Model Checking WS 2015: Assignment 3

Institute for Formal Models and Verification, JKU Linz

Due 19.11.2015

Exercise 13

Let $L:=(S, I, \Sigma, T)$ be an LTS with states S. Let $\Psi: \mathbb{P}(S \times S) \rightarrow \mathbb{P}(S \times S)$ be the operator defined on slide 38 , i.e. $\Psi(\lesssim):=\{(r, t) \in(S \times S) \mid r \lesssim t$ or $\exists s \in S:[r \lesssim s$ and $s \lesssim t]\}$ for relation $\lesssim \subseteq S \times S$.
a) Prove that if \lesssim is a simulation then $\Psi(\lesssim)$ is also a simulation.
b) Given a relation $\lesssim \subseteq S \times S$, is $\Psi(\lesssim)$ always a transitive relation? Justify your answer.

Exercise 14

Let A_{1} and A_{2} be two LTS. Prove the theorem from slide 40: If $A_{1} \lesssim A_{2}$ then $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$.
Hint: let $L:=(S, I, \Sigma, T)$ be an LTS. Let $w:=a_{1} a_{2} \ldots a_{n-1} a_{n}$ be a trace of L for $s_{0} \xrightarrow{a_{1}} s_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{n-1}}$ $s_{n-1} \xrightarrow{a_{n}} s_{n}$ where $s_{0} \in I$ and length $|w|=n$ for $n \geq 0$. Note that w can not only be interpreted as a sequence $a_{1} \ldots a_{n}$ of symbols a_{i} in Σ but also as a sequence $s_{0} \ldots s_{n}$ of states s_{i} in S.

Exercise 15

Compute the maximal simulation \lesssim over the following LTS using the fixpoint algorithm:

Exercise 16

Compute the maximal weak simulation \lesssim over the LTS shown on the right.

Exercise 17

Given LTS A and B as shown on the right,...
a) ...compute the maximal strong simulation \lesssim over $A \dot{\cup} B$.
b) ... compute the maximal strong bisimulation \approx over $A \cup B$.
c) Check whether $1 \lesssim 4,4 \lesssim 1$ and $1 \approx 4$.

d) Is $L(A)=L(B)$?

Exercise 18

Given LTS A and B as shown on the right, and relation $\approx:=$ $\{(1,5),(2,7),(3,6),(4,8),(3,8),(4,6)\} .^{a}$ Assume that we want to find out whether relation \approx is a weak bisimulation over $A \cup B$ by checking pairs in \approx.
${ }^{a}$ Assume this is symmetric by definition, i.e. $(5,1),(7,2), \ldots \in \approx$

a) Does the check succeed for pair $(3,6)$? Justify your answer.
b) Does the check succeed for pair $(4,6)$? Justify your answer.
c) Does the check succeed for pair $(4,8)$? Justify your answer.

