Model Checking WS 2015: Assignment 3

Institute for Formal Models and Verification, JKU Linz

Due 19.11.2015

Exercise 13

Let $L := (S, I, \Sigma, T)$ be an LTS with states S. Let $\Psi : \mathbb{P}(S \times S) \to \mathbb{P}(S \times S)$ be the operator defined on slide 38, i.e. $\Psi(\lesssim) := \{(r,t) \in (S \times S) \mid r \lesssim t \text{ or } \exists s \in S : [r \lesssim s \text{ and } s \lesssim t]\}$ for relation $\lesssim \subseteq S \times S$.

- a) Prove that if \lesssim is a simulation then $\Psi(\lesssim)$ is also a simulation.
- b) Given a relation $\leq \leq S \times S$, is $\Psi(\leq)$ always a transitive relation? Justify your answer.

Exercise 14

Let A_1 and A_2 be two LTS. Prove the theorem from slide 40: If $A_1 \leq A_2$ then $L(A_1) \subseteq L(A_2)$.

Hint: let $L := (S, I, \Sigma, T)$ be an LTS. Let $w := a_1 a_2 \dots a_{n-1} a_n$ be a trace of L for $s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \dots \xrightarrow{a_{n-1}} s_{n-1} \xrightarrow{a_n} s_n$ where $s_0 \in I$ and length |w| = n for $n \ge 0$. Note that w can not only be interpreted as a sequence $a_1 \dots a_n$ of symbols a_i in Σ but also as a sequence $s_0 \dots s_n$ of states s_i in S.

Exercise 15

Compute the maximal simulation \lesssim over the following LTS using the fixpoint algorithm:

Exercise 16

Compute the maximal weak simulation \lesssim over

а τ 4 a b τ 3 5

the LTS shown on the right.

Exercise 17

Given LTS A and B as shown on the right,...

- a) ... compute the maximal strong simulation \lesssim over $A \stackrel{.}{\cup} B$.
- b) ... compute the maximal strong bisimulation \approx over $A \cup B$.
- c) Check whether $1 \lesssim 4, 4 \lesssim 1$ and $1 \approx 4$.
- d) Is L(A) = L(B)?

Exercise 18

Given LTS A and B as shown on the right, and relation $\approx :=$ $\{(1,5), (2,7), (3,6), (4,8), (3,8), (4,6)\}$.^{*a*} Assume that we want to find out whether relation \approx is a *weak* bisimulation over $A \cup B$ by checking pairs in \approx .

^{*a*}Assume this is symmetric by definition, i.e. $(5,1), (7,2), \ldots \in \approx$

- a) Does the check succeed for pair (3,6)? Justify your answer.
- b) Does the check succeed for pair (4,6)? Justify your answer.
- c) Does the check succeed for pair (4, 8)? Justify your answer.