental model checker for word-level
safety properties of synchronous hardware systems with memories using operators next

and anext, defined in BTOR to express state transitions of bit-vector registers and
memories, but the concept of these operators is of no importance for this work [6].

2.3 SMT Solver Boolector

The SMT solver Boolector was developed at the Institute for Formal Models and Verifi-
cation of the Johannes Kepler University and is an efficient state-of-the-art SMT solver
for the combination of the quantifier-free fragment of the theory of bit-vectors and ex-
tensional theory of arrays and equality. It uses lemmas on demand for the extensional
theory of arrays.
The quantifier-free theory of bit-vectors enables Boolector to solve formulas including
modular arithmetic, comparison, two’s complement, logical operations, shifting, con-
catenation and bit-extraction.
The extensional theory of arrays in combination with the congruence axiom from the
theory of uninterpreted functions enables Boolector to reason about arrays. The non-
extensional part of the theory of arrays includes constructs to read and write on arrays,
read and write, and to conclude equality on array elements [4].
The congruence axiom in combination with extensionality allows full array comparison
[4].
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The tool SmacC uses Boolector as underlying SMT solver to solve formulas that are
constructed after parsing the supplied C code, while symbolically executing the SMT
representation of C code.
Boolector can be used as a stand-alone solver taking a BTOR file as input, but also
supports input supplied as file in SMT-LIB standard (QF\_BV, QF_AUFLIA)
Besides using Boolector as a stand-alone solver the library version of Boolector allows
the usage of the solver in programs built around it incrementally.
When using Boolector as a library the user is able to construct an SMT formula on-
the-fly and check its satisfiability as necessary (details are presented later in the work).
SmacC uses the Boolector library version, which allows formulation of check goals while
symbolically executing the C code that was given as input.
SmacC is able to dump satisfiability checks in BTOR and SMT format, which allows
usage of those dumps as benchmarks for the standalone version of Boolector and other
solvers supporting BTOR or SMT format, respectively.
The following listings show the basic usage of Boolector in its stand-alone version and
as library.

$> cat example . btor
1 array 8 32
2 var 32 index
3 const 8 00000000
4 wr i t e 8 32 1 2 3
5 eq 1 1 4
6 root 1 5
$>

Listing 2.4: BTOR file example.btor

$> b o o l e c t o r example . btor −m −d
sat
index 0
1 [ 0 ] 0
$>

Listing 2.5: Usage of Boolector binary with input file in BTOR format

Boolector prints a (partial) model in the SAT case when supplying -m, -d enables dec-
imal output. In line 1 an array with element width 8 bit and index width 32 bit is
constructed. Line 2 declares a 32 bit bit-vector variable named index. Line 3 declares
an 8 bit bit-vector constant with value 0 that is written to array 1 on position index
(2) in line 4, constructing a new array. Line 5 states that array 1 is equal to array 4.
Line 6 sets line 5 as root node such that the formula can be checked with Boolector
stand-alone version. Boolector returns ’satisfiable’ because it is possible that the ele-
ment at index index of array 4 has the same value as the element at index index in
array 1.
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#inc lude ”. . / . . / i n c lude / b o o l e c t o r . h”
i n t main ( void )
{

Btor ∗ btor ;
BtorExp ∗ mem, ∗ mem 1 , ∗ cnst , ∗ var ;
BtorExp ∗ read 1 , ∗ read 2 , ∗ formula ;
unsigned r e s u l t = 0 ;

btor = boo lector new ( ) ;
boo l e c to r enab l e mode l gen ( btor ) ;
b o o l e c t o r e n a b l e i n c u s a g e ( btor ) ;

mem = b o o l e c t o r a r r a y ( btor , 8 , 32 , ”mem”) ;
var = b o o l e c t o r v a r ( btor , 32 , ”index ”) ;
cnst = b o o l e c t o r i n t ( btor , 0 , 8 ) ;
mem 1 = b o o l e c t o r w r i t e ( btor , mem, var , cnst ) ;
read 1 = b o o l e c t o r r e a d ( btor , mem, var ) ;
read 2 = b o o l e c t o r r e a d ( btor , mem 1 , var ) ;
formula = bo o l e c t o r ne ( btor , read 1 , read 2 ) ;

boo lector assume ( btor , formula ) ;
r e s u l t = b o o l e c t o r s a t ( btor ) ;

boolector dump btor ( btor , stdout , formula ) ;

b o o l e c t o r r e l e a s e ( btor , mem) ;
b o o l e c t o r r e l e a s e ( btor , var ) ;
// . . .
b o o l e c t o r d e l e t e ( btor ) ;

r e turn r e s u l t ;
}

Listing 2.6: Boolector library usage

Listing 2.6 shows how the BTOR formula in the last listing can be generated by using
Boolector as library in a C program.
Most of the boolector_ function calls correspond exactly to the operators described in
the BTOR format section. Instead of identifying expressions by line numbers BtorExp
pointer variables are used.

• boolector_new: Creates a new instance of Boolector.

• boolector_enable_model_gen: Enables model generation, producing a model
for the formula in the satisfying case.
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• boolector_enable_inc_usage: Enables incremental usage of Boolector. Incre-
mental usage allows to add assumptions and check satisfiability multiple times.

• boolector_sat: Solves SAT instance represented by assumptions and assertions
combined by boolean AND (∧). Incremental usage has to be enabled to solve
more than one SAT instance.

• boolector_assert: Adds a constraint to SAT instance.

• boolector_assume: Adds an assumption when incremental usage is enabled.
Assumptions are discarded after each call to boolector_sat, in contrast to con-
straints. As in MiniSAT, assumptions and assertions can be used to check con-
straint satisfiability of the instance. A number of clauses will be treated as as-
sumptions. The assumptions will be temporary asserted during solving the SAT
problem [12]. Details can be found in [12] and [22].

• boolector_dump_btor: Allows to dump an expression in BTOR format, though
SMT-LIB 1.2 is also supported.
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Chapter 3

Overview

SmacC symbolically executes a C program in order to find defects in it or to create
benchmarks. Prior to discussing how symbolic execution can simulate the execution of
a program on a CPU, it is necessary to present some relevant definitions of a program
and discuss execution of a program on a CPU.
A program consists of a set of instructions and some memory storing instructions and
data of the program.
When the program is executed, instructions are fetched from memory and then executed
by the CPU, repeatedly, in some cases altering data in memory.
Processor instructions usually fall in one of the following four categories [23]:

• Processor-Memory: Data is fetched from memory or written to memory by the
CPU.

• Processor-IO: Data is transfered between CPU and peripheral device.

• Data Processing: CPU performs logical or arithmetic operation on data.

• Control: Control flow is altered by changing the instruction to be executed by
the CPU next.

When the program is symbolically executed by SmacC, instructions are extracted from
the source and stored in abstract syntax trees, organised in a code-list. Instead of
executing them on the CPU an SMT instance is constructed.
A Boolector array variable represents the memory of the program, it is modeled byte-
wise as an one-dimensional array with index width 32 bit. If instructions modify data,
they modify values of the array. In SmacC, in contrast to the execution of a program
on a CPU, instructions are not stored in the memory array.
One must note that to execute a statement or expression in the programming language
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usually involves executing multiple CPU instructions on the processor. The same holds
for SmacC, a statement or expression in the programs source code usually involves
multiple Boolector expressions that need to be executed.
The code-list, containing instructions of the program, is then analyzed, extracting paths
through the program. After a path was identified it is executed. Execution of a path
through the programs representation establishes constraints on the array representing
memory (the memory model) as SMT formula.
Additionally, certain statements executed can be checked for defects by constructing
an SMT formula representing an error condition and checking its satisfiability.

CPU instructions SmacC representation
Processor-Memory boolector_write and boolector_read on

Boolector memory array
Processor-IO IO is not supported by SmacC
Data Processing boolector_ logical and arithmetic operations
Control Only a few instructions altering control flow

are supported

Table 3.1: CPU instructions and SmacC representation

3.1 Symbolic Execution and Data

Symbolic executions means to run a program in the absence of concrete input data.
An argument supplied to a program running on a CPU has a concrete value: if the
argument is, for example, of type unsigned char then it has a value between 0 and
255. If the program is symbolically executed, the argument to the program is constraint
to be between 0 and 255, but it does not have a concrete value. When reasoning about
a statement or expression containing the symbolic argument it is necessary to consider
all 256 values.
Assume that unsigned char j is an argument to a program and consider expression
(i / j). When the expression is executed on a CPU, variable j has a concrete value
that was supplied to the program. It would require between 1 to 256 runs of the
program, supplying different values for j each run, to deduce that division by zero
might occur when executing the program. If the program is symbolically executed,
using symbolic data for j, only one run is necessary to deduce that division by zero is
possible.
SmacC uses symbolic data for arguments to functions, uninitialized memory regions
and to model addresses of variables.
The next program points out the benefit of using symbolic data to model uninitialized
memory:
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#include <assert.h>

int main ()

{

unsigned char c;

assert (c < 254);

}

c is an uninitialized memory region. If the program is compiled and run a few
times the assertion holds in most cases. Nonetheless the value of c2 is assigned non-
deterministically and can be equal to 255, hence the assertion can fail. Executing the
program symbolically detects the flaw in one run.
Other sources for non-determinism in programs are addresses of variables. Prior to
running a program, it is not determined what concrete address identifies the memory
location of a variable:

int main ()

{

unsigned char c1, c2, c3;

c3 = ((unsigned) &c1) + ((unsigned) &c2);

return c3;

}

The program can return a different value each time it is executed. To model this
behaviour SmacC uses symbolic addresses to access memory. A symbolic variable
(stack beg) identifies the address of the local variable that is defined first in function
main (c1). Variable c2 identifies the memory region at symbolic address stack beg + 1
and c3 identifies the memory region at symbolic address stack beg + 2. The value as-
signed to c3 contains symbolic variable stack beg , hence the result is symbolic. When
executing statement return c3; a non-deterministic value is returned by SmacC.
The benefit of symbolic execution is that it is possible to detect defects, usually very
hard to detect via traditional testing, in one run. An example for algorithms where
exhaustive testing is difficult are cryptographic algorithms and equality checking: ver-
ifying the en- and decoding procedure for all possible messages (of a certain length)
can be nearly impossible. Using symbolic data for messages allows verification for all
possible messages.
Another field symbolic execution achieves good results in is equality checking: verifying
that there exist no input values for which two versions of an algorithm (complying the
same specification) return different values.
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3.2 Path Extraction

When a program is executed on a processor control flow can be altered to jump back-
wards or forward in the program. SmacC only allows a subset of instructions that use
forward jumps.
During path extraction the program is represented as a forest of syntax trees containing
instructions and operands, organized in a code-list, holding instructions in the same or-
der as does the source code. The code-list is iterated through recursively, when finding
an instruction that alters control flow, the code-list is duplicated and both branches at
the branching point are processed further.

3.3 Memory Model

The memory used by the program is modeled as Boolector array expression. When
instructions in the source of the program modify or read data from memory,
the corresponding action is performed on the memory model of the program via
boolector_write and boolector_read operations, respectively.
When a variable is declared in the source code it can be used to address a specified
memory location. When SmacC symbolically executes a variable declaration a con-
straint Boolector variable is constructed and used to address the memory array. This
enables SmacC to let Boolector not only modify or read values from addresses, as does
(the binary) of the program, but also check the validity of an operation on a memory
address.

3.4 Assertion Checking

Verifying an assertion in the source code is only a matter of transforming the statement
to an SMT formula and checking its unsatisfiability in combination with the memory
model established by symbolically executing the source up to the assertion statement.
Using the same technique it is also possible to verify that a program returns a specified
return value, or verify that a specified return value is possible. When symbolically
executing an instruction that would alter control flow of the program, the satisfiability
of the condition guarding it is checked.
Because Boolector supports operations for overflow detection it is possible to verify
that an arithmetic expression cannot overflow, or that division by zero cannot occur in
expressions. The memory model allows to check validity of addresses to which values
are assigned to in assignment statements and validity of addresses being read from.



SmacC 19

Chapter 4

SmacC

SmacC was written in the programming language C and uses Boolector library version
in incremental usage as internal SMT Solver.
Using Boolector incrementally allows SmacC to use assumptions when executing the
source of the program and to check satisfiability or unsatisfiability of multiple SMT
formulas describing the state of the program. For example, SMT formulas representing
error situations in the program are constructed and checked for satisfiability.
SmacC consists of a front-end that parses the source code from a subset of C into ab-
stract syntax trees. The front-end is composed of an input buffer, a lexer to tokenize
the input stream and a parser that generates syntax trees and the code-lists represent-
ing the source code of the program.
The front-end infrastructure resembles the front-end of a compiler, the code is based
on lcc and the book ’A Retargetable C Compiler: Design and Implementation’ [13].
The front-end operates on C expression level and generates syntax trees, composing
them to one code-list on statement level. The code-list is then processed by the back-
end of SmacC. The back-end extracts all execution paths through the program and
generates a new code-list for each path through it. This step is called path-generation.
Before identifying branching points loop constructs are unrolled and transformed to a
sequence of if statements.
When a branch generated by path-generation is symbolically executed during BTOR-
generation an SMT representation for the memory of the program is established. The
representation allows modelling writing and reading memory and generating SMT in-
stances to check memory access.
These SMT instance can be dumped to files in BTOR or SMT-LIB format to be re-
played as benchmarks.
After a short example of the tool, the next sections give a detailed description and
explanation of the techniques applied in SmacC.
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4.1 Supported C Subset

Programs supplied to SmacC must compile with an ANSI C compatible compiler, er-
roneous programs cannot be handled. Gcc was used as compiler to build SmacC and
to compile C examples against which the behaviour of SmacC was checked.
In general it is safe to say that a program supplied as input to SmacC should not only
compile with gcc without warnings, it should also compile without warnings with extra
warning flags enabled, the most important ones being -W -Wall -Wextra.
In some cases this is important because certain implicit casts that are possible in C are
not supported by SmacC. An exception is the return type of the main function which
does not need to be of integer type int.
Appendix A describes the supported subset of C in detail, taking the Reference Man-
ual presented in [16] as outline. Additionally, for unsupported constructs, it is stated
whether support would require heavy changes in SmacC or if the implementation would
require only modest effort.
The front-end of SmacC is based upon the ANSI C compiler lcc [13], with the excep-
tion that old-style [16] function definitions are not allowed. Additionally, non-constant
initializations are not supported (for example: int i = 4; int n = i;.
Another exception is that global variables are not initialized to zero. When ANSI C
does not specify the result of certain operations (for example integer overflow, treat-
ment of division by 0 or right shifting a negative value [16]) then the behaviour of gcc
was taken into account.
An ANSI C program consists of one or more translation units, SmacC does not sup-
port more than one translation unit. Only one input file is supplied as argument and
it must not refer to code in other translation units. Only decimal representation is
allowed for integer and character constants. The type system supported by SmacC
includes only some of the basic types described in the ANSI C standard. Derived types
can be constructed in addition to the basic types:

• arrays: Arrays of objects of a given type

• functions Return objects of a given type, partly supported

• pointers: Pointers to objects of a given type, partly supported
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Functions are only partly supported, a translation unit may only contain one function
declaration. Some function calls are supported as they are implemented in SmacC:

• assert: Asserts an expression

• malloc: Allocates memory

• free: Deallocates memory

identifier, constant and ( expression ) primary expressions are supported. Most
postfix expressions are supported, some of them are not because the subset of C that
requires them is unsupported (. or ->).
All unary operators and most unary expressions are supported. Multiplicative and
Additive and Shift operators with their usual semantics are supported by SmacC. Re-
lational and equality operators evaluate to 0 if the specified relation is false and to 1
if it is true. All relational and equality operators are supported by SmacC. All bitwise
and logical operators are supported by SmacC.
Only the non-augmented assignment operator = is supported by SmacC, augmented
assignments are unsupported. The comma operator is supported for variable declara-
tions, initializations and in for statements.
From the statements described in the ANSI C reference manual in [16], only a sub-
set is supported: assignment and some function call expression-statements, selection-
statement if, iteration-statement for and jump-statement return. It is mandatory to
supply a condition expression for iteration-statement for.
The only preprocessor directive that is supported is the #include directive. #include
has no effect on the SMT formula generated, it is only supported to be able to run exam-
ples that compile with gcc with SmacC, most important is the #include <assert.h>

directive.

The next table summarizes supported constructs:

• Translation Unit: A valid declaration unit may only contain:

– Global variable declarations of the supported types

– One function declaration

• if-else, for

• assert, malloc, free
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• sizeof

• return

• #include

• non-augmented assignment statements

• compound statement

• valid C expressions

• comments (// and /* */)

The following constructs are not supported:

• Translation units including multiple function definitions or function declarations.

• Preprocessor directives other than #include

• Floating point numbers, types and operations (double, float)

• No storage class and linkage specifiers (extern, register, auto, static,
volatile, const)

• Jump statements, altering program flow: break, continue, goto

• switch/case, (do-) while Constructs

• typedef

• struct, union

• Bit-fields (there are no structs)
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4.2 Front End

Figure 4.1: Front-End: Compiler infrastructure, from translation unit to code-list

The front-end gets as input a C file that contains a translation unit which lies in the
supported subset of C.
In contrast to a C compiler, the first phase (textual replacement, the pre-processor)
which carries out directives introduced by the # character is skipped.
After initializing the type system the lexer tokenizes the input stream and the parser
creates abstract syntax trees according to the expression grammar, organizing them as
statement elements in a code-list, as depicted in figure 4.1.
The code-list represents the connection to the back-end.

Abstract Syntax Trees (AST)

Expressions are stored in AST nodes which contain the type, the resulting type and
the size of the expression.
AST nodes generally have two child nodes, some nodes may point to only one of those
child nodes, special nodes may have three nodes (for example when the comma operator
is used in a statement).
If necessary, nodes of AST store the symbol that is associated with the expression or
the value that is associated with a node.
Additionally every AST node stores a Boolector expression that is evaluated when
symbolically executing a code-list in the back-end. An operator that is worth discussion
in more detail is the indirection operator * that in most cases is applied implicitly. The
corresponding AST node is denoted by INDIR type.
An AST node for a variable is represented by node type ADDR because a variable is just
a specific (named) address in memory, modeled by a Boolector bit-vector variable.
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When accessing a variable (for example as in the return statement return a) it is
necessary to return the content of the address identified by the variable not the address
itself.
In this case indirection is applied implicitly, which means that the content of memory
location a is fetched and then returned as result by the return statement.
a = b + c means write to the address identified by a, the sum of the values stored at
memory location b and c.

The expression &a returns the address identified by the variable a and not its contents.

Figure 4.2: AST node resulting for expression ’&a’

The next figure depicts the AST for the expression statement a = 1, the CONST node
storing integer value 1.

Figure 4.3: AST for the assignment ’a = 1’

As a last example for a C expression parsed into an AST consider expression statement
v + i where both memory location v and i are dereferenced implicitly.

The node on top identifies the tree as addition of two values.
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Figure 4.4: AST for expression statement ’v + i;’

Code-List

Abstract Syntax Trees that represent expressions are inserted into a code-list to be
processed further by the back-end of SmacC.
Elements in the code-list represent statements. They contain sub-expressions in the
form of AST. As an example consider the following short C translation unit, consisting
of two variable declarations with initialization, two expression statements (assignments)
and a jump statement.

i n t main ( void )
{

i n t i ;
i n t v ;
v = 1 ;
i = 3 ;
re turn v + i ;

}

Listing 4.1: Simple C example
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Figure 4.5: Code-list that results after parsing the simple example above

The resulting code-list contains entries representing the opening of two scopes
(S_ENTER): one for the parameters of function main and another one for the block
opened by the compound statement forming the functions body. The next two entries
represent the declaration of local variables i and v. Initialization expressions for them
are stored with the declaration elements AST. They are similar to the trees depicted
in figure 4.3.
CODE entries stand for expression statements in most cases, two assignment statements
in the example above.
The RET entry depicts the jump statement return v + i, the tree stored with this
node is equal to the tree depicted in figure 4.4 but has a RET node on top of the ADD

node. Integers after the @ sign denote the line and column number of the entry in the
translation-unit.
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4.3 Back-End

The back-end gets as its input the full code-list that was generated by parsing the
translation-unit. It detects and executes paths through the program symbolically by
writing and reading to and from the BTOR array representing the memory of the
program memory. It generates SMT formulas for the layout of the memory and checks
satisfiability of properties that must hold. Symbolic execution happens in two phases
called path-generation and BTOR-generation. Phase one, path-generation, flattens the
full code-list by recursively unrolling loops up to a certain bound. After flattening path-
generation processes the code-list, generating a new code-list until meeting an element
that represents a branching point in the program. When a branching point is met, the
code-list is duplicated and both paths are recursively processed further.
When a path through the program was generated, BTOR-generation is responsible for
the generation of SMT formulas representing the state of the memory of the program.
Some elements in the path require construction of SMT formulas to check for certain
programming errors. SmacC can also be configured to dump them in both SMT-LIB
or BTOR format.

Path-Generation

Path-generation phase begins with flattening the code-list by unrolling iteration-
statements to nested sequences of selection-statements.
At the time of writing only for iteration-statements are supported, they are unrolled
to sequences of if statements. Transformation of the for statement is necessary:

f o r ( expre s s i on1 ;
expre s s i on2 ;
expre s s i on3 )

statement

⇒

expre s s i on1
i f ( expre s s i on2 )

statement expre s s i on3
. . .

i f ( exp re s s i on2 )
statement expre s s i on3

Figure 4.6: For iteration-statement transformation

expression1 of the for-statement, usually an initializer, must be pulled out
and executed before executing the first if-statement the loop is transformed to.
expression2, usually the condition of the loop, is used as condition for all if-
statements. expression3 must be executed after statement but only when the condi-
tion expression2 evaluated to true.
It can be configured up to which bound SmacC unrolls for loops.
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The next listing shows in pseudo code how the flattening step in path-generation phase
is done, then follows an example of a code-list resulting from such a transformation,
denoted as SmacC would output it.

cl denotes the code-list that was generated while parsing the input file, flat_cl is the
resulting flat code-list. Expressions and statements are denoted as in figure 4.6 and as
in 4.5 the integers denote the location in the translation-unit.

p a t h g e n f l a t t e n ( in c l , inout f l a t c l )
{

whi le ( c l has e n t r i e s )
i f ( c l entry != FOR statement )

add entry to f l a t c l
e l s e
{

i d e n t i f y f o r statement element
i n s e r t expre s s i on3 in to statement element
add expre s s i on1 to f l a t c l
f o r (0 to bound k − 1)
{

add i f element with expre s s i on1 as cond i t i on to f l a t c l
add p a t h g e n f l a t t e n ( statement ) to f l a t c l

}
}

}
Listing 4.2: Path-generations flattening algorithm

The resulting flat code-list is further processed by path-generation phase, creating sep-
arate code-lists for branches through the program.
When an element in the flattened code-list is of kind selection-statement and execution
could branch, the code-list representing the path through the program up until now
is duplicated and path-generation is called recursively for both branches, generating a
code-lists for each of the branches.
Currently if-statements are the only selection-statements supported, conditional (?:)
expressions are translated directly into BTOR conditional expressions.
The condition of the selection-statement stays in the code-list because it will be used
as a path-condition that is assumed while BTOR-generating the code-list later.
When a path through the program is fully extracted either after reaching the last ele-
ment of the input code-list or by processing a return-statement element pathgen calls
btorgen which then symbolically executes the path.

pathgen iterates over the flat code-list, adding entries to path representing the path
through the program up until now. RETURN and IF elements in the code-list need special
treatment. When processing a RETURN entry path-generation for the current path can
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stop because after symbolically executing a return entry execution is finished.
IF entries require branching of the execution path. The path that is generated assuming
that the condition of the if-statement holds is called if-path, the path that assumes the
condition to fail is called else-path.
The current path through the program is copied and the entries constrained by the IF

condition are added to the if-path. The if-path is continued by recursively adding entries
after the if-statement. The else-path assumes that the condition does not hold by adding
an else entry containing the negation of the condition and statements constrained by
the condition and recursively continuing path-generation after the if-statement. When
either a path through the program ends after a RETURN entry or reaching the end of the
code-list, BTOR-generation symbolically executes it.

cl denotes the flat code-list, path represents the path through the program so far.

pathgen ( in c l , inout path )
{

whi le ( c l has e n t r i e s )
i f ( c l entry == RETURN)
{

add entry to path
f i n i s h c l
btorgen path
return

}
i f ( c l entry != IF statement )

add entry to path
e l s e
{

copy path to e l s e p a t h
add i f entry to path
add e l s e entry to e l s e p a t h
i d e n t i f y i f b lock and add i t to path
i d e n t i f y e l s e b lock and add i t to e l s e p a t h
r e c u r s e with c l = entry a f t e r i f statement and path
r e c u r s e with c l = entry a f t e r e l s e statement and e l s e p a t h

}
btorgen path
return

}

Listing 4.3: Path-generation
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i n t main ( )
{

i n t i ;
i n t s = 0 ;
f o r ( i = 0 ;

i < 4 ;
i = i + 1)

s = s + i ;
r e turn s ;

}

o r i g i n a l c o d e l i s t :
CSENTER @ (1 ,10 )

CSENTER @ (2 ,0 )
CDECLL @ (3 ,7 )
CDECLL @ (4 ,11 )
INIT @ (4 ,11 )
CFOR @ (6 ,4 )

CBBEG @ (6 ,4 )
CCODE @ (6 ,13 )

CBEND @ (7 ,2 )
CRET @ (7 ,10 )

CSEXIT @ (8 ,0 )
CSEXIT @ (8 ,0 )

f l a t c o d e l i s t :
CSENTER @ (1 ,10 )

CSENTER @ (2 ,0 )
CDECLL @ (3 ,7 )
CDECLL @ (4 ,11 )
INIT @ (4 ,11 )
CCODE @ (6 ,4 )
CIF @ (6 , 4 )
CBBEG @ (6 ,4 )

CCODE @ (6 ,13 )
CCODE @ (6 ,4 )
CIF @ (6 , 4 )
CBBEG @ (6 ,4 )

CCODE @ (6 ,13 )
CCODE @ (6 ,4 )
CIF @ (6 , 4 )
CBBEG @ (6 ,4 )

CCODE @ (6 ,13 )
CCODE @ (6 ,4 )
CIF @ (6 , 4 )
CBBEG @ (6 ,4 )

CCODE @ (6 ,13 )
CCODE @ (6 ,4 )

CBEND @ (7 ,2 )
CBEND @ (7 ,2 )

CBEND @ (7 ,2 )
CBEND @ (7 ,2 )

CASSUMEN @ (6 ,4 )
CRET @ (7 ,10 )

CSEXIT @ (8 ,0 )
CSEXIT @ (8 ,0 )

Figure 4.7: Translation-unit, the full code-list and the resulting flat code-list

i n t main ( )
{

i n t cond ;
i f ( cond )

re turn cond ;
re turn 0 ;

}

path 0 :
CSENTER @ (1 ,10 )

CSENTER @ (1 ,12 )
CDECLL @ (2 ,8 )
CIF @ (4 , 0 )
CBBEG @ (4 ,0 )

CRET @ (4 ,11 )
CBEND @ (5 ,0 )

CRET @ (5 ,8 )
CSEXIT @ (6 ,0 )

CSEXIT @ (6 ,0 )

path 1 :
CSENTER @ (1 ,10 )

CSENTER @ (1 ,12 )
CDECLL @ (2 ,8 )
CELSE @ (5 ,0 )
CRET @ (5 ,8 )

CSEXIT @ (6 ,0 )
CSEXIT @ (6 ,0 )

Figure 4.8: Translation-unit and both paths through the program.
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Btor-Generation

Btor-generation symbolically executes a path through the program. It generates BTOR
expressions for C statements and expressions resulting in an SMT formula. Additionally
constraints for the array modelling the programs memory are generated. If an entry in
the code-list (path) contains an AST representing C expressions the tree is transformed
to BTOR expressions by calling btorgen_generate. Some entries lead to (verification-
or defect-) checks usually resulting in one or more SAT-checks by Boolector.
Variable declarations require the front-end to construct a Boolector variable for the
variable in the source and store it with the symbol. When an identifier is parsed in
an expression the Boolector variable for the symbol is stored in the AST node for the
expression (ADDR as in figure 4.2). Variable declarations in the code also require updates
to the SMT formula representing constraints on the programs memory when they are
symbolically executed.
The next listings show how a code-list representing a path through the program is sym-
bolically executed by functions btorgen_path that handles the program on statement
level and btorgen_generate that handles it on expression level.

btorgen path ( path )
{

whi le ( path has e n t r i e s )
switch ( entry type )
{
case DECL:

b t o r g e n d e c l a r a t i o n ( ) ; // v a r i a b l e d e c l a r a t i o n
case CODE:

// ass ignment statement , exp r e s s i on statement , . . .
b to rgen genera te ( entry t r e e ) ;

case RETUN:
// return−statement , b o o l e c t o r sa t
bto rgen genera te ( entry t r e e ) ; r e turn ;

case IF :
// i f−statement , b o o l e c t o r sa t
i f ( path i s r eachab l e ) btorgen and add path condi t ion

case ELSE:
// e l s e−path o f i f−statement , b o o l e c t o r sa t
i f ( path i s r eachab l e ) btorgen and add path condi t ion

case ASSERT:
// a s s e r t i o n : check i f a s s e r t i o n statements holds , b o o l e c t o r sa t
bto rgen genera te ( entry t r e e ) ;

}
r e s e t path c o n d i t i o n s and memory model

}

Listing 4.4: Symbolic execution of a path through the program
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btorgen_path may issue checks when processing the following entries:

• RETURN: Let Boolector check if it is possible that a specified return value is re-
turned by the program or that it always returned.

• IF, ELSE: Let Boolector check if the condition can hold, if not abandon path and
don’t continue executing it.

• ASSERT: Let Boolector check if the assertion holds.

Transformation of AST to BTOR expressions is done by btorgen_generate that takes
as input a tree representing a C expression.
Tree-nodes need to be transformed and may, as the mentioned code-list entries, lead to
checks or updates in memory-model.
The postfix ’-expression’ in the table denotes the result of btorgen_generating a sub-
tree of the node.

AST node Requires BTOR Representation
RETURN asserted-return 6= return-expression or

check asserted-return = return-expression
CONST - Construct Boolector constant
CALL update free or malloc, both update memory model
ADDR - Boolector variable in node
INDIR check read memory array at position indir-expression
ASSIGN write to memory at position assign-expression1

check the value assign-expression2
COND - Boolector conditional expression
relational operators - Boolector relational operators
bitwise AND, OR, XOR
ones- twos-complement, - corresponding Boolector operator
AND, OR, NOT
ADD, SUB, MUL, corresponding Boolector operator,
DIV, MOD check overflow operator, division by zero
RSHIFT, LSHIFT adjust bit-vector widths,

- Boolector shift operators
type conversions conversions between data types, usually involves

boolector_slice, boolector_concat,
- boolector_sext, boolector_uext

Table 4.1: AST nodes and their BTOR representation
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BtorExp ∗ btorgen genera te ( Tree t )
{

switch ( t s node type )
{
case RETURN:

// t−>kid i s an expr e s s i on statement
exp = btorgen genera te ( t−>kid ) ;
check a s s e r t e d return value aga in s t exp ;

case CONST:
// t−>value r e p r e s e n t s the value o f the const
exp = b o o l e c t o r c o n s t ( t−>value )

case ADDR:
// ADDR nodes s t o r e a Boo lec tor v a r i a b l e
exp = t−>exp

case INDIR :
// read from (mem @ address ) ,
// where address can be ADDR or c a l c u l a t e d
exp = btorgen read addre s s ( t−>kid ) ;
check i f t−>kid r e p r e s e n t s v a l i d memory

case ASSIGN :
// wr i t e to (mem @ where ) ,
// where address can be ADDR or c a l c u l a t e d
where = btorgen genera te ( t−>kid1 ) ;
what = btorgen genera te ( t−>kid2 ) ;
b to rg en wr i t e addr e s s ( where , what ) ;
check i f i t i s v a l i d memory

case COND:
exp = boo l ec to r cond ( t−>kid )

case CVXY:
// convert from X to Y
exp = s l i c e / extend acco rd ing ly

case UNARY−OP:
exp = boo l e c to r op ( t−>kid ) ;

case BINARY−OP
i f (RSHIFT, LSHIFT)

ad jus t width t−>kid
exp = boo l e c to r op ( t−>kid1 , t−>kid2 ) ;
i f (ADD, SUB, MUL, DIV, MOD)

check f o r over f l ow
i f (DIV, MOD)

check d i v i s i o n by zero
}

re turn exp ;
}

Listing 4.5: Transformation of AST to BTOR expressions
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Reading from Memory

If mem is the memory array with word-size 1 byte and address size 4 byte, and if
assuming int i to be 4 bytes, then read(mem, i) denotes the value of array mem at
index i. read(mem, i) reads the most-significant byte of integer i therefore reading an
integer from memory requires more than one read operation on mem and additionally
concatenation of the bytes read.

Writing to Memory

When v is a bit-vector of size 1 byte then write(mem, i, v) denotes array mem overwrit-
ten at index i with v. Hence it is in most cases necessary to slice bit-vectors to bytes
before writing the value to memory.

An Example

Consider the following short program on the left:

i n t
main ( )
{

re turn 0 ;
}

2 const 32 00000000000000000000000000000000
4 var 32 s tack beg
5 var 32 g l oba l beg
6 var 32 heap beg
7 eq 1 2 2
8 u l t 1 5 5
9 u l t 1 4 4
10 u l t 1 6 6
11 u l t 1 5 6
12 u l t 1 6 4
13 and 1 7 −8
14 and 1 13 −9
15 and 1 14 −10
16 and 1 15 11
17 and 1 16 12
18 root 1 17

Figure 4.9: A C Program and the BTOR instance for its return statement

The BTOR instance for the return statement return 0; is depicted on the right and
will briefly be explained, details follow after discussing the memory model of SmacC.
Line 2 represents the constant 0, line 4, 5 and 6 BTOR variables necessary for construct-
ing the memory model. The BTOR formula for the return statement is constructed
in line 7. The rest of the lines form the constraints for the memory layout and are
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conjuncted with line 7 and selected as root in line 18. Lines 8 to 10 are used negated
in line 13 to 15 to formulate the properties that the end of stack, global and heap area
must be greater or equal to the beginning of stack, global and heap area. Initially the
addresses marking the end of the memory areas are equal to the addresses marking
the begin of the memory areas, therefore the same variables are used to formulate the
properties. Line 10 and 11 establish the general memory layout which requires that the
highest global address is smaller than the lowest heap address which is smaller than
the last lowest stack address. As mentioned, line 17 is the conjunction of the properties
above and the formula requiring the return value to be equal to zero.

Memory Model

The memory model is inspired by the memory model known to UNIX systems. It is
an SMT formula that constrains the array variable modelling the programs memory
during symbolic execution and allows to check whether memory accesses in the SMT
representation of the program are valid.
If a memory access is invalid for the SMT representation it is also invalid for the real
program.
The UNIX memory model divides memory for a UNIX process (in this case: the pro-
gram being executed on the machine) into three segments [24]:

• Text Segment: machine instructions, executable code

• Global / Data Segment: global variables, constant strings, but also dynamic
memory (C: malloc, system call brk)

• Stack Segment: local variables, parameter variables, grows from high address to
low address

SmacC simplifies the UNIX memory model, there is no text segment, the data segment
is called global area and is only used for global variables. Memory that would be allo-
cated in data segment by calls to malloc is modeled by heap-area.
The stack segment is called stack area but holds, as in the UNIX model, parameter
variables and local variables (but no return addresses). The SmacC memory model is a
Boolector array variable representing the programs memory and an SMT formula that
constraints valid regions in the array to those regions that are valid in the program.
If addresses were constants instead of variables, the first global variable would always
have the same constant address in SmacC (the first stack or heap variable, too). This
would allow to assert a constant values as addresses for a variable, an assertion that
will in most cases fail in the compiled program (for example, SmacC would report that
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Figure 4.10: Simplified view of the UNIX memory-model of a C program and its rep-
resentation in SmacC.

the assertion assert (&i == 1); holds if i is the first global variable in the program
and global addresses were to start at constant address 1).
A valid region is in most cases a set of indices of the array. As an example for such a
region consider a program that has only one integer variable of size 4 bytes declared,
represented by 4 one-byte wide indices in the Boolector array.
The program may only access memory referenced by this integer variable, all other
memory accesses are considered invalid. Hence only the 4 indices of the array repre-
senting the integer are valid, all other indices are considered invalid.
When the Boolector memory array is accessed outside valid regions then in the C pro-
gram memory can be accessed incorrectly.
As was mentioned, valid memory addresses in the program are represented by Boolector
variables used as indices for the memory array in the SMT representation.
The order of variables that is required to check the memory-model is established via
Boolector assumptions that are added before each check.

The following memory accesses are considered invalid:

• Access out of valid memory: an access is considered out of valid memory if it
accesses indices that are not indices representing stack area, global area or heap
area. Invalid regions are grey in the figure that follows.

• Access out-of-bounds: an access is considered out-of bounds if it crosses bound-
aries of data elements, for example when data from two valid regions is read or
written. Out of bounds access can happen at all addresses.
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The program depicted in figure 4.10 has integers i and j declared as global variables,
integer pointer x and character array c as local variables and 4 bytes allocated on the
heap by a call to malloc.

Global area is part of the data segment in the UNIX memory-model. In SmacC global
area is established by storing indices, Boolector bit-vector variables, that represent the
name of the address (symbol of the variable) and the size of the memory region.
Additionally an assumption about the distance between the variable declared and the
beginning of global memory is stored.
Global area does not change during the (symbolic) execution of the program.

• globals: A list that contains Boolector expressions modelling a global variable
declaration in the C program: its index in memory array (Boolector variable),
size of the declaration (Boolector expression) and offset to beginning of global
area (Boolector expression).

• global beg : A Boolector variable representing the lowest index of valid global
memory in the memory array.

• global end : A Boolector variable representing the highest index of valid global
memory in the memory array.

Heap area, in the UNIX memory-model also in data segment, is an independent mem-
ory area in SmacC. It is organized like global area but might change during symbolic
execution of the program.

• heap: A list containing Boolector expressions modelling a call to malloc in the
C program.

• heap beg : Boolector variable representing the lowest index of valid heap memory
in memory array.

• heap end : Boolector variable representing the highest index of valid heap memory
in memory array.

Stack area behaves like the stack segment of the UNIX memory-model: local or pa-
rameter variable declarations make the stack grow from top to bottom, leaving a scope
where a local or parameter variable was declared lets the stack shrink, invalidating the
memory location the local or parameter variable referenced.
As for global variables or heap memory it is necessary to store an index for a stack
variable as Boolector variable and a size expression for the region. Because the stack
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segment must be able to grow and shrink, the offset expression is calculated relative to
the current lowest address of the stack (denoted stack-pointer).
To model variables in the stack area a stack data-structure stores a list of declared
variables and a stack-pointer expression for each scope. If a variable is declared on the
stack the stack-pointer is decreased by the size of the declaration and pushed onto the
stack. If a scope is closed the old stack-pointer is restored and the list of local variables
for the scope is thrown away.

• stack: A stack of variable-lists (similar to globals) and a Boolector variable
expression. The top of the stack represents the current scopes local variables and
the stack-pointer for this scope. Stack-pointer can be seen as changing stack end .

• stack beg : Boolector variable representing the highest index of valid stack memory
in the memory array.

• stack end : The Boolector expression on top of stack, stack-pointer.

To establish the representation of the UNIX memory-model it is necessary to add
assumptions about Boolector variable expressions that represent memory addresses.
When BTOR-generation begins to symbolically execute a path through the program,
the general memory layout is established by assuming the following formulas:

1. global beg ≤ global end

2. global end < heap beg

3. heap beg ≤ heap end

4. heap end < stack end

5. stack end ≤ stack beg

Additionally, in the absence of any variable declarations:

6. global beg = global end

7. stack beg = stack end (push stack end on stack)

8. heap beg = heap end
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The next figure shows the memory-model of SmacC right after initialization and no
variables declared.

Figure 4.11: SmacC memory-model after initialization

When variables are declared or dynamic memory is allocated the memory-model needs
to be updated to include the new constraints. Global declarations all occur after each
other, before entering any scope. When a scope was opened, no global declarations will
occur and global end does not change anymore.
stack end and heap end can change during the programs symbolic execution, local
declarations in different scopes require changes to the stack-pointer (stack end), calls
to malloc require heap end to be updated.

When a global declaration for global_var is executed on a path, the memory-model
needs to be updated:

• global var and its size are added as entry to globals list

• equality global var = global end is added to list entry

• global end needs to be updated, it is now global end + decl size in bytes
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When entering a scope, the memory-model needs to consider local declarations for the
scope.
Therefore the current stack-pointer needs to be pushed on top of stack, representing the
new valid stack-pointer. When a local declaration local_var is executed the memory-
model must be updated:

• local var and its size are added as entry to the list on top of stack.

• stack-pointer needs to be updated to be stack end − decl size in bytes.

• equality local var = stack end (the new stack-pointer) is added to the list entry.

When exiting a scope the old stack-pointer is restored and the list of local variables is
dropped.

malloc and free modify assumptions about the heap area. A call to malloc can be
seen as a global declaration, free marks the region as invalid, it will not be considered
as valid for memory checks. Memory deallocated by free will not be used by malloc

again.

Fig. 4.10 shows the memory layout of a C program and its representation in SmacC.
It would require the following formulas to be assumed before accessing memory or
checking properties:

Valid memory in the program:

• Declarations in stack area: int * p, char c[4]

• Dynamic memory: 4 bytes

• Declarations in global area: int j, int i

SMT formulas to model the memory of the program, beginning with formulas for general
memory layout.

global beg ≤ global end ∧
global end < heap beg ∧
heap beg ≤ heap end ∧

heap end < stack end ∧
stack end ≤ stack beg
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SMT formulas for global variables:

i = global beg ∧
j = global beg + 4 ∧

global end = global beg + 8

SMT formulas for heap memory:

heap var 1 = heap beg ∧
heap end = heap beg + 4

SMT formulas for stack variables (assuming only 1 scope in the example):

p = stack beg − 4 ∧
c = stack beg − 4− (4 ∗ 1) ∧

stack end = stack beg − 8

Checks

While a path is symbolically executed certain statements and expressions lead to checks.
A check is an SMT formula that must be SAT or UNSAT when added to the formulas of
the memory-model and checked via Boolector. SmacC checks include those that verify
that a memory access is valid in the memory’s SMT representation and hence valid in
the C program. Furthermore they are used to verify assertions, show that an operation
does not lead to an error or show that a path condition cannot be satisfied.

They can be categorized into Verification Checks

• Assertions: verify that assertion statement cannot fail

• Return statements: check if the program returns a specified value in all cases or
check if a specified return value is possible

• Path conditions: check if an if / else condition is unsatisfiable

and Defect Checks

• Assignment: checks validity of address a value is assigned to
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• Indirection: checks validity of address being dereferenced

• Division by zero: checks if division by zero is possible

• Overflow: checks for overflow on arithmetic operations

Before going into more details of checks, consider the steps that were performed up
until now:

1. Parse C file into AST and code-list.

2. Flatten code-list and extract paths through the program.

3. Symbolically execute each path, some entries require additional treatment: dec-
larations that modify the memory-model and entries that lead to checks.

4. A check is an SMT formula assumed in addition to the formula representing the
programs memory layout, followed by a call to boolector_sat.

Assertion Check

Boolector returns UNSAT if an assertion holds on a path through the program. Con-
sider the following example:

void main ( )
{

i n t i ;
a s s e r t ( i ) ;

}

Listing 4.6: Assertion Check

The following Boolector variables exist:

global beg , global end ,

heap beg , heap end ,

stack beg , stack end ,

mem, i
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The above variables lead to the following assumptions:

global beg ≤ global end ∧ global end < heap beg ∧
heap beg ≤ heap end ∧ heap end < stack end ∧

stack end ≤ stack beg ∧ global beg = global end ∧
heap beg = heap end ∧ i = stack beg − 4 ∧

stack end = stack beg − 4

The assumption that must be checked for this assertion check is:

read(mem, i) = 00000000 ∧
read(mem, i + 1) = 00000000 ∧
read(mem, i + 2) = 00000000 ∧
read(mem, i + 3) = 00000000 ∧

which must be UNSAT for the assertion to hold (in the implementation the 4 byte
values would be constructed and compared).

Program Return Check

Boolector returns UNSAT if a program returns expected value on a path through a
program. Consider the following example:

i n t main ( )
{

i n t i = 0 ;
re turn i ;

}

Listing 4.7: Program Return Check

The following variables are considered by the memory-model:

global beg , global end ,

heap beg , heap end ,

stack beg , stack end ,

mem, i
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The above variables lead to the following assumptions:

global beg ≤ global end ∧ global end < heap beg ∧
heap beg ≤ heap end ∧ heap end < stack end ∧

stack end ≤ stack beg ∧ global beg = global end ∧
heap beg = heap end ∧ i = stack beg − 4 ∧

stack end = stack beg − 4

The initialization of variable i leads to a value being written into the memory array:

write(mem, i, 00000000) ∧
write(mem, i + 1, 00000000) ∧
write(mem, i + 2, 00000000) ∧
write(mem, i + 3, 00000000) ∧

The assumption that must be checked for the program return check depends on whether
option --force-return (-fr) was used as parameter to SmacC.
-fr requires the path to return the specified value, if it is possible that some other value
is returned it is considered an error. Without -fr SmacC checks whether the specified
return value can be returned.
The default value assumed for the programs return is 0, hence the default SMT formula
checked for satisfiability is

read(mem, i) = 00000000 ∧
read(mem, i + 1) = 00000000 ∧
read(mem, i + 2) = 00000000 ∧
read(mem, i + 3) = 00000000 ∧

and in the case where -fr is supplied

read(mem, i) 6= 00000000 ∧
read(mem, i + 1) 6= 00000000 ∧
read(mem, i + 2) 6= 00000000 ∧
read(mem, i + 3) 6= 00000000 ∧

is checked for unsatisfiability (again, in the implementation values are compared after
being concatenated to the int size).
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Division by Zero Check

Division by zero check could be modeled by the following assertion in the code:

i n t a , b , c ;
a = b / c ;

⇒
i n t a , b , c ;
a s s e r t ( c ) ;
a = b / c ;

Figure 4.12: Division by zero check written as assertion check.

The SMT formula generated and checked for satisfiability is

read(mem, i) 6= 00000000 ∧
read(mem, i + 1) 6= 00000000 ∧
read(mem, i + 2) 6= 00000000 ∧
read(mem, i + 3) 6= 00000000 ∧

Overflow Check

Overflow checks are issued on all arithmetic operations and need no special treatment
since operators to model overflow exist in Boolector [3].

char a , b = 2 , c ;
a = b ∗ c ;

Overflow on arithmetic operations is possible if Boolector returns satisfiable with the
following assumption added:

smulo(read(mem, b), read(mem, c))

smulo(a, b) denotes signed multiplication overflow when multiplying signed values a

and b.
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Path Condition Check

Path Conditions (if, else conditions) are btorgen_generated and added to the as-
sumption before each check.

If a path condition is satisfiable it is added to the set of active path conditions, BTOR-
generation continues on the path. If a path condition is unsatisfiable the current path
is added to the set of unreachable paths and abandoned.
Path-generation selects the next path that is not in the set of unreachable paths and
calls BTOR-generation.

char a ;
i f ( a > 0)

a s s e r t ( a ) ;

Because read(mem, a) > 0) (the condition) is satisfiable, read(mem, a) > 0 is added
to the set of path conditions. The assertion will hold because read(mem, a) > 0 is in
the set of assumptions.
The following Boolector variables exist:

global beg , global end ,

heap beg , heap end ,

stack beg , stack end ,

mem, a

In addition it is assumed that:

global beg ≤ global end ∧ global end < heap beg ∧
heap beg ≤ heap end ∧ heap end < stack end ∧

stack end ≤ stack beg ∧ global beg = global end ∧
heap beg = heap end ∧ a = stack beg − 4 ∧

stack end = stack beg − 4

The formula that needs to be satisfiable to continue on the path is:

read(mem, a) > 0

If Boolector returns satisfiable for the conjunction of the formulas above then the for-
mula will be added to the set of assumptions (and assumed before the assertion is
checked).
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Indirection / Assignment Check

Indirection checks verify the validity of an dereferenced address, assignment checks the
validity of an address written. Indirection and assignment checks are issued only for
array and pointer expressions, that is AST nodes of type INDIR, ASGN, SUBP or ADDP.
The difference between the checks lies in the addresses used for checking indirections
and assignments.

Consider the following variation of an example of the EXE tool [7]. a is an array of
4 unsigned integers, initialized with some values. Assume the else path is analyzed
after branching at point (1) in line 11. Because i is not initialized but constraint to be
smaller than 4 by the path condition p points to one byte (the least significant) of an
element in a after executing line 14. In line 15 the value of the array element p points
to is decreased. In line 17 t gets assigned the array element with index equal to a value
in the array.
It is easy to see that if i has value 2 in line 14 then in line 15 the value 5 will be
decreased to 4 and then in line 17 out-of-bounds element 4 of array a is incorrectly
accessed.In line 15 (2) checks are issued for the left-hand side address of the assignment
and the right-hand side indirection *p.
In line 17 (3) indirection checks are issued for indirection *p and for array access
a[*p].

1 : void main ( )
2 : {
4 : unsigned a [ 4 ] ;
4 : unsigned i , t ; // in t roduce s non−determinism
5 : char ∗ p ;
6 : a [ 0 ] = 1 ;
7 : a [ 1 ] = 3 ;
8 : a [ 2 ] = 5 ;
9 : a [ 3 ] = 2 ;

10 :
11 : i f ( i >= 4) // 1
12 : re turn ;
13 :
14 : p = ( char ∗) a + i ∗ 4 ;
15 : ∗p = ∗p − 1 ; // 2
16 :
17 : t = a [∗p ] ; // 3
18 : }

Listing 4.8: A variation of EXE example
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SmacC implements two methods to check addresses in assignment statements or indi-
rection expressions:

• Arbitrary but Fixed (to be outside valid memory): the basic memory check. It
requires one satisfiability check to determine if a memory access is invalid.

• Out of Bounds: checks if an array access is invalid. It requires one satisfiability
check to determine if an array access is out-of-bounds. It can also be used to
check pointer arithmetic, but pointers can be modified in a way that invalidates
the result of the check.

SmacC allows both methods used separately, combined or none at all.

Basic Memory Check: Arbitrary-but-Fixed

The basic memory check constructs a Boolector bit-vector variable abf a and uses the
SMT formulas for the general memory layout to let abf point to an arbitrary address
in memory but it is fixed to be outside any valid memory.
Then it is checked if the variable abf can be equal to the address addr being checked.
If it is satisfiable that the address is equal to abf it is shown that the memory access
could address an illegal memory address (outside any known memory region, or in a
region that was freed by free)). SmacC checks both the first and last byte of a value
being read or written from or to memory.
Using only basic memory checks SmacC can miss incorrect memory access if malloc
and free is involved.
Another problem of the basic memory check is that the results of the check can depend
on the order in which variables were declared. This can also happen in C programs and
is hard to capture.

In a more formal way the basic memory check assumes:

abf > stack beg ∧ abf > global end ∧
abf < heap beg ∧ abf > heap end ∧
abf < stack end ∧ abf < global beg

and for each region free vari that was freed:

abf >= free vari ∧ abf < free var + free vari size
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and checks if it is satisfiable that:

abf = addr

Clearly because of the constraints on abf if the above SMT formula is satisfiable for
any byte of addr invalid memory is accessed. Note that stack end is the stack-pointer
currently valid.

Array Memory Check: Out-of-Bounds

The out-of-bounds memory check identifies in an AST an address and an offset for
memory access against which is checked. It can be used to verify array accesses and
in most cases pointer expressions. For basic array accesses this address, check addr ,
is the address of element 0 in the array, for pointer expressions it is the address the
pointer points to. The offset is, in both cases, a node in the AST because array access
decays to pointer nodes, because of this, an out-of-bounds check is performed for all
assignments or indirection statements involving pointers.
After identifying the address check addr for which the check is performed, all variables
in the order stack variables, global variables, heap variables are compared to the address.
If it is satisfiable that check addr is greater or equal to a variable, v, and check addr +
offset is smaller than v + size of variable then a candidate is found.
If additionally it is unsatisfiable that check addr + offset is greater or equal to the
v + size of variable a valid address was found. If the above conditions hold for no
variable in the set of variables, then the memory access is invalid.
addr represents the address being accessed, check addr the base address identified in
the AST. offset is also identified in the tree, if there is no offset it is set to zero (for
example when dereferencing a pointer *p).

Array memory check finds from the set of declared variables one variable v that suf-
fices:

check addr ≥ v ∧ check addr + offset ≤ v + size of v

If no such variable is found in the set of global, local or heap variables the access is
invalid. If there is such a v and

check addr + offset ≥ v + size of v
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is satisfiable, the access could cross variable boundaries and is considered invalid.

It is possible to reformulate the method described above to only need one satisfiability
check of one big formula that is constructed from all variables in the program: an access
is invalid for a variable v if the address check addr can be smaller than the address of
the variable or the highest address accessed (check addr + offset + read size) is greater
or equal to the highest address of v (v + v size).
The formula must be unsatisfiable for one of the variables in the program, otherwise
the memory access is invalid. The formula is constructed for each variable in the
program. If the conjunction of the formulas is satisfiable, non of the variables can be
the address that is accessed and hence the memory access is invalid. If the conjunction
is unsatisfiable there was a variable that was accessed correctly.

Because an array check requires the formula to evaluate to unsatisfiable, no assignment
is printed when it detects an access to be invalid.

Limits of the Model

The array memory check has the weaknesses that expressions using pointer arithmetic
can fool the array (out-of-bounds) memory check, nevertheless it can be used to verify
some pointer arithmetic expressions.
If memory allocated by malloc is deallocated by free it is not reused in following calls
to malloc. This can lead to out-of-memory situations where malloc cannot allocate
requested memory, leading to a contradiction in the memory model and hence inval-
idating reported results. This could even occur if memory deallocated by free was
reused.
Consequences are described in the Outlook section.

Memory Checks for EXE Example

Consider the variation of the EXE example listed above. After symbolically executing
the if statement and examining the else-path the representation of the program consists
of the following Boolector variables:

global beg , global end ,

heap beg , heap end ,

stack beg , stack end ,

a, i, t, p, mem
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The following SMT formulas represent assumptions for the memory model:

global beg ≤ global end ∧ global end < heap beg ∧
heap beg ≤ heap end ∧ heap end < stack end ∧

stack end ≤ stack beg ∧ global beg = global end ∧
heap beg = heap end ∧ a = stack beg − 4 ∗ 4 ∧

i = stack beg − 20 ∧ t = stack beg − 24 ∧
p = stack beg − 28 ∧ stack end = stack beg − 28

Additionally the path condition

read(mem, i) < 4

is valid for the rest of the path.

For the statement *p = *p - 1; consider its AST, the expression on the right-hand
side, *p, gets checked:

To check if the address could be outside of valid memory, SmacC creates a Boolector
variable abf restricts its value such that it does not overlap with an address that is
known to be valid. Then Boolector checks if the SMT representation of *p can be equal
to abf .

Figure 4.13: Grey color represents areas in memory abf might point to.
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Now consider expression a[*i] from EXE example, depicted as AST in the next figure,
and assume that the basic memory check did not find a problem. If array memory
check is also executed SmacC checks not only for access out of valid memory but also
for access out-of-bounds or across variable borders.
Array memory check would identify address of a as check addr , i * 4 as offset and
addr (a + i * 1 * 4) as address being dereferenced.

Figure 4.14: AST for a[*i] array access. Grey shows what nodes array memory check
would identify to perform the check.

From the set of declared variables (global, stack or heap variables) array check
searches for variable v that satisfies

check addr ≥ v ∧ check addr + offset ≤ v + size of v

selecting the variable that would fit the address.
If such a v is found, it is necessary to check that it is unsatisfiable that

check addr + offset > v + size of v
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This unsatisfiability check is essential because offset could be symbolic (e.g.: when the
target of *p, i, is uninitialized) and without checking unsatisfiability of the formula
a[i] would be considered legal in this example.
If SmacC does not find such a v then the memory access was across variable boundaries
and therefore invalid.
Elaborating on the statement from the EXE example, one can observe that addr =
a + 4 * *p with p pointing to a value of a that was decreased by one.
Hence possible values for addr are:

addr = a + 4 ∗ 0 addr = a + 4 ∗ 2 addr = a + 4 ∗ 4 addr = a + 4 ∗ 1

Identifying a as check addr and symbolic offset for which holds:

offset = 0 ∨ offset = 8 ∨ offset = 16 ∨ offset = 4

The algorithm finds a as fitting v from set of declared variables.
Hence

check addr ≥ v ∧ check addr + offset ≤ v + size of v (in source code terms:
a ≥ a ∧ a + ∗p ∗ 4 ≤ a + 15)

is satisfiable (assuming for example *p = 0).
Therefore the second SMT formula needs to be checked:

check addr + offset > v + size of v (in source code terms: a + ∗p ∗ 4 > a + 15

Which can be satisfiable, assuming for example ∗p = 4), therefore SmacC concludes
that the access is out-of-bounds for a[*p].
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Benchmark Generation

Benchmarks can be created by supplying the --create-benchmarks or the short form
-cb to SmacC. Instead of using Boolector to check for defects or verify properties, a
BTOR or SMT-LIB file is dumped as output.
For most examples it is then necessary to identify interesting paths through the pro-
gram and select checks interesting as benchmark. Internally it is necessary to conjunct
all assumptions (memory layout, path conditions) and then conjunct those with the
Boolector expression that needed to be checked if -cb were not supplied.
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4.4 Outlook

Problems with Array Memory Check

As mentioned, the array memory check can be used to detect memory errors in pointer
expressions but one can easily lever the array check to report wrong results:

1 : #inc lude <a s s e r t . h>

2 : void main ( )
4 : {
4 : i n t ∗ i ;
5 : i n t ∗ j ;
6 : i n t ∗∗ l ;
7 : i n t k = 1 ;
8 : i = &k ;
9 : a s s e r t (∗ i ) ;

10 : j = &k ;
11 : j = j − 1 ;
12 : a s s e r t (∗ ( j + 1 ) ) ;
13 : l = &i ;
14 : a s s e r t (∗∗ ( l ) ) ;
15 : }

Listing 4.9: Array memory check is fooled by pointer arithmetic

Calling SmacC (with overflow checks disabled) results in the following output:

[CHECK] l e g a l i n d i r e c t i o n , abf @ (8 ,11 ) OK

[CHECK] l e g a l i n d i r e c t i o n , oob @ (8 ,11 ) OK

[CHECK] a s s e r t i o n v i o l a t i o n @ (8 ,11 ) OK

[CHECK] l e g a l i n d i r e c t i o n , abf @ (11 ,17) OK

[CHECK] l e g a l i n d i r e c t i o n , oob @ (11 ,17) ERROR:
d e r e f e r e n c i n g address out o f bounds

[CHECK] a s s e r t i o n v i o l a t i o n @ (11 ,17) OK

[CHECK] l e g a l i n d i r e c t i o n , abf @ (13 ,14) OK

[CHECK] l e g a l i n d i r e c t i o n , oob @ (13 ,14) OK

[CHECK] l e g a l i n d i r e c t i o n , abf @ (13 ,14) OK
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[CHECK] l e g a l i n d i r e c t i o n , oob @ (13 ,14) OK

[CHECK] a s s e r t i o n v i o l a t i o n @ (13 ,14) OK

Listing 4.10: Wrong out-of-bounds access is reported

As can be seen, array check handles pointer accesses correctly as long as the value
identified as check address check addr is usable When the value of the pointer is mod-
ified as for example in the assignment statement j = j - 1, the address identified as
check addr is not usable for out-of-bounds access detection.

In this example, after the second assignment to j, the address &k - 1 is used as
check addr . &k - 1 corresponds to the address of l, memory gets accessed at ad-
dress &k. It is easy to see that using address of l as check addr lets the out-of-bounds
check fail because to succeed it would require the variable at address &l (which is l) to
be of size 8 bytes, but l has size 4 bytes. Hence the access is reported out-of-bounds.

As mentioned, this inconsistency could be handled by treating array variables differently
than pointer variables and omitting out-of-bounds check for non-array variables.

Problems with Memory Limits

If a program allocates all available memory by a call to malloc and then allocates
additional (unavailable) memory, the assumptions used to construct the memory model
can be contradicting, invalidating results of checks following the second call to malloc.
Assume that the first call to malloc allocates all memory from the lowest address to
the highest address. Assumptions established for the memory model are (omitting
assumptions for global and local memory regions):

heap beg ≤ heap end ∧
m1 = heap beg ∧ heap end = heap beg + m1 size

where m1 size is the number of bytes allocated by malloc. It forces heap end to be
equal to the highest address 1111....1111. The second call to malloc allocates memory
such that:

heap beg ≤ heap end ∧
m1 = heap beg ∧m2 = heap beg + m1 size ∧

heap end = heap beg + m1 size + m2 size
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SmacC assumes that there is no overflow on address calculations. Because of the
assumption that the first call to malloc forces heap end to be equal to the highest
address, overflow is unavoidable for address calculation of m2 , a contradiction follows.
Consequences of contradicting assumptions are discussed in the next section.

Problems with Path Conditions for Loops

There is a problem that emerges from the way path conditions of loops are handled:
after unrolling the loop up to the specified bound the loop condition is assumed to be
true. If it is the case that the state of the memory contradicts the assumption, then
the checks following the loop return wrong results.
Consider the following example that contains two methods to round a value to the next
power of two and asserts the output of both methods to be equal (the second one is
taken from [14]:

#inc lude <a s s e r t . h>

i n t main ( )
{

i n t x ;
i n t va lue ;
i n t r e s u l t ;
x = value ;

i f ( va lue >= 0)
{

f o r ( r e s u l t = 1 ; r e s u l t < value ; r e s u l t = r e s u l t << 1)
; // method 1

x = x − 1 ;
x = x | x >> 1 ;
x = x | x >> 2 ;
x = x | x >> 4 ;
x = x | x >> 8 ;
x = x | x >> 16 ;
x = x + 1 ; // method 2 : hacker ’ s d e l i g h t

a s s e r t ( r e s u l t == x ) ;
}

re turn ( cnt ) ;
}

Listing 4.11: Next power of 2
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If SmacC is called on the example, it will report that the assertion holds, no matter
what bound for loop unrolling was specified. If value is, for example, 231 the loop
would execute 8 times and yield the same result as method 2. If a bound of 3 is
supplied to SmacC it reports that the assertion holds, when it does not hold.
As mentioned, SmacC assumes the loop condition to hold after symbolically executing
it. In this example, after executing the loop 3 times it is assumed that result ≥ value
but it is easy to see that after 3 iterations result is actually 4. The assumption can
never be satisfied, because 4 ≥ 231 is unsatisfiable. When checking if result == x can
evaluate to zero (failing assertion), Boolector will always report unsatisfiable, even if
result == x clearly evaluates to zero because 4 6= 256.
Nevertheless SmacC can be used to detect the upper bound for the loop, which is, in this
case, easy to see: if SmacC is called on this example with a bound of 32, then SmacC
will report the last if condition for the unrolled loop to be unsatisfiable, or if -cb

was specified boolector will report UNSAT if called with the dump for the condition.
Therefore the uppermost bound for the loop is 31.
Knowing the upper bound for the loop allows to formulate the following verification
condition:

”For all values of value that need the loop to execute bound (that needs to be ≤ 31)
times, the two methods of calculating the next power of 2 that is greater than value

always return the same result.”

The verification condition can then be verified for a certain bound, for example 31, by
calling ./smacc -if pow2roundup.c -no -mc 0 -nd -fp -nr -bk 31. For all values
that would execute the loop 31 times, both methods return the same result.
Calling SmacC with -bk 0..31 (and verifying that the assertion holds in each call!)
could be seen as a bounded model-checking run on the example.
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Future Work

Much could be done to improve usability and efficiency of SmacC:

• Allow multiple function definitions and calls (for example by in-lining)

• Improve or replace path-generation algorithm

• Treat arrays differently from pointers such that array memory check only considers
arrays but not pointers (requires changes in front-end).

• Extend supported subset of C: loops (while, do-while), selection statements
(switch-case) and data types (struct, union, enum.

• Support function calls usually defined in the C standard library: memcpy, strcpy,
memmove, memset etc.

• Improve output, making it easier to identify the problem if there is an error.

• Improve output for unrolled loops.

• Develop a graphical user interface.

Allowing multiple translation units and function definitions and extending the sup-
ported subset of C would allow checking more complex programs.
With improved output capabilities it would be easier to find input that causes checks
to fail and replay them on the compiled program.
Getting rid of the path-generation step and checking all paths in one pass would greatly
improve the program, especially the benchmark generation capabilities.
Another topic worth investigating would be the use of separation logic [18]:
It introduces the binary separation conjunction operator ∗. The separating conjunction
asserts that its sub-formulas hold for disjoint parts of the heap [21]. For example: P ∗Q
not only assert P ∧ Q but also that P and Q reason about different portions of the
heap.

Introducing operators with separation conjunction-like semantics could simplify the
construction of a memory model and reasoning about it.
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Related Work

CBMC - Bounded Model Checker for ANSI C

CBMC is a Bounded Model Checker for ANSI C and C++ programs. It allows verifying
array bounds, pointer safety, exceptions and user-specified assertions [17]. CBMC takes
as input C files and translates the program, merging function definitions from the input
files. Instead of producing a binary for execution, CBMC performs symbolic simulation
on the program [10]. CBMC translates refined programs to SAT instances and uses
MiniSAT to verify properties.
Recently, preliminary support for SMT solvers (Boolector, CVC3, Yices, and Z3) has
been added via the SMT-LIB theory QF AUFBV [17].
CBMC can also be used to check behavioral consistency of C and Verilog programs
(Hardware and Software Equivalence and Co-Verification) [9].
The major difference to SmacC is that CBMC does not establish a full representation for
the memory of the program and its layout, instead it uses intermediate variables when
accessing variables. CBMC unwinds loops and recursive function calls and transforms
the program until it only consists of if instructions, assignments, assertions, labels and
goto instructions [8]. An assertion for each loop verifies that the unwinding bound [8]
is large enough, otherwise the bound is increased. Then it is transformed into static
single assignment form, consisting of bit-vector equations for constraints and verification
conditions. The conjunction of the constraints and the negation of the property is
checked for satisfiability. If the conjunction is satisfiable, the property is violated.
Details can be found in [8] where the following example for SSA transformation is
taken from:

x = x + y;
if (x != 1)
x = 2;

else
x++;

assert (x <= 3);

x1 = x0 + y0;
if (x1 != 1)
x2 = 2;

else
x3 = x1 + 1;

x4 = (x1 != !) ? x2 : x3;
assert (x4 <= 3);

C :=
x1 = x0 + y0 ∧
x2 = 2 ∧ x3 = x1 + 1 ∧
x4 = (x1 ! = 1)?x2 : x3
P :=
x4 ≤ 3

Figure 4.15: SSA transformation of CBMC. The program on the left is transformed to
the constraint and property on the right.

It is difficult to compare this approach to SmacC because of another obvious difference:
path generation not necessary in CBMC. SmacC would translate the code snippet to 2
paths:
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path0 :
write(mem, x, y)
assume(x! = 1)
write(mem, x, 2)
root(eq(0, slte(read(mem, x), 3)))

path1 :
write(mem, x, y)
assume(!(x! = 1))
write(mem, x, read(mem, x))
eq(0, slte(read(mem, x), 3))

Figure 4.16: Sloppy notation of the transformed program in SmacC, omitting memory
layout

CBMC supports Verilog, a much larger set of C and comes with a GUI that increases
usability for users unfamiliar with formal verification tools. It seems to scale better and
is faster than SmacC. Some results are listed in the Benchmark section.

EXE Tool

EXE is a bug finding tool that can generate input that crashes the program analyzed.
EXE runs the code on symbolic input and constrains it by tracking constraints on sym-
bolic memory locations. If symbolic values occur in a statement, EXE does not run the
statement but adds it as an input-constraint. Symbolic memory locations need to be
marked by the programmer.
If code conditionally checks a symbolic expression, EXE forks execution, constraining
the expression to be true on the true branch and false on the other. When a path termi-
nates or hits a bug, EXE automatically generates a test case by solving the constraints
to find concrete values using the constraint solver STP. Supplying the concrete input
to the original program will cause it to follow the same path and hit the same bug.
EXE scales well on real code, it was used to find bugs in various software projects, in-
cluding the BSD and Linux packet filter implementations or the udhcpd DHCP server.
SmacC’s path generation algorithm was inspired by EXE, but instead of forking, paths
are extracted from the program. One of the drawbacks of EXE seems to be the manual
marking of symbolic input, which is not necessary in CBMC or SmacC [7].



Results 62

Chapter 5

Results

5.1 Benchmarks

The following C files and algorithms were transformed to a BTOR representation, and
can be used as benchmarks:

• Memcopy: A simple memcopy implementation, copying memory from the source
buffer to the destination buffer. Assert that destination buffer contains the same
elements as the source buffer after copying.

• Palindrome: implements algorithm to check if a string is a palindrome. If the
algorithm concludes that a string is a palindrome, assert that the string fulfills
palindrome properties.

• Stringcopy: Similar to memcopy but omitting the third parameter, the number
of bytes that must be copied. The loop terminates if null character is read in
source buffer which is then copied to the target buffer.

• Power of 3 equality: Compares if a method to compute n3 using a loop always
yields the same result as a method without a loop.

• Tiny Encryption Algorithm:
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5.1.1 Memcpy

To create a benchmark from the memcopy implementation it is necessary to supply a
bound for source and destination array that is also used as bound for loop unrolling.
The check that is used as benchmark is the last assertion in the code, which checks
that all bytes below the bound were copied correctly, that is, elements at position i

(less than bound n) in the destination buffer are equal to element at position i in the
source buffer.
The next listing shows the code for memcopy with bound 40, note that variable i is
constrained to be less than n in line 23.
The benchmark is created by executing: ./smacc -if memcpy_40.c -no -bk 40 -fp -cb

and extracting the BTOR expression for the last assertion check. --first-path can
be used to minimize output, because the first path through the program contains the
assertion statement in line 24. -no reduces output even further because overflow checks
are omitted.

#inc lude <a s s e r t . h>

void
main ( )
{

unsigned i ;
char ∗ q ;
char ∗ eos ;
char ∗ p ;
char dst [ 4 0 ] ;
char s r c [ 4 0 ] ;
unsigned n = 40 ;

p = s r c ;
q = dst ;
f o r ( eos = s r c + n ; p < eos ; p = p + 1)
{
∗q = ∗p ;
q = q + 1 ;

}

i f ( i < n)
a s s e r t ( s r c [ i ] == dst [ i ] ) ;

}

Listing 5.1: Memcpy code - problem size 40
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5.1.2 Palindrome

As for memcpy it is necessary to supply both array size and bound for loop unrolling to
create a benchmark.
A string is considered to be a palindrome if it can be read the same way in either
direction.
The algorithm is formulated in such a way, that the assertion being checked must hold
on the first path through the program.
In line 25 variable m is constrained to be greater than zero but smaller than bound n - 1,
line 27 constrains the string to be a palindrome on the first path through the program.
The assertion in line 28 will checks if the character with the highest index is similar to
the character with the lowest index, etc., until all characters are verified.
Note that actually the implementation compares groups of 4 characters to each other,
because the input string is formulated as integer array, each byte of every 4-byte integer
represents a character.
The following listing presents the code for a palindrome check of a 10 byte integer
array (40 character string). To create a benchmark from the code, execute it with
./smacc -if palindrome_10.c -no -bk 10 -fp -cb and extract BTOR expressions
for the assertion check.

#inc lude <a s s e r t . h>

i n t main ( )
{

i n t s t r [ 1 0 ] , ∗ begin , ∗ end , n = 10 , i , m, r e s u l t = 0 ;

i = n ;
begin = &s t r [ 0 ] ;
end = &s t r [ n − 1 ] ;

f o r ( i = n − 1 ; i >= 0 ; i = i − 1)
{

i f (∗ begin == ∗end )
r e s u l t = r e s u l t + 0 ;

e l s e
r e s u l t = 1 ;

begin = begin + 1 ;
end = end − 1 ;

}

i f (m <= n − 1 && m >= 0)
i f ( r e s u l t != 1)

a s s e r t ( s t r [m] == s t r [ n − m − 1 ] ) ;
}

Listing 5.2: Palindrome code - problem size 10
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5.1.3 Stringcopy

Copies the string stored in src to dst. The loop stops if the string terminating null-
byte was read in src. After copying it to dst it is verified that all bytes copied are the
same in both src and dst buffer and that the last byte in dst terminates the string.
What is special about this example is that the bound for the loop can be specified with
the -bk parameter (because the loop condition does not use size.
After executing the last if statement of the unrolled loop, the negation of the loop
condition is added as assumption, hence it holds that *source contains ’\0’ after
executing the loop.
The assertion states that bytes from index 0 to index source - orig_source (the
number of bytes copied) are similar in src and dst and that the last byte written to
dst is the null byte.

#inc lude <a s s e r t . h>

char s r c [ 4 ] , dst [ 4 ] ;
unsigned s i z e = 4 , chk ;

void
s t r cpy ( )
{

char ∗ o r i g t a r g e t , ∗ o r i g s r c ;
char ∗ target , ∗ source ;

i f ( s i z e > 0)
{

source = s r c ;
t a r g e t = dst ;
o r i g s r c = source ;

f o r ( source = source ; ∗ source != 0 ; source = source + 1)
{
∗ t a r g e t = ∗ source ;
t a r g e t = t a r g e t + 1 ;

}

∗ t a r g e t = 0 ;

i f ( chk < s i z e && chk < ( source − o r i g s r c ) )
a s s e r t ( dst [ chk ] == s r c [ chk ] && dst [ ( source − o r i g s r c ) ] == 0 ) ;

}
}

Listing 5.3: Stringcopy code - problem size 4
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5.2 Timing Results

Benchmarks were run on an Intel R© CoreTM 2 Duo CPU E6750 @ 2.66GHz with 2GB
main memory. Time was measured using the UNIX time command. Runtime for
SmacC also contains the runtime of if condition checks which is only a small fraction
(for example: 25 seconds, roughly 0.5%, for condition checks in memcpy40). Runtimes
greater than 10 hours are considered timeouts.

Benchmark Bound Boolector SmacC CBMC
memcpy.c, array size 30 30 287s 1496s 0.25s
memcpy.c, array size 40 40 565s 5595s 0.33s
memcpy.c, array size 50 50 1114s 7350s 0.34s
palindrome check, n 10 10 734s 2010s 0.15s
palindrome check, n 11 11 639s 3718s 0.18s
palindrome check, n 15 15 1614s 13406s 0.22s
palindrome check, n 16 16 3344s 16220s 0.26s
strcpy array, n 20 20 231s timeout 0.11s
strcpy array, n 30 30 1430s timeout 0.15
strcpy array, n 40 40 7684s timeout 0.20s
tiny encryption 32 timeout timeout timeout
power 3 equality 3 timeout timeout timeout

Table 5.1: Comparing Boolector stand-alone version to library usage in SmacC.

It can be seen that runtime for the library version of Boolector exceeds the runtime
of the stand-alone version many times over. Tiny encryption algorithm and power of
3 equality seem to produce hard instances. The following table lists the number of
variables and clauses of CBMC SAT instances for all examples:

Benchmark variables clauses
memcpy.c, array size 30 12893 19522
memcpy.c, array size 40 22089 32517
memcpy.c, array size 50 33571 48834
palindrome check, n 10 10579 30221
palindrome check, n 11 11977 34899
palindrome check, n 15 18415 57040
palindrome check, n 16 20308 63322
strcpy array, n 20 601 367
strcpy array, n 30 795 692
strcpy array, n 40 1113 1117
tiny encryption 92284 322283
power 3 equality 15586 52637

Table 5.2: Size of SAT instances generated by CBMC.
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Chapter 6

Tutorial

This chapter shows how to use SmacC either to verify small programs or to generate
benchmarks.
The first part of the tutorial shows how examples can be constructed to be checked with
SmacC, the second part will describe how to control output of SmacC by supplying
specific command line arguments and how to interpret the output reported.

6.1 Installation and Requirements

SmacC requires a C compiler, preferably gcc and the build system make. Additionally
the solver Boolector in its library version is required.

1. extract Boolector and SmacC archives: tar xvfz smacc_vxx.tar.gz and
tar xvfz boolector_vxx.tar.gz, creating a boolector and a smacc directory

2. copy the Boolector library and header to the smacc directory
cp boolector/libboolector.a boolector/include/boolector.h smacc/

3. change to smacc directory and compile SmacC: cd smacc; make

SmacC should now be ready to use, check by typing ./smacc -h
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6.2 Usage

Usage help for SmacC can be output by supplying the -h or --help argument to
SmacC. A more detailed description of the command line arguments, when and how to
use them, is presented in the tutorial section.

usage : smacc [<option> . . . ]

where <option> i s one or more o f the f o l l o w i n g :

−h|−−help p r in t t h i s command l i n e opt ion summary
−v|−−v e r b o s i t y <vl> s e t v e r b o s i t y l e v e l (0 , 1 , 2)

d e f a u l t : v l = 1
− i f |−− in− f i l e < i f > input f i l e to check

d e f a u l t : i f = s td in
−er |−−e r ror−r epo r t <er> d e t a i l o f memory check r e p o r t s (0 , 1)

d e f a u l t : e r = 1
−bk|−−bound−k <k> bound f o r loop u n r o l l i n g

d e f a u l t : k = 4
−s i |−− s equen t i a l− i f u n r o l l l oops to s e q u e n t i a l i f s tatements

d e f a u l t : nested i f s tatements
−mc|−−mem−check <c l> memory a n a l y s i s method (0 , 1 , 2 , 3)

d e f a u l t : c l = 3 ( f u l l , 2 : deep , 1 : bas ic , 0 : none )
−rv |−−return−value <rv> expected re turn value

d e f a u l t : rv = 0
− f r |−− f o r c e−re turn use check

’ r e turn value o f program i s always equal to rv ’
i n s t ead o f
’ r e turn value o f program can be equal to rv ’

−fp |−− f i r s t −path stop a f t e r gene ra t i on o f f i r s t path
d e f a u l t : generate a l l paths

−no|−−no−over f l ow don ’ t check over f l ow on ar i thmet i c ope ra t i on s
d e f a u l t : check over f l ow on ar i thmet i c ope ra t i on s

−na|−−no−a s s e r t i o n s don ’ t v e r i f y a s s e r t i o n statements
d e f a u l t : v e r i f y a s s e r t i o n statements

−nr|−−no−re turn don ’ t check re turn statements
d e f a u l t : check re turn statements

−nd|−−no−d ivze ro don ’ t check f o r d i v i s i o n by zero
d e f a u l t : check d i v i s i o n f o r d i v i s i o n by zero

−cb|−−create−benchmarks boolector dump in s t ead o f b o o l e c t o r s a t
d e f a u l t : b o o l e c t o r s a t

−ds|−−dump−smt dump in SMT format in s t ead o f BTOR format
d e f a u l t : BTOR format
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• -v <vl>: controls verbosity of SmacC. Level 2 prints the full code-list, the flat-
tened code list and all paths executed. Level 1 omits the full and the flat code-list.
Level 3 omits all output.

• -if <if>: specify the input file to check, if none is supplied standard input is
used as input file.

• -er <er>: control detail of error messages.

• -bk <k>: the bound for loop unrolling

• -si: if supplied, loops are not unrolled to nested if statements but to a sequence
of if statements.

• -mc <cl>: selects memory analysis method: 0 for no memory checks, 1 for abf
memory check and 2 for deep memory check. When supplying 3, both memory
analysis methods are used.

• -rv <rv>: specify a value against which return statements are checked.

• -fr: when a return statement is checked, the default check executed verifies that
the return value can be equal to supplied return value. When supplying -fr a
return statement check fails if a return value different from the supplied one is
possible.

• -fp: only the path that is extracted as the first path through the program is
symbolically executed.

• -no: if supplied, arithmetic operations are not checked for arithmetic overflow.

• -na: if supplied, assertion statements are not verified.

• -nr: is supplied, return statements are not checked for their return value

• -nd: if supplied, division operators are not checked for division by zero.

• -cb: benchmarking mode, instead of checking satisfiability of check formulas the
formulas are conjuncted with all memory assumptions and path conditions and
then dumped to a file.

• -ds: dump formulas in SMT format instead of BTOR format.
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6.3 Creating a simple Example

Consider the following simple snippet of C code in a file named test.c:

i n t
main ( void )
{

unsigned x ;

i f ( x == 0 | | x == 1)
return 1 ;

i f ( x >= 9)
return 9 ;

re turn 0 ;
}

Listing 6.1: File test.c

SmacC is run on the example by entering ./smacc -v 2 -if test.c, and outputs:

o r i g i n a l c o d e l i s t :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,12 )
CIF @ (7 , 4 )
CBBEG @ (7 ,4 )

CRET @ (7 ,12 )
CBEND @ (9 ,2 )

CIF @ (10 ,4 )
CBBEG @ (10 ,4 )

CRET @ (10 ,12)
CBEND @ (12 ,2 )

CRET @ (12 ,10)
CSEXIT @ (13 ,0 )

CSEXIT @ (13 ,0 )

f l a t t e n e d c o d e l i s t :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,12 )
CIF @ (7 , 4 )
CBBEG @ (7 ,4 )

CRET @ (7 ,12 )
CBEND @ (9 ,2 )

CIF @ (10 ,4 )
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CBBEG @ (10 ,4 )
CRET @ (10 ,12)

CBEND @ (12 ,2 )
CRET @ (12 ,10)

CSEXIT @ (13 ,0 )
CSEXIT @ (13 ,0 )

As there are no loops in the example, flattened code-list is similar to the original full
code-list. They are printed because verbosity level 2 was specified by -v 2. The first
and second path are executed:

path :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,12 )
CIF @ (7 , 4 )
CBBEG @ (7 ,4 )

CRET @ (7 ,12 )
CBEND @ (9 ,2 )

CBEND @ (12 ,2 )
CSEXIT @ (13 ,0 )
CSEXIT @ (13 ,0 )

[ IF ] @ (7 , 4 )

[CHECK] return statement @ (7 ,12 ) ERROR

path :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,12 )
CELSE @ (9 ,2 )
CIF @ (10 ,4 )
CBBEG @ (10 ,4 )

CRET @ (10 ,12)
CBEND @ (12 ,2 )

CSEXIT @ (13 ,0 )
CSEXIT @ (13 ,0 )

[ELSE] @ (9 , 2 )

[ IF ] @ (10 ,4 )

[CHECK] return statement @ (10 ,12) ERROR
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The first path assumes the if condition in line 10 to be true and then checks the return
statement return 1, which fails, because it is not satisfiable that the program returns
0 on this path. The coordinates in a path always consider the last character before the
next statement, hence coordinates for the if statement are (10, 4).
The second path assumes the first if statement to evaluate to false, but the second
one to be true. Again, the return statement of this path cannot evaluate to 0, hence
an error is output for the return statement in line 12.

path :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,12 )
CELSE @ (9 ,2 )
CELSE @ (12 ,2 )
CRET @ (12 ,10)

CSEXIT @ (13 ,0 )
CSEXIT @ (13 ,0 )

[ELSE] @ (9 , 2 )

[ELSE] @ (12 ,2 )

[CHECK] return statement @ (12 ,10) OK

btor r e f s b e f o r e d e l e t i o n : 0
sa t c a l l s : 8
time : 0 .020000
time sat : 0 .020000
% sat : 1 .000000

The third path assumes the first two if statements to be unsatisfiable and returns 0,
hence the return statement check for this path succeeds.
Because -v 2 was supplied, statistics about the run are printed. The first number
represents the number of boolector_sat calls, time represents the time passed since
starting the program. The third number measures the time that passes when call-
ing boolector_sat, and the fourth number outputs the percentage of time spent in
boolector_sat.
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Change test.c to contain the following code:

i n t
main ( void )
{

unsigned x ;

i f ( x == 0 | | x == 1)
return 1 ;

i f ( x >= 9)
return 9 ;

a s s e r t ( x > 1 && x < 9 ) ;
r e turn ( x > 1 && x < 9 ) ;

}

Listing 6.2: Assertion statement added and return statement updated

The first two paths do not change, but the third path contains an additional assertion
check and a different return statement expression.
Call SmacC on the example by entering ./smacc -if test.c -rv 1 -fr. The last two
parameters change the behaviour of SmacC when checking return statements: -rv 1

does not use the default value 0 for checking return statements but value 1. -fr requires
return statements to return the specified value in all cases, it must be unsatisfiable that
the return statement returns a value different from the supplied one.
Consider the output for the third path:

path :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,12 )
CELSE @ (9 ,2 )
CELSE @ (12 ,2 )
CASSERT @ (12 ,25)
CRET @ (13 ,25)

CSEXIT @ (14 ,0 )
CSEXIT @ (14 ,0 )

[ELSE] @ (9 , 2 )

[ELSE] @ (12 ,2 )

[CHECK] a s s e r t i o n v i o l a t i o n @ (12 ,25) OK

[CHECK] return statement @ (13 ,25) OK
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Again, both if conditions are assumed to evaluate to false. The assertion statement
is checked. Checking an assertion requires SmacC to check if the value resulting from
the expression asserted can evaluate to 0, if so, then the assertion might fail. In the
example the assertion cannot fail because the two if statements that were not executed
constrain the value of x to be between 2 and 8 (inclusive).
The same expression that was used in the assertion statement is used as return value.
It can never evaluate to zero, as was proven when checking the assertion statement,
but will always evaluate to 1, hence the return statement check succeeds.
Change test.c again:

i n t
main ( void )
{

i n t ∗ p ;
unsigned x ;

i f ( x == 0 | | x == 1)
return 1 ;

i f ( x >= 9)
return 9 ;

a s s e r t ( x > 1 && x < 9 ) ;

p = ( i n t ∗) mal loc ( x ) ;
∗p = 0 ;
re turn 0 ;

}

Listing 6.3: Allocate and write to memory

Symbolically execute it: ./smacc -if test.c, again considering only the third path.

path :
CSENTER @ (6 ,6 )

CSENTER @ (7 ,0 )
CDECLL @ (8 ,9 )
CDECLL @ (9 ,12 )
CELSE @ (14 ,2 )
CELSE @ (17 ,2 )
CASSERT @ (17 ,25)
CCODE @ (19 ,24)
CCODE @ (20 ,8 )
CRET @ (21 ,10)

CSEXIT @ (33 ,0 )
CSEXIT @ (33 ,0 )
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[ELSE] @ (14 ,2 )

[ELSE] @ (17 ,2 )

[CHECK] a s s e r t i o n v i o l a t i o n @ (17 ,25) OK

[CHECK] l e g a l assignment , abf @ (20 ,8 ) ERROR
00000000000000000000000000000000 r e s u l t
00000000000000000000000000000000 const
01000100000111111111111111111000 p
01000010111111111111111111111100 ∗

[CHECK] return statement @ (21 ,10) OK

Again, the assertion statement holds, but the assignment statement *p = 0 results in
a failing memory model check. The assignment could target an invalid address because
writing an int value requires 4 bytes and the call to malloc could allocate only 2 or 3
bytes.

Changing test.c to

i n t
main ( void )
{

i n t ∗ p ;
unsigned x ;

i f ( x == 0 | | x == 1)
return 1 ;

i f ( x >= 9)
return 9 ;

a s s e r t ( x > 1 && x < 9 ) ;

p = ( i n t ∗) mal loc ( x ∗ s i z e o f ( i n t ) ) ;
∗p = 0 ;
re turn 0 ;

}

Listing 6.4: Fixed memory allocation

corrects the error.
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path :
CSENTER @ (6 ,6 )

CSENTER @ (7 ,0 )
CDECLL @ (8 ,9 )
CDECLL @ (9 ,12 )
CELSE @ (14 ,2 )
CELSE @ (17 ,2 )
CASSERT @ (17 ,25)
CCODE @ (19 ,39)
CCODE @ (20 ,8 )
CRET @ (21 ,10)

CSEXIT @ (33 ,0 )
CSEXIT @ (33 ,0 )

[ELSE] @ (14 ,2 )

[ELSE] @ (17 ,2 )

[CHECK] a s s e r t i o n v i o l a t i o n @ (17 ,25) OK

[CHECK] s igned m u l t i p l i c a t i o n over f l ow @ (19 ,39) OK

[CHECK] l e g a l assignment , abf @ (20 ,8 ) OK

[CHECK] l e g a l assignment , oob @ (20 ,8 ) OK

[CHECK] return statement @ (21 ,10) OK

If no error is found for an assignment or indirection then also a deep memory check is
issued. This behaviour can be changed by supplying the -mc argument. A value of 0
disables all memory checks, 1 selects basic memory check, 2 selects deep memory check
and a value of 3 (the default behaviour) was used in the example above.

It is also possible to disable different checks, consider again path 3 of the program
executed with arguments ./smacc -if test.c -na -no -nr:

CSENTER @ (6 ,6 )
CSENTER @ (7 ,0 )

CDECLL @ (8 ,9 )
CDECLL @ (9 ,12 )
CELSE @ (14 ,2 )
CELSE @ (17 ,2 )
CASSERT @ (17 ,25)
CCODE @ (19 ,39)
CCODE @ (20 ,8 )
CRET @ (21 ,10)
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CSEXIT @ (33 ,0 )
CSEXIT @ (33 ,0 )

[ELSE] @ (14 ,2 )

[ELSE] @ (17 ,2 )

[CHECK] l e g a l assignment , abf @ (20 ,8 ) OK

[CHECK] l e g a l assignment , oob @ (20 ,8 ) OK

Path condition checks can not be disabled but they are not executed when the bench-
mark creation argument is supplied: ./smacc -if test.c -cb. More paths will be
generated because unsatisfiable path conditions are not detected when using -bc. The
output is not listed because the BTOR instances for the checks are between 50 and 400
lines per instance.
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6.4 Analyzing Output

As final example consider again a variation of the example from [7].

main ( void )
{

unsigned a [ 4 ] ;
unsigned i , t ;
char ∗ p ;
a [ 0 ] = 1 ;
a [ 1 ] = 3 ;
a [ 2 ] = 5 ;
a [ 3 ] = 2 ;

i f ( i >= 4)
return ;

p = ( char ∗) a + i ∗ 4 ;
∗p = ∗p − 1 ;

t = a [∗p ] ;

t = t / a [ i ] ;

i f ( t == 2)
a s s e r t ( i == 1 ) ;

e l s e
a s s e r t ( i == 3 ) ;

}

Listing 6.5: Variation of the EXE example

Consider path 2 through the program where the if condition in line 12 of the program
does not hold:

path :
CSENTER @ (2 ,6 )

CSENTER @ (3 ,0 )
CDECLL @ (4 ,15 )
CDECLL @ (5 ,12 )
CDECLL @ (5 ,15 )
CDECLL @ (6 ,10 )
CCODE @ (7 ,10 )
CCODE @ (8 ,10 )
CCODE @ (9 ,10 )
CCODE @ (10 ,10)
CELSE @ (15 ,2 )
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CCODE @ (15 ,24)
CCODE @ (16 ,13)
CCODE @ (18 ,11)
CCODE @ (20 ,14)
CIF @ (23 ,4 )
CBBEG @ (23 ,4 )

CASSERT @ (23 ,19)
CBEND @ (24 ,2 )

CSEXIT @ (26 ,0 )
CSEXIT @ (26 ,0 )

CELSE @ (15,2) constrains i to be less than 4 because the assumption !(i >= 4)

is added to the list of path conditions. The following CCODE entries represent the
assignment statements in lines 15 to 20 in the program.
Omitting the rest of the checks, consider the following two errors reported by SmacC:

[CHECK] l e g a l i n d i r e c t i o n , abf @ (18 ,11) ERROR
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx r e s u l t
11011101011001111111000000000000 a
11011101011001111110111111110100 p
11011101011001111111000000001000 ∗
00000100 ∗
00000000000000000000000000000100 const
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ∗

[CHECK] unsigned d i v i s i o n by zero @ (20 ,14) ERROR
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx r e s u l t
01110000000010101111111111111000 a
01110000000010101111111111110100 i
00000000000000000000000000000000 ∗
00000000000000000000000000000100 const
00000000000000000000000000000000 ∗
01110000000010101111111111110000 t
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ∗

The memory error reported at position 18,11 represents the assignment in line 18 in
the program. At this state in the program i has a value between 0 and 3 therefor
p points to value 1, 3, 5 or 2 which gets decremented by 1. The problem with the
assignment is that p might point to the value 4, then the array access on the right hand
side of the statement is invalid. The output lists addresses of variables, their values and
constants if they occur in the expression. 11011101011001111110111111110100 is the
address of p, 11011101011001111111000000001000 below p, marked with *, represents
the value stored at p (* represents indirection in C, hence it is also used to mark values
of variables in the output). 00000100 * represents the character value p points to, in
this case 4. Because i is not used in the statement its value is not shown in the output
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but one can deduce that i had the value 2.
The next error reported represents an error on an arithmetic operation. If p points to
a byte of the first element of array a value 1 is changed to 0 in line 16, resulting in
division by zero in line 20. Because i is used in the expression is value is listed in the
output.
The next error

[CHECK] a s s e r t i o n v i o l a t i o n @ (23 ,19) ERROR
00000000000000000000000000000000 r e s u l t
00000000000000000000000000000000 const
00000000000000000000000000000001 const
00000000000000000000000000000001 const
11000000000000000000000000001011 i
00000000000000000000000000000010 ∗

represents a failing assertion statement but one recognizes in the output that i has the
value 4 which already caused the memory error in line 18.
After modifying the if condition in line 22, prohibiting value 2 for i,

i f ( t == 2 && i != 2)

the assertion in line 23 holds:

[CHECK] a s s e r t i o n v i o l a t i o n @ (23 ,19) OK

This concludes the tutorial. After reading both the theoretic parts about the memory
model, checks and limitations, one should be able to use and understand SmacC.
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Appendix A

Supported C Subset

Translation Units

In the C language described by the draft submitted to ANSI on 31 October 1988, a
program consists of one or more translation units stored in files [16].
SmacC does not support more than one translation unit, only one input file is supplied
and it must not refer to code in other translation units.

Comments

In addition to the comment characters /* and */ supported by ANSI C the // comment
characters are supported in translation units valid as SmacC input.

Constants

In ANSI C there exist several kinds of constants, all belonging to a certain type discussed
in the type section.

Support for different forms of integer and character constants would require the front-
end to be updated but would not need additional type support in the back-end.
Enumeration constants would need changes to support the declaration of enumeration
types in the front-end. Identifiers declared as enumerators are constants of type integer
and would require no changes in the back-end. Floating constants needs a decision
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ANSI-C constant form Supported in SmacC
integer-constants - supported

0 octal unsupported
0x, 0X hexadecimal unsupported
u, U unsigned unsupported
l, L long unsupported

character-constants ” unsupported
”” unsupported
decimal representation supported

floating-constant - unsupported
enumeration-constants - unsupported

Table A.1: Supported constants

procedure that supports floating types which Boolector does not. Additionally changes
would be necessary both in the front-end and back-end.

Storage Classes

An object denotes a named region of storage in memory, an lvalue is an expression
referring to an object [16].

The storage class of an object is specified by several keywords together with the context
of its declaration. Automatic objects are local to a block and invalidated when the block
is exited.
Declarations within a block create automatic objects. Static objects can be local to a
block or external to all blocks but retain their values throughout the program.
Objects declared outside all blocks are always static. These basic rules for objects do
not always apply when declarations contain additional keywords:

• register: Automatic, should be stored in registers of the CPU if possible.

• auto: Automatic, force declaration to be automatic storage.

• static: Internal linkage, local to a particular translation unit.

• external: External linkage, global to the entire program.

In SmacC storage class specifiers are unsupported.
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Basic Types

The type system supported by SmacC inludes not all basic types supported by the
ANSI C standard.
The table lists keywords for the basic types in C and their representation in SmacC.

Basic Type Supported in SmacC Size (default)
char, short supported 8 Bit
unsigned char, unsigned short supported 8 Bit
int, long supported 32 Bit (signed)
unsigned int, unsigned, unsigned long supported 32 Bit
float unsupported -
double unsupported -
enumerations unsupported -
void supported 0 Bit

Table A.2: Supported and unsupported types

As for the corresponding constants, enumeration types could be implemented very easy,
support for floating types would require changes in the SMT solver or heavy changes
in the back-end to model floating point types with types supported by the back-end.

Derived Types

Derived types can be constructed in addition to the basic types by using the following
methods:

Method Description Supported in SmacC
arrays Arrays of objects of a given type supported
functions Return objects of a given type partly supported
pointers Pointers to objects of a given type partly supported
structures Contain a sequence of objects of types unsupported
unions Contain any one of several objects of types unsupported

Table A.3: Supported and unsupported methods for deriving types

Function pointers are not supported.

unions and structures are not supported but could be implemented with changes in
both front- and back-end.
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Function Calls

Functions are only partly supported, a translation unit may only contain one function
declaration but not more.
Some function calls are supported as they are implemented in SmacC:

• assert: Asserts an expression.

• malloc: Allocates memory.

• free: Deallocates memory.

Type Qualifiers

Both type qualifiers volatile and const are not supported by SmacC.

Integral Promotion

Integral types may be used in expression wherever an integer may be used. If an int

can represent all the values of the type, the value is converted to int. Otherwise it is
converted to unsigned.

Primary Expressions

Primary Expression SmacC
identifier supported
constant partly supported check table A.1
string unsupported
( expression ) supported

Table A.4: Supported primary expressions
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Postfix Expression Description SmacC
primary-expression check table A.4 partly supported
postfix-expression [ expression ] array reference supported
postfix-expression ( argument-expression-list ) function call partly supported
postfix-expression . identifier structure reference unsupported
postfix-expression -> identifier structure reference unsupported
postfix-expression ++ postfix increment unsupported
postfix-expression -- postfix decrement unsupported

Table A.5: Supported postfix expressions

Postfix Expressions

Unary Expressions

Unary Expression Description SmacC
postfix-expression check Table A.5 partly supported
++ unary-expression prefix increment unsupported
-- unary-expression prefix decrement unsupported
unary-operator cast-expression cast, type conversion supported
sizeof unary-expression sizeof expression in bytes supported
sizeof ( type-name ) sizeof type in bytes supported

Table A.6: Supported unary expressions

Unary-operators are one of the following:

Unary Operator Description SmacC
& address operator supported
* indirection operator supported
+ unary plus operator supported
- unary minus operator supported
~ one’s complement operator supported
! logical negation operator supported

Table A.7: Supported unary operators

Multiplicative and Additive Operators

Multiplicative and Additive operators with their usual semantics are supported by
SmacC.
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Shift Operators

Shift operators are supported.

Relational and Equality Operators

The operators evaluate to 0 if the specified relation is false and to 1 if it is true.

Operator Description SmacC
< less supported
> greater supported
<= less or equal supported
>= greater or equal supported
== equal to supported
!= not equal to supported

Table A.8: Supported relational and equality operators

Bitwise and Logical Operators

Operator Description SmacC
& bitwise and function supported
^ bitwise exclusive or function supported
| bitwise inclusive or function supported
&& logical and operator supported
|| logical or operator supported
?: conditional operator supported

Table A.9: Supported bitwise and logical operators

Assignment Expressions

Only the non-augmented assignment operator is supported by SmacC, augmented as-
signment is not possible.
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Operator Description SmacC
= non-augmented assignment supported
*=, /=,%=,+=,-=,<<=,>>=, &=, ^= augmented assignments unsupported

Table A.10: Assignment operators

Comma Operator

The comma operator is supported for variable declarations, initializations and in for

statements.

Statements

The following statements are described in the ANSI-C reference manual in [16].

Statement Description SmacC
labeled-statement a statement may carry a label unsupported
expression-statement assignments, function calls partly supported
compound-statement sequence of statements, block supported
selection-statement if, switch only if supported
iteration-statement while, do-while, for only for supported
jump-statement goto, continue, break, return only return supported

Table A.11: Statement types

Labeled statements and jump statements that jump back in the code require changes
in the back-end, especially the goto jump statement.
Selection statement switch could be realized by transforming them into if statements,
as could the while and do-while iteration statement.
The condition expression of for statements is mandatory and must not be omitted.

Preprocessor and Macros

The only preprocessor directive that is supported is the #include directive.
#include has no effect on the SMT formula generated, it is only supported to be
able to run examples that compile with gcc with SmacC, most important is the
#include <assert.h> directive.
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