unversitat unz | JKU

TNF

Technisch-Naturwissenschaftliche
Fakultat

Extracting and Checking Q-Resolution Proofs
from a State-Of-The-Art QBF-Solver

MASTERARBEIT

zur Erlangung des akademischen Grades
Diplomingenieurin
im Masterstudium

Informatik

Eingereicht von:
Aina Niemetz BSc

Angefertigt am:
Institut fur Formale Modelle und Verifikation

Beurteilung:

Univ.-Prof. Dr. Armin Biere

Mitwirkung:
DI Florian Lonsing
Assist.-Prof. Dr. Martina Seid|

Linz, Marz, 2012

Abstract

The logic of Quantified Boolean Formulas (QBF) is an extension of proposi-
tional logic and provides compact encodings of real world problems in various
fields of application, e.g., formal verification, reasoning and artificial intelli-
gence. In recent years, the development of efficient decision procedures for
QBF has progressed considerably. However, most current state-of-the-art
QBF-solvers return mere true/false answers to a given problem, which is
often not sufficient. Hence, it is a highly requested feature for QBF-solvers
to provide the possibility to extract so-called certificates of (un)satisfiability
in order to give evidence of the correctness of a solver’s result. Further, cer-
tificates enable the identification of concrete solutions for a given problem,
which is one of the key requirements for real world problems in many fields
of application.

In this thesis, we provide the extraction and validation of resolution
proofs of (un)satisfiability as part of the certification workflow for the state-
of-the-art QBF-solver DepQBF. DepQBF is a dependency-aware search-based
solver for QBF in prenex conjunctive normal form and placed first in the
main track of the QBFEVAL competition in 2010.

We give a brief overview of QBF solving as implemented in DepQBF
and introduce the QRP format, a novel text-based format for resolution-
based traces and proofs. We then present the extension of DepQBF to
record resolution-based traces in QRP format and introduce QRPcheck, a
tool for extracting and validating the corresponding resolution proofs of
(un)satisfiability, in detail.

We apply tracing, proof extraction and proof checking on the benchmark
sets of the QBFEVAL competitions 2008 and 2010 and present an extensive
evaluation of the results. It shows that within given time and memory
constraints, over 95% of all solved instances were validated successfully by
QRPcheck. Further, all instances validated by QRPcheck proved to have
been solved correctly by DepQBF.

Zusammenfassung

Die Logik der quantifizierten Booleschen Formeln (QBF) ist eine Erweite-
rung der Aussagenlogik, die kompakte Kodierungen von praxisnahen Pro-
blemstellungen in unterschiedlichen Anwendungsbereichen, wie bspw. der
Formalen Verifikation oder Kiinstlichen Intelligenz, ermdoglicht. Im Laufe der
letzten Jahre hat die Entwicklung von effizienten Entscheidungsverfahren fiir
QBF erhebliche Fortschritte gemacht. Ein Grofiteil der aktuellen Program-
me fiir die Evaluierung von QBF (auch QBF-Solver genannt) gibt jedoch
nur waehr/falsch Antworten zuriick, die fiir eine Vielzahl von Anwendungen
nicht ausreichend sind. Ein besonders wiinschenswertes Feature fiir QBF-
Solver ist daher die Extraktion sogenannter Zertifikate, die die Erfiillbarkeit
bzw. Nicht-Erfiillbarkeit einer Formel bestatigen und die Korrektheit des
Ergebnisses eines QBF-Solvers beweisen. Dartiber hinaus erméglichen Zerti-
fikate die Identifikation von konkreten Losungen fiir ein gegebenes Problem,
was in vielen Anwendungsféllen eine zentrale Anforderung darstellt.

Thema dieser Arbeit ist die Extraktion und Validierung von Resolu-
tionsbeweisen fir QBF als Teil des Zertifizierungs-Workflow fiir den QBF-
Solver DepQBF. DepQBF ist ein Solver fiir QBF in Konjunktiver Préanexnor-
malform, der erweiterte Abhéngigkeitsschemata von Variablenmengen un-
terstiitzt und 2010 den ersten Platz im Hauptbewerb des QBFEVAL-Wett-
bewerbs belegt hat. Wir geben eine kurzen Uberblick iiber die Arbeitsweise
von DepQBF und fithren das QRP Format, ein neues textbasiertes Format
fiir resolutionsbasierte Beweise und Protokolle von Entscheidungsprozedu-
ren, ein. Wir préasentieren unsere Erweiterung von DepQBF, mit deren Hilfe
wir interne Ablaufe im QRP Format mitprotokollieren, und stellen in wei-
terer Folge QRPcheck, ein Werkzeug zur Extraktion und Validierung von
resolutionsbasierten Beweisen, in allen Einzelheiten vor. Wir wenden die
Protokollierung von Entscheidungsprozeduren, die Extraktion von resoluti-
onsbasierten Beweisen und deren Validierung auf die Benchmark-Tests der
QBFEVAL-Berwerbe 2008 und 2010 an und présentieren eine ausfiihrliche
Evaluierung der Ergebnisse. Unsere Ergebnisse zeigen, dass iiber 95% aller
gelosten Instanzen innerhalb der gegebenen Zeit- und Speichereinschrankun-
gen mit Hilfe von QRPcheck validiert werden konnten und alle validierten
Instanzen korrekt von DepQBF gelost wurden.

Contents

B Prelminarics

2.1 Quantified Boolean Formulas|

2.2 Q-Resolution|
2.3 Q-Resolution Proofs| .

3 olving in Dep

3.1 QDLL with Learning| .

3.2 Learning: CDCL and SDCL|.

4__Proof Extraction|
4.1 The QRP File Format|
4.2 'Tracing in DepQBF | .

> QRPcheck |
5.1 QRPcheck Overview| .

5.2 Checking Q-Resolution Proofs|.

5.3 Checking Initial Cubes|

6 Experimental Results|

[r__Conclusion|

13
13
16

23
23
26

29
29
31
39

45

55

Chapter 1

Introduction

The logic of quantified Boolean formulas (QBF) is a powerful generalization
of propositional logic and supports compact encodings for real world prob-
lems, e.g., in the field of Formal Verification [5} [7, 14} [32], Reasoning [15] and
Artificial Intelligence [18, 27, 28]. QBF are basically propositional formu-
las extended by universal and existential quantifiers—however, in constrast
to the NP-complete satisfiability problem for propositional logic (SAT), the
satisfiability problem for QBF (QSAT) is PSPACE-complete. In the same
way SAT is considered as the prototypical NP-complete problem, QSAT
is considered as the prototypical PSPACE-complete problem, and there-
fore assumed to be considerably more complex. Even so, QBF encodings
become increasingly attractive as many problems (such as formulations of
safety properties in bounded model checking [I4]) have QBF encodings that
are exponentially more compact than their corresponding SAT encodings.
Hence, in order to exploit the potential of QBF efficient automated reasoning
tools are required.

In recent years, the development of efficient QBF-solvers has progressed
considerably and even though the achievements are still far from the progress
made in the domain of SAT-solving, various efficient decision procedures and
automated reasoning tools for QBF have been proposed [11], 12, 19| 17, 23]
241, [36], [37]. However, most current state-of-the-art QBF-solvers give mere
true/false answers to a given problem, which often proves to be insufficient
for various reasons. If the result of the satisfiability problem for a given
QBF is unknown, verifying its validity has to be based on a majority vote
of different disagreeing solvers, which is a guess rather than an actual ver-
ification. There’s no way to guarantee that the outcome of such a vote is
indeed correct. Further, in many real world applications of Formal Veri-
fication (such as bounded model checking) the result of a solved instance
should provide a concrete solution, e.g., a basis for counterexamples to be
able to identify error traces. Similarly, in the field of Artificial Intelligence,
witnesses of a QBF-solver’s result do not only prove the validity of the result

1

Chapter 1. Introduction

but further permit to identify strategies in game-like scenarios. Hence, it
is a highly requested feature for QBF-solvers to provide the possibility to
extract so-called certificates of (un)satisfiability.

Over the last 10 years, various QBF-solvers have been extended to sup-
port certification and validation of their results (see [25] for an overview
of the status-quo 2009). Search-based solvers such as yQuaffle [35] and
QuBE [I7] have been instrumented to generate resolution proofs for satisfi-
able and unsatisfiable instances during the search. In both cases, indepen-
dent proof checkers for validating the correctness of the corresponding proofs
were employed. However, checking resolution proofs as in [35] suffers expo-
nential worst-case behaviour due to non-optimal specifics of the proof format
employed [34]. Approaches for other QBF-solvers such as EBDDRES [21],
Squolem [21] and sKizzo [4], which are not based on search-based decision
procedures, mainly suffer from the fact that they do not provide dual means
to certify satisfiable and unsatisfiable instances. EBDDRES and Squolem pro-
duce Q-refutations for unsatisfiable instances, whereas sKizzo only supports
the extraction of a so-called unsatisfiable core, i.e., an unsatisfiable subset of
the input formula. For satisfiable instances, EBDDRES, Squolem and sKizzo
represent certificates with so-called Skolem functions [16], i.e., functions that
define each existential variable of the input formula over its resp. dominating
universal variables. In any case, most of these QBF-solvers and their cor-
responding certification tools are currently unmaintained. In a more recent
approach, the circuit-based QBF-solver CirQit has been extended to produce
Q-refutations for both satisfiable and unsatisfiable instances [20]. However,
CirQit cannot exploit its full strength on instances that were originally given
in prenex conjunctive normal form (PCNF).

A promising dual approach for extracting QBF certificates of satisfia-
bility and unsatisfiability has recently been presented in [3]. Given a reso-
lution proof (un)satisfiability, it is possible to extract a Skolem function-
based (resp. in its dual form, Herbrand function-based) QBF certificate
of (un)satisfiability, while decoupling certificate extraction and the actual
solving process. This is especially desirable for search-based QBF-solvers,
where—in contrast to Skolemization-based QBF-solvers—certification based
on Skolem (resp. Herbrand) functions is not directly applicable. Further,
Skolem (resp. Herbrand) function-based QBF certificates provide the benefit
of a uniform representation of the (counter)model of a given input formula.

In this thesis, we extended the state-of-the-art QBF-solver DepQBF [23], 24]

in order to extract resolution proofs of (un)satisfiability, which serve as a

base for certificate extraction based on [3] as described in [26]. Figure
illustrates the complete certification workflow for DepQBF as employed in [26],
for which we provide both the extraction and validation of the resolution

proofs in question as follows.

Chapter 1. Introduction

Input
Formula

QBF Trace Proof Extraction, Proof
Solving QRP Checking QRP
DepQBF QRPcheck

QRPcert CertCheck, PicoSAT
Certlﬁcate QBF Certificate
Extractlon Certificate Validation

Figure 1.1: Certification workflow for the QBF-solver DepQBF.

DepQBF is a dependency-aware search-based solver for QBF in PCNF, which
placed first in the main track of the QBFEVAIE] competition 2010 and im-
plements the Davis-Logeman-Loveland algorithm for QBF (QDLL) [11] 12]
with clause and cube learning as in [17), 36, 37]. Based on [35], we instru-
mented DepQBF to record traces in our novel QRP format, a lightweight,
text-based representation for resolution-based traces and proofs. From these
QRP traces, we then extract and validate the corresponding resolution proofs
with our proof checker QRPcheck. Given that such a QRP proof proved to
be correct, a corresponding Skolem (resp. Herbrand) function-based QBF
certificate is then extracted (QRPcert) and validated (CertCheck, PicoSAT)
as described in [26].

This thesis is structured as follows. First, we introduce preliminaries neces-
sary for the following chapters and give a brief overview of QBF solving as
implemented in DepQBF. Our QRP format is introduced in Chapter [4, where
we further describe how resolution-based traces are recorded by DepQBF. In
Chapter [5| we introduce our proof checker QRPcheck in detail. An extensive
evaluation of its results on various benchmark sets is given in Chapter [6]
Chapter [7] finally discusses open problems and future work.

"http://www.qbflib.org/index_eval.php

3

http://www.qbflib.org/index_eval.php

Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Quantified Boolean Formulas

2.1.1 Syntax

A quantified Boolean formula (QBF) is a propositional formula with one
or more variables bound by the quantifier forall (V) or exists (3). With no
further limitations on the expressiveness of quantified Boolean formulas we
restrict the set of logical connectives permitted to construct the propositional
formula to negation (—), conjunction (A), and disjunction (V). We define
the set of quantified Boolean formulas as in [8] as follows.

Definition 2.1 (QBF). The set of QBF is inductively defined as:

1. Propositional variables and the Boolean constants T and L are quan-
tified Boolean formulas.

2. If formulas ¥ and o are quantified Boolean formulas, then —i)q,
1 Ve and Y1 Ao are quantified Boolean formulas.

3. If formula ¥ is a quantified Boolean formula, then dx.4p and Vx.4p are
quantified Boolean formulas.

4. Only formulas as given in (1) to (3) are quantified Boolean formulas.

Given a QBF 1, the set of all variables in 1 is denoted as var(v) and the
set of all universally and existentially quantified variables in v is denoted as
vary(y) and varz(y), respectively. Given a variable x € var(vy), a literal |
is either its positive occurrence z or its negative occurrence —x. We denote
variable z by lit2var(l). Given a QBF ¢ = Vz.¢ (resp. ¢ = Jz.¢), the
occurrence of = in Vx.¢ (resp. Jz.¢) is called quantified occurrence and ¢
denotes the scope of the quantified variable x. If x occurs within the scope
of Vx (resp. 3z), we say that the occurrence of x is bound. All occurrences
of variable z that are not bound are free occurrences. Variable z is called
free (resp. bound) in v if there is a free (resp. bound) occurrence of x in .
If var(vy) does not contain any free variables, v is called a closed formula.

5

2.1. Quantified Boolean Formulas Chapter 2. Preliminaries

In the following, we require QBF to be closed and given in so-called Prenex
Normal Form (PNF). A QBF in PNF is in the form Q.¢, where @ is a se-
quence of quantified variables denoted as the prefiz, and ¢ is a propositional
formula denoted as the matriz of the formula. Note that every QBF in
non-prenex form can be transformed into PNF. A simple approach for such
transformations is given in [§].

Definition 2.2 (PNF). Let ¢ be a QBF in Prenex Normal Form (PNF):

¢ = Q¢ = q X1 X .. g Xy . ¢(l‘1,$2, aSUn)

Vv
prefiz matrix

where q; is a quantifier in {¥,3} and q; # ¢i+1 for 1 <i < n, X; C var(y)
is a set of variables bound by quantifier q; at nesting level i and ¢ is a
propositional formula over variables x € var(1).

Prefix @ is linearly ordered by nesting level, such that X; (resp. X,) is at
the outermost (resp. innermost) nesting level of formula 1. We say that X;
is outer to X;41, i.e., X; < X;41 and X; precedes (resp. dominates) Xt1.
For the matrix ¢ we distinguish several different normal forms — in par-
ticular the Conjunctive Normal Form (CNF) and the Disjunctive Normal
Form (DNF'), which are defined as follows.

Definition 2.3 (CNF). Let ¢ be a propositional formula. Let a clause
¢ =11 V... Vliy be a disjunction of literals. If ¢ is a conjunction of clauses
such that ¢ = c1 A ... A\ ¢y, then ¢ is in Congunctive Normal Form (CNF).

Definition 2.4 (DNF). Let ¢ be a propositional formula. Let a cube
¢ =l N ... Nl be a conjunction of literals. If ¢ is a disjunction of cubes
such that ¢ = c1 V ...V ¢y, then ¢ is in Disjunctive Normal Form (DNF).

Based on the normal form of the matrix we distinguish the following normal
forms for quantified Boolean formulas in PNF:

Definition 2.5 (PCNF/PDNF). Let ¢ = Q.¢ be a QBF in PNF and let
¢ be the matriz of . If ¢ is in CNF (resp. DNF), then 1 is in Prenex

Congunctive Normal Form (PCNF) (resp. Prenex Disjunctive Normal Form
(PDNF)).

Ezxample 2.1. As an example for a quantified Boolean formula in PCNF
consider Formula 211

Y=Vx3Iy.(xzVy) A(-zV-y) (2.1)

The set of variables in 1) is defined as var(¢)) = {x, y}, where z is universally
and y existentially quantified. The nesting level of x is outer to the nesting
level of y, i.e., z precedes (resp. dominates) y. The matrix of ¢ is a propo-
sitional formula in CNF and consists of the clauses (x V y) and (—z V —y).

6

2.1. Quantified Boolean Formulas Chapter 2. Preliminaries

Furthermore, 9 is a closed formula. Note that Formula represents the
logical operation ezclusive or (zor) and can be represented in PDNF as
Y =Vrdy.(x A—y) V (—x Ay).

In the following, we often interpret the matrix of a QBF in PCNF (resp.
PDNF) as a set of clauses (resp. cubes). Further, note that every proposi-
tional formula can be transformed into CNF resp. DNF by applying a set of
simplification and transformation rules as shown in [§].

2.1.2 Semantics

The satisfiability problem for QBF (also denoted as QSAT) is the problem of
deciding whether a quantified Boolean formula is satisfiable or unsatisfiable.
As shown in [33], the satisfiability problem for closed QBF is PSPACE-
complete. Note that the satisfiability problem for propositional logic (also
denoted as SAT) is NP-complete, which is assumed to be considerably less
complex. SAT can be regarded as a special case of QSAT with all variables
considered to be existentially quantified.

Definition 2.6 (Satisifiability of Propositional Formulas). Let formulas ¢,
@1, and ¢2 be propositional formulas and let assignment o be a mapping
a:var(¢) — {true, false} from variables to truth values. The satisfiability
of ¢ is recursively defined as follows.

If ¢ is a constant in {T, L}, then ¢ is true (satisfied) iff o = T.
If $ = x and x is a variable, then ¢ is true iff a(x) = true.

If ¢ = —¢y, then ¢ is true iff ¢1 is false.

If ¢ = ¢p1 A ¢a, then ¢ true iff o1 and ¢o are true.

If ¢ = ¢1V @2, then ¢ is true iff ¢1 or ¢o is true.

If there exists an assignment o such that ¢ is true, then ¢ is satisfiable.

S G Lo~

In the following, we refer to « as satisfying assignment or satisfiability model
of ¢, if ¢ is satisfied under a.

Ezample 2.2. As an example, consider the satisfiable propositional formula
¢ = (xVy) A (—zV y) given as the matrix of Formula Formula ¢
is either satisfied if ¢[x/T,y/L] or ¢[z/L,y/T], i.e., under the assignment
{r=Ty,y=L}or{z=1Ly=T}

Definition 2.7 (Satisfiability of QBF). Let ¢ = Q.¢ be a QBF in PNF.
Based on Definition [2.6, the satisfiability of v is defined as follows.

1. 3x.¢ is satisfiable iff plx/L] is satisfiable or ¢lx/T] is satisfiable.
2. Vx.¢ is satisfiable iff ¢lx/ L] is satisfiable and ¢[x/T] is satisfiable.

where ¢[x/ L] (resp. ¢[z/T]) denotes the simultaneous substitution of all
occurrences of x by L (resp. T) and of all occurrences of —x by T (resp. L).

7

2.1. Quantified Boolean Formulas Chapter 2. Preliminaries

In contrast to satisfiability models in propositional logic, QBF satisfiabil-
ity models have a tree-like structure due to the fact that an assignment
vars(y) — {T, L} depends on dominating universally quantified variables.
Hence, the satisfiability model for quantified Boolean formulas can be rep-
resented as a set of satisfying assignments (resp. Boolean functions), which
we often interpret as satisfying assignment tree. We introduce assignment
trees as in [30] as follows.

Definition 2.8 (Assignment Tree). Let 1) = Q.¢ be a QBF in PNF and let
var(y) be ordered with respect to the quantifier ordering of prefix Q. Let T
be a tree of truth assignments with the empty truth assignment as root and
let every node in T represent an assignment of a truth value to a variable
v € var(y) with respect to the ordering of var(y). An assignment tree T
represents the set of all possible assignments var(vy) — {T, L} such that
each path from the root to a leaf corresponds to an assignment o« and each
leaf represents the truth value of ¢ under a.

Definition 2.9 (Satisfying Assignment Tree). Let ¢ be a QBF in PNF and
let T be the assignment tree of 1. The satisfying assignment tree T' of 1
is a subtree of T with the empty truth assignment as root such that every
universal (resp. existential) node in T' has exactly one (resp. none) sibling
and every path from the root to a leaf represents a satisfying assignment.

In the following, we refer to the satisfying assignment tree of a QBF 1 as
the QBF satisfiability model (QBF-model) of 1.

Ezample 2.3. As an example, consider the assignment tree for Formula[2.1)as
shown in Figure Given prefix Vady, variable y is existentially quantified
and dominated by universal variable 2. Hence Formula [2.1] is satisfied iff we
find an assignment «(y) for both assignments «(x) = T and «a(z) = L such
that ¢ is true. Therefore, Formula [2.1] is satisfied under the set of satisfying
assignments A = {{x = T,y = L}, {x = L,y = T}}. The satisfying
assignment tree representing A is extracted from the assignment tree given in
Figure[2.1]by omitting all paths denoted in gray. Given satisfying assignment
tree is a QBF satisfiability model of ¢. Note that the satisfiability model
for the propositional formula given as the matrix of Formula would be
any assignment « € A, i.e., any path in the assignment tree that represents
a satisfying assignment.

Note that even though the satisfiability problem for QBF is PSPACE-
complete, the model-checking problem for QBF, i.e., the problem of de-
ciding if a given set of Boolean functions is a QBF-model for QBF v, is
coNP-complete [10], [§].

2.2. Q-Resolution Chapter 2. Preliminaries

x/\—'x
VA N
Y Y

Y Y

| |

Figure 2.1: Assignment tree for Formula

2.2 Q-Resolution

Q-Resolution is a sound and complete decision procedure for quantified
Boolean formulas and has been first introduced for quantified Boolean for-
mulas in PCNF as an extension of the resolution calculus for propositional
logic in [9]. In propositional logic, we define clause resolution and its dual
counterpart cube (or term) resolution as follows.

Definition 2.10 (Clause/Cube Resolution). Let ¢ be a propositional for-
mula in CNF (resp. DNF) and let c1, co be clauses (resp. cubes) in ¢.
If there exists a variable x € var(¢) such that © € ¢1 and —~x € ca, x is
denoted as pivot variable and resolving c1 and ca over x yields the resolvent
o = (aaUer)\{z, ~z}.

Proposition 2.1 ([29]). Resolvent ¢, is a logical consequence of its an-
tecedents c1 and co, i.e., given an assignment o such that c¢1 and co are
satisfied, ¢, is also satisfied. Hence, ¢, can be added to the formula without
changing its satisfiability.

For quantified Boolean formulas, the propositional resolution calculus has to
be generalized with respect to universal and existential quantifiers, i.e., for
QBF in PCNF (resp. PDNF) we require the pivot variable to be existentially
(resp. universally) quantified.

Definition 2.11 (Clause/Cube Resolution for QBF). Let v = Q.¢ be a
QBF in PCNF (resp. PDNF) and let c1, ¢y be clauses (resp. cubes) in ma-
triz ¢. If there exists a variable x € vars(y) (resp. vary(y)) such that
x € c1 and ~x € ca, T is denoted as pivot variable and resolving c1 and co
over x yields ¢, = (c1 U c2)\{z,~x}. If ¢, is non-tautological (resp. non-
contradictory), then ¢, is a resolvent. Otherwise, no resolvent exists.

We further require the application of a general simplification rule for quan-
tified Boolean formulas as introduced in [2} [8, 9] in each resolution step.

2.3. Q-Resolution Proofs Chapter 2. Preliminaries

Definition 2.12 (Forall-/Existential-Reduction). Let ¢ = Q.¢ be a QBF
in PCNF (resp. PDNF) and let ¢ be a non-tautological clause (resp. non-
contradictory cube) in matriz ¢. Let | be the nesting level of the inner-
most existentially (resp. universally) quantified literal in c. All universally
(resp. existentially) quantified literals with a nesting level greater than I may
be deleted from c without changing formula 1 ’s satisfiability.

Based on Definition we introduce Q-Resolution for quantified Boolean
formulas in PCNF (resp. PDNF) as introduced in [9] (resp. [19]) as follows.

Definition 2.13 (Q-Resolution). Let v = Q.¢ be a QBF in PCNF
(resp. PDNF) and let c1,co be non-tautological clauses (resp. mon-contra-
dictory cubes) in matriz ¢. If there exists a pivot variable x € vars(y)
(resp. vary(vy)) such that x € ¢1 and —x € ca, we obtain a Q-resolvent
by applying the following steps:

1. Reduce c1, ¢ by forall- (resp. existential-) reduction and obtain ¢}, cj.
2. Resolve ¢} and c, over x and obtain the ¢, = (¢} Udy) \ {z, ~z}.
If ¢, is non-tautological (resp. non-contradictory), ¢, is a resolvent.
3. Reduce resolvent ¢, by forall- (resp. existential-) reduction and obtain
the Q-resolvent c,..

Note that in contrast to the resolution rule in propositional logic, the Q-
resolution rule is not sound if the generation of tautological clauses (resp.
contradictory cubes) is not explicitly excluded:

FEzample 2.4. As an example, consider the satisfiable quantified Boolean
formula in PCNF given as Formula Resolving the clauses (x V y) and
(mx V —y) over y yields the tautological clause ¢, = (z V —x). We apply
forall-reduction to ¢, obtain the empty clause, and derive by Theorem [2.1
(see Section that v is unsatisfiable, which in fact it is not.

In the following, we denote a clause resp. cube as “constraint” and fur-
ther use the terms “resolution” and “Q-resolution” interchangeably unless
otherwise noted.

2.3 Q-Resolution Proofs

The satisfiability (resp. unsatisfiability) of a quantified Boolean formula
can be shown by a sequence of Q-resolution steps—also referred to as Q-
resolution proof of satisfiability (resp. Q-resolution proof of unsatisfiability
or Q-refutation)—as follows [0, [19].

Theorem 2.1. A QBF in PCNF is unsatisfiable iff there exists a clause
resolution sequence leading to the empty clause, i.e., a clause without literals.

Theorem 2.2. A QBF in PDNF 1is satisfiable iff there exists a cube
resolution sequence leading to the empty cube, i.e., a cube without literals.

10

2.3. Q-Resolution Proofs Chapter 2. Preliminaries

r1Vy1vVy: x2Vy: y1VoyaVaes oy Vys Vs Y1 VysVay

| N 7
IRV Y3 V Y4
e

x1Vxa Vi TV
NS
x1V Ty

0

Figure 2.2: Q-resolution proof of unsatisfiability for Formula

Given a QBF in PCNF, cube resolution is not directly applicable and thus
not sufficient to prove the satisfiability of the formula. On the other hand,
transformations from PCNF to PDNF are costly in terms of computation
time and may further increase the size of the formula exponentially [22].
Hence, we introduce the model generation rule in order to derive a Q-
resolution proof of satisfiability from a QBF in PCNF via cube resolution
as follows [19].

Definition 2.14 (Model Generation Rule). Let v = Q.¢ be a QBF in
PCNF and let ¢ be the matrix of . Let M be a set of cubes such that
the disjunction of all cubes in M is propositionally logically equivalent to ¢.
M is a satisfiability model of ¢ iff each cube t € M is non-contradictory and
for each clause c € ¢, tNc # (.

Theorem 2.3. Cube resolution and model generation is a sound and com-
plete proof system for deciding quantified Boolean formulas in PCNF. A QBF
i PCNF is satisfiable iff the empty cube is derivable by cube resolution and
model generation.

We often interpret a Q-resolution proof as directed acyclic graph (DAG) with
the empty clause (resp. cube) as root, the set of input clauses (resp. initial
cubes) as leafs, and resulting clauses (resp. cubes) of intermediary proof steps
as internal nodes. The set of input clauses is a subset of the set of clauses
given as the matrix of the input formula v, whereas the set of initial cubes
is a subset of the set of cubes given as the satisfiability model of the matrix
of ¢. Even though we consider the application of the forall-/existential-
reduction rule as part of the Q-resolution rule, we often treat it explicitly
and distinguish three different types of proof steps: resolution steps with
reduction (as in Definition [2.13)), resolution steps without reduction (as in
Definition , and reduction steps (as in Definition . Note that
resolution steps always have two ancestor nodes, whereas reduction steps
have only one. We also refer to a node’s ancestors as its antecedents.

11

2.3. Q-Resolution Proofs Chapter 2. Preliminaries

Example 2.5. As an example, consider the Q-resolution proof of unsatisfi-
ability for Formula as shown in Figure where the empty clause is
derived from the input clauses (x1Vy1V—y2), (z2Vya), and (—y1 V -y Vas).
Note that input clauses and steps denoted in gray are not required to derive
the empty clause.

Vrixo Iy yo Vs Jys Vg Iy, . (:cl VY1 \/—|y2) AN (xg \/yz) A

(2.2)
(~y1 V2 V) A=y Vyz Vya) Ay VsV ag)

An example for a resolution step without reduction is the derivation of the
clause (z1Vxz2Vy1), whereas the clause (—y1V—ys) is obtained by a reduction
step. The derivation of clause (y3V y4), which is not part of the Q-resolution
proof, is an example for a resolution step with reduction.

12

Chapter 3

QBF Solving in DepQBF

The state-of-the-art QBF-solver DepQBF [23, 24] is a dependency-aware
search-based solver for QBF in PCNF. It placed first in the main track
of QBFEVAL’l(ﬂ and implements an adaptation of the Davis-Logeman-
Loveland (DLL) algorithm [I3] with clause and cube learning as in [17, [36]
37]. In the following, we introduce the DLL algorithm for QBF (QDLL) [11]
as implemented in DepQBF in more detail.

3.1 Algorithm Overview: QDLL with Learning

DepQBF implements an iterative version of the QDLL algorithm introduced
in [11], extended by Conflict-Driven Clause Learning (CDCL) and Solution-
Directed Cube Learning (SDCL) based on the approach introduced in [37].
@QDLL, an extension of the DLL algorithm from SAT to QSAT, is a sound
and complete search-based decision procedure for QBF in PCNF. Given
a QBF ¢, QDLL traverses its assignment tree until either ¢ proved to be
unsatisfiable, or a satisfying assignment tree of ¢ is derived. QDLL branches
on variables by making decisions (on both a variable and its truth value),
propagating implications of these decisions, and backtracking in case of a
conflict resp. solution. Extending QDLL with CDCL and SDCL prunes the
search space by generating implications from both conflicting and satisfying
assignments encountered during the search. In the following, we introduce
some basic notions before discussing the QDLL as implemented in DepQBF.

Definition 3.1 (Partial/Full Assignment). Given a QBF 1 and an assign-
ment a(var(v)), we say that o is a full assignment of ¥ if all variables in
var(v) are assigned. Otherwise, assignment « is a partial assignment.

Definition 3.2 (State of a Literal under an Assignment). Given a QBF 1)
and a (partial) assignment a(var(y)), we say that a literal is satisfied
(resp. unsatisfied) if it is assigned and evaluates to true (resp. false).

"http://www.qbflib.org/index_eval.php

13

http://www.qbflib.org/index_eval.php

3.1. QDLL with Learning Chapter 3. QBF Solving in DepQBF

In the following, we refer to the state of a formula with respect to the current
(partial) assignment « and define the state of a clause under « as follows.

Definition 3.3 (State of a Clause under an Assignment). A clause is satis-
fied if one or more of its literals are satisfied; falsified or conflicting (empty)
if all of its existential and all of its assigned universal literals are unsatisfied;
and undetermined otherwise.

If a clause is conflicting under an assignment «, then « is a conflicting
assignment (conflict) and the current search branch is unsatisfiable. If all
clauses of a formula are satisfied under «, then « is a satisfying assignment
(solution) and the current search branch is satisfiable. Note that in case
that the current branch represents a solution, in contrast to SAT we still
have to check for all universal variables in the current assignment if both
branches are satisfiable.

DepQBF keeps information derived from conflicts as learnt clauses and
the knowledge of satisfying assignments as learnt cubes and maintains the
input formula and all information learnt during the solving process in so
called Augmented CNF (ACNF) [37]. That is, we interpret the prefix of the
input formula and the set of input clauses, learnt clauses, and learnt cubes
as a QBF in PNF with a matrix in ACNF, which is defined as follows.

Definition 3.4 (ACNF). Let ¢ be a propositional formula and let {cy, ..., cp}
be a set of clauses and let {C1,...,Cp} be a set of cubes such that
Ci=caN..Nep for 1<i<m. If¢=(c1N...\cp)V(C1V...VCy,), then
¢ is in Augmented CNF.

We define the state of a cube under the current (partial) assignment based
on Definition [3.4] and further introduce the following implication rules for
QBF in ACNF.

Definition 3.5 (State of a Cube under an Assignment). A cube is falsified
if one or more of its literals are unsatisfied; satisfied or satisfying (empty)
if all of its universal and all of its assigned existential literals are satisfied;
and undetermined otherwise.

Definition 3.6 (Unit Literal). Let) = Q.¢ be a QBF in PNF with a matriz
in CNF (resp. DNF). Let ¢ € ¢ be an undetermined clause (resp. cube)
in matriz ¢. If literal | € c is the unassigned occurrence of x € varz(y)
(resp. x € vary(Y)) such that all other unassigned literals in ¢ are universally
(resp. ezistentially) quantified and dominated by x, then | is a unit literal
and c s unit.

Definition 3.7 (Unit Rule). Let ¢ = Q.¢ be a QBF in PNF with a matriz in
ACNF and let ¢ € ¢ be unit under the current partial assignment a(var(1)))
with unit literal | € c. If formula v s satisfiable under «, then variable
x = 1it2var(l) is assigned such that | is satisfied.

14

0 3 O UL i W N -

DO DO DD = = = e e e e e e
= O © 00 3O Tt W HFHOO©

3.1. QDLL with Learning Chapter 3. QBF Solving in DepQBF

function qdll ()
{
loop

{
state <« simplify ()

if (state = UNDEFINED)

{
var < select_decision_variable ()
assign_decision_variable (var)

}

else /x conflict or solution x/

{
btlevel < analyze (state)

if (btlevel = INVALID)
return state

else
backtrack (btlevel)

Figure 3.1: Top-level view of the QDLL as implemented in DepQBF.

We say that a variable is implied, if the application of the unit rule forces
the assignment of its truth value. In the following, we refer to a unit clause
that implies a variable as its antecedent (which is not to be confused with a
proof step’s antecedent).

Definition 3.8 (Pure Literal). Let ¢ = Q.¢ be a QBF in PNF and let
x € var(y). If all occurrences of x in matriz ¢ are either only positive (x)
or negative (—x), x is pure in ¥ and all occurrences of x are referred to as
pure literals.

Definition 3.9 (Pure Literals Rule). Let ¥ = Q.¢ be a QBF in PNF with
a matriz in ACNF and let x € var(y) be pure. If x € var3(vy), we assign
x such that all occurrences of x are satisfied. If x € vary(v), we assign x
such that all occurrences of x are unsatisfied.

Figure describes a top-level view of the QDLL algorithm implemented
in DepQBF as introduced in [24]. The core of the algorithm is the function
simplify, where implications from unit and pure literals are propagated
until saturation. If neither a conflict nor solution was found, the state of

15

O© 00 ~J 3 T = W N -

— = =
W N = o

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

function analyze (STATE state)
{
reason = get_initial_reason ()

while (not stop_criterion_is_met (reason))
{
pivot < get_pivot (reason)
antecedent < get_antecedent (pivot)
reason < resolve (reason, pivot, antecedent)
b
add_to_formula (reason)
return get_asserting_level (reason)

-

Figure 3.2: Analysis of conflict resp. solution by resolution.

the formula is UNDEFINED under the current (partial) assignment and we
make a decision, i.e., we select and assign a variable var with respect to
the quantifier ordering of the prefix, and continue the search. Note that we
associate each decision with a decision level (starting from 1) and all impli-
cations following from a decision with the same decision level as the decision
variable var. Further, note that assignments implied without decisions are
associated with decision level 0 (top level).

In case of a conflict (resp. solution), we analyze the current state and
redirect the search—if possible—by adding a learnt constraint and back-
tracking to decision level btlevel (referred to as backtracking level). If the
learnt constraint is empty (btlevel = INVALID), qdll terminates and the
formula is unsatisfiable (resp. satisfiable).

3.2 Learning: CDCL and SDCL

QDLL-based QBF-solvers are forced to backtrack in order to continue the
search not only in case of a conflict, but also if a satisfying assignment
was found. Hence, in both cases, the current assignment provides valuable
knowledge for implications to be used for future reasoning. DepQBF imple-
ments conflict-driven (CDCL) and satisfiability-directed (SDCL) learning
strategies based on an approach with a dual view on conflicting and satis-
fying assignments as introduced in [37]. CDCL for QBF [36] is based on
CDCL strategies for SAT-solving (e.g., [31]) and is employed whenever a
conflicting assignment is encountered during the search. Similarly, SDCL for
QBF [37] is performed whenever a satisfying assignment was found. In the
following, we briefly discuss CDCL and SDCL as implemented in DepQBF.

16

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

Conflict-driven and satisfiability-directed constraint learning as implemented
in DepQBF is initiated whenever the state of the formula is either conflicting
or satisfied under the current (partial) assignment (line 12, Figure[3.1)). The
core algorithm for analyzing the current state of the formula is described in
Figure Given the current assignment, function analyze first determines
the reason for the current state (function get_initial reason), derives a
learnt constraint (lines 5-10, Figure and adds it to the solver database
(function add_to_formula), and finally determines the backtracking level
(function get_asserting level) for the current conflict (resp. solution).
Note that in case of a conflict, the reason of the current state is a conflicting
clause, whereas in case of a solution, the reason is a satisfying cube, which is
either an existing cube in the matrix or generated in get_initial_reason
by determining a so called cover set of the current satisfying assignment.

Definition 3.10 (Cover Set). Given a QBF 1 in PNF with a matriz in
ACNF. A cover set C' of 1 is a set of literals satisfied under the current
assignment such that for each clause c in the matriz cN C # ().

Example 3.1. As an example, consider the satisfiable QBF in ACNF given
as Formula3.1] Assignment o = {(z1, T), (2, 1), (y1, T), (y2, L), (y3, L)} is
a satisfying assignment. The set of literals {—x2, y1, ~y2} is a cover set for
Formula under «. Hence, cube (—za Ay A —y2) is a satisfying cube and
may be added to the matrix as learnt constraint. The resulting formula is
given as Formula

Vrize Iy yays . (—\1’1 Vy Vv —\yz) A (‘|$1 V —zo Vys V y3) A (3 1)
(.132 V =Yg V —|y3) A (_|.'L'1 V-xoVy V y3) .

Vaerza Iyryays - (21 Vyr Voya) A (mzr V oz Vs Vys) A
(:EQ V =ys V —|y3) A (—h’L‘l V -z Vy V yg) Vv (3.2)
(mz2 Ayt A —yo)

Note that cube (—x2 A y1 A —y2) could be further reduced by applying
existential-reduction. We refer to an existential-reduced cover set as non-
covering set. Further, note that given a satisfying assignment « of a QBF
1, the cover set of ¥ under « is not unique.

Once the reason of a conflict (resp. solution) is determined, in function
analyze we generate a learnt constraint by iteratively resolving the reason
with the antecedent (function get_antecedent) of one of its variables (func-
tion get_pivot) until a predefined stop criterion is met. In each iteration,
function get_pivot chooses an implied variable in reverse chronological or-
der as pivot variable for the resolution (i.e., the variable implied last will be
chosen first). The reason is then resolved with the antecedent of the pivot

17

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

variable and if the resulting constraint is asserting, we say that the stop
criterion is fulfilled and add the asserting constraint as learnt constraint to
the formula. If the asserting constraint is the empty clause (resp. cube),
qdl1 terminates and the formula is unsatisfiable (resp. satisfiable).

Note that following the exact reverse chronological order is not always
possible (for further details see [19]). Further, unlike [36, [37], DepQBF does
not produce tautologies resp. contradictions as learnt constraints.

Definition 3.11 (Asserting Constraint). A clause (resp. cube) c is asserting
if ¢ is empty and there exists exactly one asserted literal | such that

1. 1 is assigned and ezistential (resp. universal), and at a decision level
n such that all other assigned existential (resp. universal) literals are
at a decision level smaller than n

2. decision variable v at decision level n is existential (resp. universal)

3. all universal (resp. existential) literals preceding | are assigned and
unsatisfied (resp. satisfied), and at a decision level smaller than n

Definition 3.12 (Asserting Level). Let clause resp. cube ¢ be an asserting
constraint and let | € ¢ be the asserted literal at decision level n. Let L,
be the set of all assigned existential literals in ¢ and let L, be the set of all
assigned universal literals in ¢ that precede . Let L = L. U L, be the set of
all assigned existential and universal literals at a decision level smaller than
n (see Definition . We say that decision level N is asserting if it is the
mazximum decision level of all literals in L.

Note that the asserting level is the backtracking level of the current state.
Further, note that after backtracking to asserting level, an asserting con-
straint will become unit.

FEzxample 3.2. As an example for determining the asserting level, consider a
QBF ¢ = Jy1Vx13y2.¢ and the asserting clause ¢ = (y1 V x1 V y2). Given
that y1, x1 and yo are assigned at decision level dl,, = 5, dl,;, = 3 and
dly, = 1 respectively, the asserted literal is y;. The maximum decision
level of all literals in L = {y2} is dl,, hence the asserting level is decision
level 1. Note that c is unit at asserting level even though we do not consider
universal literals preceded by y; (here: x1) as they are eliminated by forall-
reduction after backtracking. On the other hand, given the decision levels
dly, =1, dl;, = 3 and dl,, = 5 with asserted literal y at decision level 5,
the maximum decision level of L = {y1, 21} is dl,, and the asserting level is
decision level 3.

FEzrample 3.3. As an example for the application of QDLL with Learning,
consider the unsatisfiable QBF given as Formula [3.3] In the following, we
describe the current assignment and implications following from the current
assignment as an implication graph, which we will briefly introduce as in [22]
as follows. An implication graph is a DAG with the set of literals of the

18

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

current assignment as its nodes, and the set of implications as its edges.
Given a node n representing a literal [in an implication graph G, n is
labelled with [and its decision level dI, written as [@Qdl. Given an edge
e = (n4,n;) with nodes n;,n; € G representing the literals l;,[;, we say that
n; is the antecedent of n; and label edge e with the clause that implied /;.

Jyiya Vo1 3ysyays Ve Jysyr - (mya Vys) A(—z1 Vys) A

~~
Cc1 Cc2

(—y3 Vye) A(—ye Vyr) A (y1 Vae V —ys) A
c3 Cq C5

(my1 Vo1 Vys) A(y2 Vya) A (e V —yr)
—_———— N ——

~~

(3.3)

C6 cr C8

As we mainly want to illustrate the process of deriving learnt constraints,
we ignore (initial) implications at decision level 0 and further assume that
initially no variables are assigned. For the sake of simplicity we also ignore
implications from pure literals and do not apply the pure literal rule. We
start with the first decision and choose decision variable y; with respect to
the quantification order of the prefix. Variable y; is assigned to T, which
satisfies clause ¢; but does not imply any further assignments.

Therefore, as shown in Figure we continue with the second decision
and assign variable y2 to L, which implies y4 and ys5 (as clause ¢; and—as
a consequence—clause ¢; become unit). At decision level 2, there are no
further implications to be derived. Hence, we make our third decision, assign
variable x1 to T, propagate all implications arising from that decision and
encounter a conflict (indicated by node & in the implication graph).

Y1 = lail
Cr C1
Yo = 1Q2 —— yy = TAQ2 —— y5 = T@2

C2 c3 C5
xlzT@3—>y3:T@3—>yng@3—>/@

(a) Implication graph

cs c3 ()

e e — ——
Y1 VT2V ys —YsViys T VY3
N <
Y1V ys

Y1
(b) Derivation of the first learnt constraint

Figure 3.3: First conflict in Example

19

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

= T@0

Cr C1 Cg
=1Q]l —— gy =TQl —— y5 = TQl —— &

(a) Implication graph

C (& C
Yy VeV ooys YaVYs Y2 VY4
~

-y VaV oy,

.

Y1 VY2

(b) Derivation of the second learnt constraint

Figure 3.4: Second conflict in Example

C2 C3 C4 (&)
—T@Ql —r gy = TAl — g = TAQl — gy = TAQL —» &

(a) Implication graph

cg C4 C3 c2
—7 ——
T V ﬁy7 _‘yG \/ yr Y3 \/ Y6 Tx1 VY3
—\.’L‘Q V —|y6
—'5E2 V Y3
o V Xy
)

(b) Derivation of the empty clause

Figure 3.5: Third conflict in Example .

20

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

Clause cs5 is the reason for the conflict, therefore we resolve c; with the
antecedents of its implied variables in reverse chronological order of their
implication until the resolvent clause is asserting (as shown in Figure .
The resulting clause is (y;), which is unit at asserting level 0. We add the
clause to the formula and backtrack to decision level 0.

At backtracking level 0, the previously learnt constraint (y;) is unit,
hence implies ;. With no further implied assignments at decision level 0,
we propagate implications from decision yo = | until we encounter a con-
flict (Figure . This time, clause cg is conflicting and we derive clause
(—y1 Vy2) by resolution (Figure , which is—again—asserting at decision
level 0. We add the asserting clause to the formula, backtrack to decision
level 0, add implication s, choose 1 as decision variable and assign it to T
(Figure . Again, propagating implications from this decision we en-
counter a conflict. We resolve the conflict clause cg with the antecedents of
its implied variables and derive the empty clause (Figure . Hence, we
conclude that Formula [3.3 is unsatisfiable.

In the following, we introduce proof extraction on top of QDLL with CDCL
and SDCL as implemented in DepQBF.

21

3.2. Learning: CDCL and SDCL Chapter 3. QBF Solving in DepQBF

22

Chapter 4

Proof Extraction

We instrumented DepQBF to record a Q-resolution-based trace that repre-
sents all Q-resolution sequences generated by QDLL with CDCL and SDCL
similar to the approach in [35]. From such a trace, it is possible to extract a
Q-resolution proof of unsatisfiability (resp. satisfiability) by reconstructing
the Q-resolution sequence leading to the empty clause (resp. cube). We rep-
resent Q-resolution-based traces and proofs in so-called QRP format, which
we introduce as follows.

4.1 The QRP File Format

The QRP (Q-Resolution Proof) file format is a human-readable and easy-to-
parse representation for Q-resolution proofs and Q-resolution-based traces
based on the QDIMACY]input file format for QBF and the tracecheck?| trace
file format for SAT. In QRP format, a trace is described as a set of linked con-
straint nodes (cf. DAG representation of Q-resolution proofs in Chapter
Section , which represents a set of clause and cube resolution sequences
with the sequence leading to the empty constraint as a subset. In the fol-
lowing, we refer to a constraint node as a step in a Q-resolution sequence.
If this sequence represents a Q-resolution proof of (un)satisfiability, each
step is referred to as proof step. Figure describes the grammar of the
QRP format in EBNF (Extended Backus-Naur Form), which is interpreted
as follows.

trace. A trace in QRP format must provide a preamble (with a header
statement and (optionally) a set of comment lines), the prefix of the input
formula (represented by a set of quantified variables (quant_set)), a set of
clause and cube resolution sequences (represented by a set of linked con-
straint nodes (step)), and a result statement (to indicate, if given proof is

"http://www.qbflib.org/qdimacs.html
®http://www.fmv. jku.at/tracecheck

23

http://www.qbflib.org/qdimacs.html
http://www.fmv.jku.at/tracecheck

4.1. The QRP File Format

Chapter 4. Proof Extraction

trace

preamble
comment
header

quant_set
quantifier
var

step

idx
literals
lit
antecedents

result
sat

text
pnum
EOL
EQF

preamble { quant_set } { step } result

{ comment } header.
"#" text EOL.
"p qrp" pnum pnum EQOL.

quantifier { var } "0".
ngn I g,

pnum.

idx literals antecedents.

EQF.

pnum.

{ 1it } "o".

["-"] var.

[idx [idx]] "o".

"r " sat EOL.

"sat" | "unsat".

? a sequence of non-special ASCII chars 7.
? a 32-bit signed integer > 0 7.

? end-of-line marker 7.

? end-of-file marker 7.

Figure 4.1: The QRP format in Extended Backus-Naur Form (EBNF).

24

4.1. The QRP File Format Chapter 4. Proof Extraction

a proof of satisfiability (sat) or unsatisfiability (unsat)). Note that we do
not explicitly distinguish between actual traces (where the set of steps may
represent a set of clause and cube resolution sequences) and proofs (where
the set of steps represents exactly one clause or cube resolution sequence,
which leads to the empty constraint). Instead, we rather interpret the set of
proof steps representing the Q-resolution proof of satisfiability resp. unsatis-
fiability depending on the result statement as a clause resp. cube resolution
sequence.

header. Every file in QRP format must provide a header statement similar
to the so-called problem line in the QDIMACS format. The header state-
ment denotes a file in QRP format with the QRP marker sequence "p qrp",
followed by two positive numbers. The first number indicates the number
of variables in the input formula, whereas the second represents the number
of steps of the trace. In the following, we will uniquely identify both vari-
ables and steps by indices and hence rather interpret both numbers as the
respective maximum indices of variables and steps occurring in the trace.

quant_set. A quantified set (quant_set) represents a set of either exis-
tentially or universally quantified variables with respect to the quantifier
ordering of the prefix of the input formula. As in the QDIMACS format, we
denote the existential quantifier by "e" and the universal quantifier by "a".
We further require that each variable in the prefix is unique, consecutive
quantified sets are not bound by the same quantifier, the innermost quan-
tified set is existentially quantified, and free variables are considered to be
existentially quantified in the outermost quantified set.

step. A step represents a linked constraint node and consists of an iden-
tifier (the step index idx), a set of literals (the actual constraint), and
the step’s antecedents. We distinguish between steps representing an in-
put clause (resp. initial cube), steps representing the application of forall-
(resp. existential-) reduction (explicit reduction steps), steps representing
resolution with or without the application of forall- (resp. existential-) re-
duction (resolution steps), and steps representing the empty constraint.

literals. A step’s constraint is represented as a set of literals. We do
not further restrict this set of literals and allow occurrences of free variables.

antecedents. A step may have at most two antecedents, which are rep-
resented as a set of (unique) step indices. A step representing an input clause
(resp. initial cube) has no antecedents, whereas a reduction (resp. resolution)
step has exactly one (resp. two) antecedents.

25

4.2. Tracing in DepQBF Chapter 4. Proof Extraction

result. The result statement indicates if the given Q-resolution proof
is a proof of unsatisfiability or satisfiability. Note that in case of unsat
(resp. sat), given proof is a clause (resp. cube) resolution sequence.

The QRP format is an explicit representation for resolution-based traces
and proofs. Unlike [38] and [35], each resolution (resp. reduction) step has
exactly two (resp. one) antecedent(s), which explicitly states the order of
application of (forall- resp. existential-) reduction and resolution and avoids
exponential worst-case behaviour when reconstructing resolvents from un-
ordered lists of antecedents [34]. Alternatively, the QIRE| format used in [20]
allows multiple antecedents but predefines the order in which resolvents
should be reconstructed. As far as resolution is concerned, QRP proofs can
be extracted and checked in deterministic log space, a desirable property of
proof formats suggested in [34]. Syntactically, QRP is a lightweight format
as it does not distinguish between (resolution steps over) clauses and cubes
explicitly.

4.2 Tracing in DepQBF

We instrumented DepQBF to record Q-resolution-based traces of all Q-
resolution sequences generated by QDLL with CDCL and SDCL in QRP
format in a similar manner as in [35] as follows.

1. We assign a unique id to every input clause and every constraint gen-
erated during the solving process (cf. step index in the QRP format).

2. The header statement of the QRP format, the prefix of the input for-
mula, and all input clauses with their respective indices are recorded
during the parsing process.

3. Every explicit application of forall- resp. existential-reduction during
the parsing and solving process is recorded as explicit reduction step.

4. For each conflict (resp. solution) encountered, in function analyze the
initial reason (i.e., the conflict clause resp. cover/non-covering set),
the learnt constraint, and all resolvents generated in the process are
recorded with their respective indices and antecedents.

Note that unlike [38] and [35], we explicitly encode the derivation of the
empty clause (resp. cube) and the resolution order of any Q-resolution se-
quence in the trace. Hence, we do not encounter exponential worst case be-
haviour [34] when extracting a Q-resolution proof of (un)satisfiability from
a trace in QRP format.

3http://users.soe.ucsc.edu/~avg/ProofChecker/qir-proof-grammar.txt

26

http://users.soe.ucsc.edu/~avg/ProofChecker/qir-proof-grammar.txt

4.2. Tracing in DepQBF Chapter 4. Proof Extraction

Jyr1ye Vo1 Iysyays Voe Jye yr - (mya Vys) A(-x1 V) A
312v33456¥7389 c1: (55V6) e (-3 4)
(=y3 Vye) A(=ye V yr) A(y1 V2 V —ys) A
3 (~AV8) g (w8V9) s (1V TV -8)
(my1 Vo1V oys) A(y2 Voya) A (—z2 V —yr)
N AN AL/

C6: (—\1 V3V —\6) cr: (2 \Y 5) cg: (—|7 \% —\9)

Figure 4.2: Transformation of Formula into QDIMACS format.

Ezample 4.1. As an example, consider the trace generated for the solving
process described in Example [3.3] as shown in Figure 4.3b The QDIMACS
representation of the input formula ¢ (Formula is described in Fig-
ure where all variables in var (1) are mapped to resp. indices as shown
in Figure [£.2] Initially, we do not encounter any explicit reduction steps as
it is not possible to apply forall-reduction to any clause in the matrix of .

Hence, the first conflict encountered (Figure and the resulting
derivation of the first learnt constraint (Figure is the first Q-resolution
sequence to be traced. We record the intermediary resolvent (y; V —y3) (en-
coded in QDIMACS as (1 — 4)) with its antecedents (input clauses 3 and
5) and identify it by index 9. Next, we add the learnt constraint (y;) (en-
coded as (1)) with index 10 and antecedents 2 and 9 to the trace, backtrack,
continue, and encounter the second conflict (Figure . We derive the
second learnt constraint (Figure and record steps 11 and 12. Again,
we backtrack, continue, encounter the third conflict (Figure , record
steps 13, 14, 15 and finally derive the empty clause (step 16). We conclude
that formula 1 is unsat and add the respective result statement.

We extract the Q-resolution proof of unsatisfiability depicted in Fig-
ure by reconstructing the Q-resolution sequence leading to the empty
clause depicted in Figure .50 That is, starting with the empty clause
(step 16), we recursively follow the antecedents of each step encountered
until an input clause is reached. All other steps (1, 5, 6, 7, 9, 10, 11, 12) are
not part of the Q-resolution proof of unsatisfiability for Formula

27

4.2. Tracing in DepQBF Chapter 4. Proof Extraction

p cnf 9 8 p grp 9 16 p arp 9 16

el20 el20 el20

a3o0 a3o0 a3o0

e4560 e4560 e4560

a’7o a’7o0 a’7ao

e 890 e890 e 890

-560 1-5600

-340 2-3400 2-3400

-4 80 3-4800 3-4800

-89 0 4 -8900 4 -8900

17-80 517-800

-13-60 6 -13-600

250 72500

-7 -90 8 -7-900 8-7900
91403500
1010290
11 -13-50160
12 -1207 110
13 -7 -80480 13-780480
14 -7 -4 0 3 13 0 14 -7 -4 0 3 13 0
15 -3 -7 0214 0 156 -7 -3 0214 0
16 0 15 O 16 0 15 0
r unsat r unsat

(a) Formula (b) Trace of Example (¢) Proof of Example

Figure 4.3: Formula in QDIMACS format, the Q-resolution-based trace
generated during the solving process in Example and the resulting Q-
resolution proof of unsatisfiability.

28

Chapter 5

Proof Checking with
QRPcheck

QRPcheck is a tool for extracting and checking Q-resolution-based proofs of
satisfiability and unsatisfiability in QRP format (as introduced in Chapter
Section [4.1). Further, given a proof of satisfiability, QRPcheck provides the
possibility to check the validity of the set of initial cubes given. In the
following, we introduce QRPcheck and proof checking as implemented in
QRPcheck in more detail.

5.1 QRPcheck Overview

QRPcheck is a proof checker for Q-resolution-based traces and proofs of
satisfiability and unsatisfiability in QRP format. Starting with the empty
constraint, QRPcheck extracts the proof from a given trace, checks its cor-
rectness and provides the possibility to further check the validity of the set
of initial cubes given in case of a proof of satisfiability. Note that currently,
QRPcheck does not support the use of advanced dependency schemes as
in [23]. In the following, we describe the general workflow and the main
components of QRPcheck as illustrated in Figure [5.1

QRPcheck expects a QRP trace (resp. proof) as input. For checking the
validity of the set of initial cubes, it further requires the original formula in
QDIMACS format. A trace (resp. proof) is represented as an array of linked
constraint nodes with the empty constraint node as the root of the proof
DAG given. Each constraint node maintains an internal id (independent of
its given id) in order to prevent sparse arrays in case of step sequences with
non-consecutive indices. A node is linked to its antecedents (if present) via
their respective internal ids. Depending on whether and how often the solver
had to backtrack during the search, traces (and in some cases proofs) may
grow large in the number of steps given. In such cases, the overall number

29

5.1. QRPcheck Overview Chapter 5. QRPcheck

Input File
QRP

Check Proof

Parser \ Check OK? no
QRP } Proof Step
; yes

i o done? i
3 yes 3
_ no

Vs satisfiable?
,,,,,,,,,,, Check Initial Cubes
Parser | Apply Cube and 1 }
QDIMACS ! Simplify Matrix J |
Input File 3 A 3
QDIMACS | 11 QIauses ves ‘
! satisfied }
} by Cube? 1
: \ |
3 { PicoSAT 1
3 unsatisfiable? —— done? 1o 3
i yes yes 3

FAILURE OK

t

Figure 5.1: General workflow of QRPcheck.

30

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

of literals to be maintained may become enormous and we thus do not store
any literals in-memory but read them on-demand via mapping the input
QRP file to memory using virtual memory mechanisms.

As indicated in Figure [5.1] starting with the empty constraint the proof
is extracted from a trace on-the-fly, while checking each proof step incre-
mentally. If an incorrect proof step is encountered, we immediately abort
the checking procedure and terminate with FAILURE. Else, if all steps proved
to be correct and given proof is a proof of unsatisfiability, we are done (0K).
If given proof is a proof of satisfiability, we further check if each of the ini-
tial cubes given indeed represents a valid satisfying assignment for the input
formula. Hence, we apply each cube to the formula, simplify the matrix ac-
cordingly, and check if all clauses are satisfied under the assignment given.
If this is not the case (which may happen if existential-reduction has been
applied to the cube in question), we eliminate all universal variables from
the simplified input formula and check the resulting propositional formula
in CNF with the SAT-solver PicoSAT [6]. If the propositional formula is
unsatisfiable, given initial cube is invalid and we terminate the checking
procedure with FAILURE. Else, if all initial cubes proved to be valid, given
proof is correct and we terminate with OK.

5.2 Checking Q-Resolution Proofs

QRPcheck expects a Q-resolution-based trace or proof in QRP format as
input and checks each proof step incrementally, starting with the empty
constraint. Apart from the empty constraint, a proof step may either rep-
resent an input clause (resp. initial cube), an explicit reduction step, or a
resolution step (with or without reduction). We strictly require that neither
resolvents nor their antecedents are tautological resp. contradictory (cf. Def-
inition . Further, we do not allow that a proof step refers to itself as
antecedent. Therefore, we immediately consider both cases as incorrect.

A top-level view of the proof checking algorithm implemented in QRPcheck
is described in Figure Starting with the empty constraint, function
check traverses recursively in Depth-First-Search order over the proof DAG
until either all steps proved to be correct or an incorrect proof step was
found. In order to detect cycles resp. to prevent multiple checks on multi-
referenced proof steps, we skip steps that have already been visited. For
each (yet unvisited) step, we first check if a leaf of the proof DAG (func-
tion is_initial) has been reached. If the current step is not an input
clause (resp. initial cube), we continue and check if the given constraint is a
valid (explicit) reduction or resolution step (with or without reduction). We
apply reduction and/or resolution to the step’s antecedent(s) accordingly

31

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

(function resolve_and_reduce) and if the resulting constraint matches the
given (function check_constraint), we continue to traverse the proof DAG.
Otherwise, we abort the checking procedure and return with ERROR.

QRPcheck does not make any assumptions about how a solver handles forall-
resp. existential-reduction and resolution. If executed by definition, a res-
olution step would strictly follow the order of application of (forall- resp.
existential-) reduction and (clause resp. cube) resolution as given in Defini-
tion and the resulting constraint of an explicit reduction step would not
contain any literals to be further eliminated by (forall- resp. existential-) re-
duction. QRPcheck, however, does not require reduction and resolution steps
to comply to the above but rather identifies all possible outcomes when re-
constructing reduced constraints and resolvents.

In case of an explicit reduction step, determining which literals may be
eliminated from its antecedent is solely based on the nesting level of its in-
nermost existential (resp. universal) variable (cf. Definition and thus,
straightforward. In case of a resolution step, however, a literal might be elim-
inated when applying reduction to either the resolvent (cf. Definition m
step 3), or one (or both) of its antecedents (cf. Definition step 1), or
both. Hence, QRPcheck checks for each literal [that may resp. must appear
in the resulting constraint of a proof step if it might be eliminated by reduc-
ing its antecedent(s) or (in case of a resolution step) resolvent and marks
variable 1it2var (I) according to the marking scheme in Table

Initially, for each proof step s, all variables are unmarked, i.e., marked as
NONE. If a literal I must occur in the resulting constraint r of s, 1it2var (1) is
marked as positive (POS) or negative (NEG) occurrence, respectively. If a lit-
eral [may be eliminated and thus may or may not occur in r, 1it2var(l) is
treated as don’t care and marked as DCP (positive occurrence), DCN (negative
occurrence), or DCPN (either positive or negative occurrence), respectively.
All variables that must not occur in r are marked as NONE. Note that in
case of a resolution step, the pivot variable is treated as must not occur and
therefore also marked as NONE.

Marking | Description
NONE unmarked
POS mandatory positive occurrence
NEG mandatory negative occurrence
DCP don’t care, may be a positive occurrence
DCN don’t care, may be a negative occurrence
DCPN don’t care, may be either a positive or negative occurrence

Table 5.1: Marking scheme for variables to possibly occur in the resulting
constraint of a resolution resp. reduction step as employed in QRPcheck.

32

© 00 O Ui WK

DO = = b e b e e e
O © 00 O Ut W N - O

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

function check (Step s)
{
if (is_visited (s) or is_initial (s))
return 0K

m < resolve_and_reduce (s)

if (m = INVALID)
return ERROR

if (check_constraint (s, m) = ERROR)
return ERROR

if (check (get_first_antecedent (s)) = ERROR)
return ERROR

else if (is_resolution_step (s))
return check (get_second_antecedent (s))

return 0K

Figure 5.2: Top-level view of the proof checking algorithm in QRPcheck.

Ezxample 5.1. As an example, consider a prefix dxixox3 Vyry2 3... 2,
and a clause resolution step with antecedents (x1 V x3 V y2) and
(mx1 V e V y1 V —y2). Variable z; is the pivot variable and may not
occur in the resulting constraint, hence it is marked as NONE. Literals x3
(first antecedent) and —zy (second antecedent) may not be eliminated by
forall-reduction and are marked as POS and NEG, respectively. However,
the positive occurrence of y; (second antecedent) may be eliminated and
is thus marked as DCP. Variable y2 occurs in both antecedents as yo (first)
and —yy (second), respectively. Hence, it must at least be eliminated in
either one of them (else the resulting constraint would be tautological).
Thus, y2 may occur in the resulting constraint either positively, or neg-
atively, or not at all, and is marked as DCPN. We conclude with a map-
ping m = {(x1,NONE), (z2,NEG), (z3,P0S), (y1,DCP), (y2,DCPN)} from vari-
ables to markings, which identifies constraints (—zo V x3), (mx2 V 23 V Y1),
(mxoVaesVy Vy2), (mxeVaesVyr V-ys), (mzeVasVys) and (mxy VsV —ys)
as valid possible resulting constraints.

Given a QRP proof for input formula ¢, QRPcheck determines all possible
valid resulting constraints of a proof step s via a mapping m : var(y)) —
{NONE, POS, NEG, DCP, DCN, DCPN} from variables to markings (cf. Example[5.1)

33

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

1 function resolve_and_reduce (STEP s)

2 A

3 CONSTRAINT c < union (get_antecedents (s))
4 MARKING m < init_marking (get_vars (c), NONE)
5

6 /* reduce antecedents and resolve x/
7 foreach (a in get_antecedents (s))

8 {

9 if (is_taut_contr (a))

10 return INVALID

11

12 foreach (1 in get_literals (a))

13 {

14 if (is_complementary (1, m))

15 {

16 if is_dc (1, m))

17 {

18 if (is_reducible (1, a))

19 mark_dcpn (1, m)

20 else

21 mark (1, m)

22 }

23 else /x marked as POS/NEG x/
24 {

25 if (is_pivot (1, ¢))

26 mark_none (1, m)

27 else if (not is_reducible (1, a))
28 return INVALID

29 }

30 }

31 else if (!is_duplicate (1, m))
32 {

33 if (is_reducible (1, a)

34 mark_dc (1, m)

35 else

36 mark (1, m)

37 }

38 }

39 }

40

41 /+* reduce resolvent x/

42 if (is_resolution_step (s))

43 foreach (1 in get_reducible_literals (c))
44 mark_dc (1, m)

45 return m

46 7

Figure 5.3: Apply resolution and/or reduction to a step’s antecedents.

34

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

as described in Figure Given a proof step s, function resolve_and re-
duce initially generates a working constraint ¢ by building the union of all
antecedent constraints of s. Marking m is then initialized with the set of
all variables in var(v) that occur in constraint ¢ (function init marking),
each of them initially marked as NONE. Note that we require each antecedent
constraint of step s to be non-tautological resp. non-contradictory (function
is_taut_contr), which we otherwise immediately treat as INVALID.

Both in case of a reduction and resolution step we first have to check,
if (any of) its antecedent constraint(s) may be reduced by forall- (resp. ex-
istential-) reduction. Hence, for each literal 1 in antecedent constraint a,
depending on whether any occurrence of variable 1it2var (1) has already
been encountered previously, we distinguish the following cases.

If 1 neither occurs complementary (function is_complementary) nor
as non-reducible duplicate (function is_duplicate), we check if it may be
eliminated by reduction (function is_reducible) and mark it as DCP/DCN
(function mark dc) or POS/NEG (function mark), respectively. Note that a
non-reducible duplicate is a literal 1 that occurs non-complementary to its
previous occurrence, where variable 1it2var (1) is already identified as must
occur (i.e., marked as POS/NEG). Further, note that in case of a reduction
step, we should not encounter any other cases than the above (as we treat
proofs with tautological clauses resp. contradictory cubes as incorrect).

If 1 is a complementary literal (function is_complimentary), given step
is a resolution step and the current antecedent constraint is already the
second. As variable 1it2var (1) occurs complementary in both antecedent
constraints, we distinguish two cases. If 1 may be eliminated from the first
but not the second antecedent constraint, we conclude that it must occur in
the resulting constraint and mark it accordingly (function mark). Otherwise,
lit2var (1) may occur either positively, or negatively, or not at all, and we
mark it as DCPN. However, if 1 may not be eliminated from either the first
or the second antecedent constraint, it is either an occurrence of the pivot
variable (function is_pivot) and marked as NONE, or given step is INVALID
(as we obtain a tautogical resp. contradictory resulting constraint). Note
that the latter case causes an immediate abort of the checking procedure
(lines 8-9, Figure [5.2).

If both antecedents of a resolution step s have been reduced and resolved
successfully, we further check if it is possible to apply reduction to the re-
sulting resolvent. Finally, we return marking m as a representative of all
possible valid resulting constraints of proof step s.

Given a proof step s and its marking m, we finally check if given result-
ing constraint r is valid w.r.t. to its antecedents as described in Figure [5.4]
Function check_constraint first determines if the number of literals that
must occur in r (num_lits min) matches the number of literals in r that
are not marked as don’t care (num_lits - num_ lits_dc). If not, we im-

35

O© 00 ~J 3 T W N -

O DD DNDNDNRNDNDLDR R R = e
N O Ol W N O OO U WwWwNn+—~ O

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

function check_constraint (STEP s, MARKING m)
{

CONSTRAINT c < union (get_antecedents (s))
CONSTRAINT r <+ get_literals (s)

num_lits — size (r)
num_lits_dc < size (get_dc (r, m))

num_lits_min < size (c) - size (get_dc (c, m))

if (num_lits - num_lits_dc # num_lits_min)
return ERROR

foreach (1 in 1)

{
m ¢ get_mark (1, m)
if (m = DCPN)
mark_dc (1, m)
if ((is_pos (1) and m # POS and m # DCP) or
(is_neg (1) and m #* NEG and m # DCN)))
return ERROR
}

return 0K

Figure 5.4: Check if resulting constraint r matches marking m.

mediately conclude that step s is invalid (ERROR). Otherwise, we continue
to check if each literal in r matches its resp. marking in m. Note that in
case that a variable is marked as DCPN, we explicitly check for tautologies
(resp. contradictions) by resetting the marking to DCP resp. DCN (function
mark_dc), as soon as the first occurrence of the variable is encountered.

Ezample 5.2. As an example for the application of proof checking as im-
plemented in QRPcheck, consider the Q-resolution proof of unsatisfiability
in QRP format as given in Figure Starting with the empty constraint
(proof step 12), we traverse the proof DAG (as given in QRP notation in
Figure in Depth-First order, mark each step and its antecedents as
described in Figure [5.2] and check it as follows.

36

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

qrp 6 12
1230
450

6 0
-2-3-500
2-5600
-234600
2400
-1500
1 -5 -6
-3 -5
346
-5 -6

© 0 ~NO U d WNN-O M 0T

[y
o

N

|

o
© O Ul wo o
N~ o s ko
0o oN

[
[

4 -5
12 0 11
r unsat

10 O

O O O O O O,

Figure 5.5: Q-resolution proof in QRP format as input for Example

Proof step 12—the final step to derive the empty clause and thus the first
step to be checked—is a reduction step with antecedent (4 -5). Hence,
constraint ¢, which is the union of the antecedent constraints of step 12
(Figure line 3), is defined as the set of literals {4, —5}. Both variables
4 and 5 are universal and may be eliminated by forall-reduction. Thus, 4 is
marked as DCP, 5 as DCN, and function resolve_and_reduce yields the map-
ping m = {(4,DCP), (5,DCN)}. The constraint given by step 12 is the empty
clause, which matches m (function check_constraint), and we continue with
the antecedent of step 12.

Proof step 11, the antecedent of step 12, is a resolution step (with reduc-
tion) with antecedents 9 and 10. Hence, we first check if any literals of the
constraints given by steps 9 and 10 may be eliminated by forall-reduction
(which is not the case). Variable 6 is the pivot and thus marked as NONE.
The resolvent (4 -5) can be further forall-reduced as both variables 4 and 5
are universal, which are therefore marked as DCP resp. DCN, accordingly. We
obtain mapping {(4,DCP), (5,DCN), (6,NONE)}, conclude that it matches the
constraint given by step 11 and continue with the antecedents of step 11.
Proof step 9, the first antecedent of step 11, is a resolution step (with re-
duction) with two input clauses as antecedents. This time, one of the an-
tecedents (step 5) may be reduced by forall-reduction and the literal that
may be eliminated is the occurrence of variable 5. Variable 5 occurs in both
antecedents—positively in the first but negatively in the second—and may
not be eliminated in step 6. Hence, we conclude that the occurrence of vari-

37

5.2. Checking Q-Resolution Proofs Chapter 5. QRPcheck

Step Antecedents c Var. | Mark.
Step \ Var. \ Mark.
4 DCP 4 DCP
12 1 5 DCN {4, =5} 5 DCN
0 5 NEG
6 NEG 4 DCP
11 4 POS {4, =5 U} 5 DCN
10 5 NEG pivot 6 NONE
6 POS
. 1 NEG
5 DCP 1 NONE
9 1 POS {1\,—_% 5 =5, =6} 5 NEG
6 5 NEG puvot 6 NEG
6 NEG
5 - [-1 - | 0 [- | -
L6 1 - [-1 - | 0 L - [-
3 NEG
7 5 NEG 3 NONE
6 POS {3, -3,4, —5,6} 4 POS
10 3 POS vt 5 NEG
8 4 POS 6 POS
6 POS
2 NEG
1 3 NEG 2 NONE
- 5 DCN {2, -2, -3, -5, 6} 3 NEG
2 POS ivol 5 NEG
2 5 NEG 6 POS
6 POS
L[-1 -7 -] 0 [- [-
L2 - [-1 - | 0 L - [-
2 NEG
3 POS 2 NONE
3
8 4 POS {2, -2,3,4,6} 3 POS
6 POS ivol 4 POS
A 2 POS 6 POS
4 DCP
8 [- [-1 - | 0 [- [-
L4 [- [-1 -] 0 - -

Table 5.2: Steps (in traversal order), marking (antecedents), constraint
¢ (union of a steps’ antecedent constraints) and mapping m: {Var.} —
{Mark.} (as the result of function resolve _and reduce) for Example

38

5.3. Checking Initial Cubes Chapter 5. QRPcheck

2-3-5 2-56 -2346 24 -15 1-5-6
~. | ~ T
-3 -5 6 346 -5 -6
~ .7
4-56

\
4 -5
0
Figure 5.6: Proof DAG of the QRP proof in Figure (Example .

able 5 must be eliminated from the first antecedent (else the resolvent would
be tautological) and obtain the mapping {(1, NONE), (5, NEG), (6,NEG)}. Both
antecedents of step 9 are input clauses (and thus skipped) and we continue
with the second antecedent of step 11, which is step 10.

Proof Step 10 again is a resolution step (without reduction) with an-
tecedents 7 and 8, which in turn are both resolution steps with input clauses
as antecedents. Both step 10 and its antecedent 7 and 8 prove to be correct
and after finishing the traversal of the proof DAG with steps 3 and 4, which
again are input clauses, we conclude that all proof steps given are valid and
given Q-resolution proof of unsatisfiability is correct.

5.3 Checking Initial Cubes

Given a Q-resolution proof of (un)satisfiability, we interpret the set of input
clauses (resp. initial cubes) as the set of leaf nodes of the corresponding
proof DAG. In case of a proof of unsatisfiability, the set of input clauses is a
subset of the matrix of the input formula and is hence regarded as given. In
contrast, in case of a proof of satisfiability the set of initial cubes is a set of
satisfying assignments and a subset of a QBF-model of the input formula.
This set of satisfying assignments is determined by the QBF-solver during
the solving process and hence not regarded as given and correct as-is. Given
the input formula in QDIMACS format, QRPcheck provides the possibility
to verify that the set of initial cubes given indeed represents a set of valid
satisfying assignments by checking the validity of each initial cube as follows.

Definition 5.1. Given a QBF v in PCNF and an initial cube ¢ = {l1, ..., 1},
we interpret each literal l; € ¢ as an assignment a(v;) = l; with v; € var(y)
such that variable v; = 1it2var (I;) is assigned to true (resp. false) if literal
l; is a positive (resp. negative) occurrence of v;. Initial cube ¢ represents a
valid satisfying assignment of ¥ if ¥ is true under assignment «.

39

5.3. Checking Initial Cubes Chapter 5. QRPcheck

p cnf 10 12 p qrp 10 7
a780 a’780
e 20 e 20
al1346090 al34690
e 5100 e 5100
1/3-8-167-9-10-20
2|-431-9-8-50
319-25100
4| -4-86-1-3-50
51820
6/384-1-6-9-2-100
714 -6-83-9-210-50
8| -10 -2 -5 0
91-250
10| -6 -3 -10 0O
1116 2 -10 0
12|18 -1 -10 -2 50
13 1325 -8-1000
14 14 -8 20130
15 15 -8 0 14 0
16
17 17 -2 -6 8 0 0
18 18 8 -2 017 0
19 198 018 0
20 20 0 19 15 0
r sat
(a) Formula (b) Proof

Figure 5.7: Input formula for Example in QDIMACS format (left) and
corresponding proof of satisfiability in QRP format (right).

40

5.3. Checking Initial Cubes Chapter 5. QRPcheck

Given a QBF ¢ = Q.¢, in order to check the validity of an initial cube ¢ we
first apply ¢ to ¢ with respect to Definition [5.1] and check if all clauses in
matrix ¢ are satisfied. Therefore, for each literal I; € ¢ we determine assign-
ment a(lit2var(l;)) and simplify matrix ¢ by deleting all clauses (resp.
literals) that are satisfied (resp. unsatisfied) under «. If the resulting matrix
¢’ is empty, formula v is true under o and cube c is a so-called cover set and
a valid satisfying assignment of 1. However, if this is not the case, cube c is
not necessarily invalid but may have been reduced by existential-reduction
prior to its recording (non-covering set). Hence, we have to determine, if ¢’
is satisfiable w.r.t. the remaining existential occurrences in ¢'.

Lemma 5.1 (Trivial Truth of a QBF [I1]). Let ¢ = Q.¢ be a QBF in PCNF.
Let ¢ = {¢3U ¢y U ¢35y}, such that var(ps) C vars(), var(dy) C vary(y)
and var(¢3y) C var(y), and let g3, ¢y, and ¢3y be a set of clauses with only
existential, only universal, and both existential and universal occurrences,
respectively. Further, let ¢& be the set of clauses obtained by deleting all
universal occurrences from ¢3y. A QBF ¢ = Q{¢$3U ¢y U ¢3v} is true if
¢y =0 and ¢’ = {p3U ¢L} is satisfiable.

With respect to Lemma we therefore eliminate all universal literals from
¢ and check if the resulting propositional formula ¢” is satisfiable.

Ezample 5.3. As an example, consider the input formula given in QDIMACS
format in Figure [5.7al Given formula is satisfiable, the corresponding Q-
resolution proof of satisfiability is given in QRP format in Figure We
identify both ¢; = {2,5,-8,-10} (step 13) and ¢z = {-2,-5,8} (step 17)
as initial cubes and start the checking procedure with initial cube ¢, which
implies assignment o = {(2,T),(5,T),(8,L1),(10, L)}. We apply « to the
matrix of the input formula, which results in the simplifications depicted in
Table All clauses are satisfied under «, hence we conclude that ¢q is
valid (and a cover set) and continue with cube ca.

Cube ¢ implies assignment o = {(2,1),(5,1),(8, T)} and applying
a to the matrix of the input formula yields the simplifications depicted
in Table This time, clauses 10 and 11 remain unsatisfied and
¢ = {{-6,-3,-10},{6,-10}}. Cube ¢y therefore is a non-covering set and
we eliminate all remaining occurrences of universal variables 3 and 6 and
obtain the propositional formula ¢” = {{-10}}, which is satisfiable. We
conclude that ¢y is valid and are done.

41

5.3. Checking Initial Cubes Chapter 5. QRPcheck

1d Clause satisfied by
113-8-167-9-10-2 -8
2 -431-9-8-58 -8
3 9-75 1 5
4 -4-86-1-3-5 -8
5 g2 2
6 | 384-1-6-9-2-10 -10
7 14-6-83-9-Z105 -8
8 -10 -2 5 -10
9 25 5
10 -6 -3 -10 -10
11 62-10 2
12 g-1-10-25 5

Table 5.3: Matrix of the input formula after applying ¢; in Example

1d Clause satisfied by
1 [3-8-167-9-10-2 -2
2 -431-9-8-5 -5
3 9-2510 -2
4 -4,86-1-3-5 -5
5 82 8
6 |384-1-6-9-2-10 -2
7 14-6-83-9-210-5 -2
8 -10-2-5 -2
9 25 -2
10 -6 -3 -10

11 6 2-10

12 8-1-10-2 3 -2

Table 5.4: Matrix of the input formula after applying ce in Example

42

© 00 O Ui WK

g g S g S
Tk W NN = O

5.3. Checking Initial Cubes Chapter 5. QRPcheck

function check_initial_cubes ()
{
foreach (c in get_initial_cubes ())

{
cnf ¢« simplify_matrix (c)

if (is_empty (cnf))
return 0K

if (is_unsat (cnf))
return ERROR

return 0K

Figure 5.8: Top-level view of initial cube checking in QRPcheck.

A top-level view of the initial cube checking algorithm implemented in QRP-
check is described in Figure For each initial cube ¢ given, we first apply
c to the input formula (function simplify matrix), simplify the matrix
accordingly, and obtain a corresponding propositional formula cnf (cf. ¢”
above). If cnf is empty, we immediately conclude that cube c indeed rep-
resents a valid satisfying assignment and continue.

Otherwise, we use the SAT-solver PicoSAT to check if formula cnf is sat-
isfiable (function is_unsat). If this is not the case, we conclude that given
cube is invalid and immediately abort the checking procedure (ERROR). Else,
we conclude that initial cube c is valid and continue. If all initial cubes
proved to be valid, we conclude that the given set of initial cubes indeed
represents a set of satisfying assignments of the input formula and terminate
with OK.

Given an initial cube c, we simplify the matrix of the input formula w.r.t.
cube c as described in Figure For each literal 1 in ¢, we determine vari-
able v = 1it2var (1) and apply assignment «(v) = 1 as follows. We retrieve
a set of all clauses with occurrences of variable v (function get_occur-
rence_list) and delete all clauses satisfied and all literals unsatisfied by
assignment a(v). If the resulting formula is empty (i.e., if all clauses are
satisfied), given cube is a cover set and we return the empty matrix. Oth-
erwise, cube c is a non-covering set and we delete all remaining universal
occurrences (function delete universals) and return the resulting propo-
sitional formula (function get_matrix).

43

5.3. Checking Initial Cubes Chapter 5. QRPcheck

1 function simplify_matrix (CUBE c)
2 {

3 foreach (1 in get_literals (c))
4 {

5) v ¢+ lit2var (1)

6

7 foreach (cl in get_occurrence_list (v))
8 {

9 if (is_satisfied (cl, 1))
10 delete_clause (cl)

11 else

12 delete_occurrence (cl, V)
13 }

14 }

15

16 if (lall_clauses_satisfied ())
17 delete_universals ()

18

19 return get_matrix ()

20 %}

Figure 5.9: Simplify the matrix of the input formula w.r.t. to initial cube c.

44

Chapter 6

Experimental Results

We applied tracing, proof extraction and proof checking as previously de-
scribed in Chapters and [5| on the benchmark sets of the QBF com-
petitions 2008 (QBFEVAL’08) and 2010 (QBFEVAL’10), which consist of
3326 and 568 formulas, respectivelyE] The proof checking workflow and test
setup for our experimental evaluation is depicted in Figure[6.1] Given a QRP
trace recorded by DepQBF, we checked the proof (and, in case of satisfiable
instances, its set of initial cubes) with QRPcheck and further extracted its
corresponding QRP representation to disk.

We considered all 1228 (QBFEVAL’08) resp. 362 (QBFEVAL’10) formulas
solved by DepQBF within 900 seconds and did not enable the use of ad-
vanced dependency schemes. All experiments were performed on 2.83 GHz
Intel Core 2 Quad machines with 8 GB of RAM, running Ubuntu 9.04.
Time and memory limits for the whole proof checking workflow were set to
1800 seconds and 7 GB, respectively.

Input File
QDIMACS

QBF Trace Proof Extraction, Proof
Solving QRP Checking QRP
DepQBF QRPcheck

Figure 6.1: Proof checking workflow for experimental evaluation.

! Available at http://www.qbflib.org/index_eval.php

45

http://www.qbflib.org/index_eval.php

Chapter 6. Experimental Results

Family Instances Time DepQBF [s] Time QRPcheck [s]

SV ch total avg med total avg med

Abduction 284 283 577.3 2.0 0.1 237.5 0.8 0.0
Adder 5 5 1.3 0.3 0.0 0.8 0.2 0.0
blackbox-*-QBF 314 282 3918.3 13.9 0.1 1845.1 6.5 0.0
blackbox_design 1 1 0.4 0.4 0.4 0.5 0.5 0.5
Blocks 11 10 130.8 13.1 0.6 40.1 4.0 0.1
BMC 81 80 3280.9 41.0 0.4 169.7 2.1 0.0
Chain 10 8 481.0 60.1 16.3 429.3 53.7 14.6
circuits 5 4 3.0 0.7 0.6 0.4 0.1 0.1
conformant 11 9 207.7 23.1 4.1 28.8 3.2 0.4
Counter 10 10 131.0 13.1 0.0 8.9 0.9 0.0
Debug 1 1 3794 3794 3794 6.2 6.2 6.2
DFlipFlop 10 10 1.9 0.2 0.1 0.3 0.0 0.0
evader-pursuer 16 14 330.1 23.6 0.2 26.6 1.9 0.1
FPGA_*_FAST 5 5 0.7 0.1 0.1 0.1 0.0 0.0
FPGA_*_ SLOW 3 3 258.1 86.0 54.1 17.9 6.0 8.0
Impl 10 10 0.0 0.0 0.0 0.0 0.0 0.0
irqlkeapclte 0 0 0.0 0.0 0.0 0.0 0.0 0.0
jmc_quant 0 0 0.0 0.0 0.0 0.0 0.0 0.0
MutexP 3 3 37.2 12.4 0.0 26.9 9.0 0.0
pan 162 157 10356.8 66.0 1.2 2583.1 16.5 0.3
Rintanen 2 2 39.0 19.5 19.5 16.7 8.4 8.4
Sakallah 1 1 0.1 0.1 0.1 0.0 0.0 0.0
Scholl-Becker 38 35 181.5 5.2 0.1 154.5 4.4 0.0
SortingNet 49 44 1690.2 38.4 2.5 369.1 8.4 0.7
SzymanskiP 2 2 0.0 0.0 0.0 0.0 0.0 0.0
terminator 0 0 0.0 0.0 0.0 0.0 0.0 0.0
tipdiam 78 76 1407.1 18.5 0.0 902.2 11.9 0.0
tipfixpoint 73 70 891.7 12.7 0.1 653.3 9.3 0.0
Toilet 8 7 67.9 9.7 0.7 32.3 4.6 0.1
Tree 12 11 150.3 13.7 0.3 181.6 16.5 0.2
uclid 0 0 0.0 0.0 0.0 0.0 0.0 0.0
VonNeumann 10 10 6.5 0.7 0.4 1.9 0.2 0.1
wmiforward 13 13 891.7 68.6 0.0 273.5 21.0 0.0
total 1228 1166 | 25422.1 21.8 0.1 | 8007.3 6.9 0.0

Table 6.1: QBFEVAL’08: family overview (runtime). Runtime considers
checked instances only, all times are wall-clock times in seconds.

46

Chapter 6.

Experimental Results

Family Instances Time DepQBF [s] Time QRPcheck [s]

SV ch total avg med total avg med
Abduction 48 48 47.8 1.0 0.0 6.2 0.1 0.0
Adder 0 0 0.0 0.0 0.0 0.0 0.0 0.0
blackbox-*-QBF 43 36 530.4 14.7 0.2 170.2 4.7 0.1
blackbox_design 0 0 0.0 0.0 0.0 0.0 0.0 0.0
Blocks 4 3 11.6 3.9 0.1 5.3 1.8 0.1
BMC 12 12 34.5 2.9 0.5 5.1 0.4 0.1
Chain 0 0 0.0 0.0 0.0 0.0 0.0 0.0
circuits 2 2 30.3 15.2 15.2 3.5 1.8 1.8
conformant 5 3 24.8 8.3 0.1 2.2 0.7 0.0
Connect4 8 8 40.8 5.1 0.1 4.0 0.5 0.0
Counter 2 2 2277 113.8 113.8 13.5 6.7 6.7
Debug 0 0 0.0 0.0 0.0 0.0 0.0 0.0
evader-pursuer 10 9 719.9 80.0 0.7 76.3 8.5 0.1
FPGA_*_FAST 2 2 0.2 0.1 0.1 0.0 0.0 0.0
FPGA_*_SLOW 1 1 104.7 104.7 104.7 5.8 5.8 5.8
Impl 1 1 0.0 0.0 0.0 0.0 0.0 0.0
jmc_quant 0 0 0.0 0.0 0.0 0.0 0.0 0.0
mgm 128 128 9727.2 76.0 24.2 3580.1 28.0 2.9
pan 24 24 3749.2 156.2 71.8 1295.7 54.0 13.2
Rintanen 1 1 12.7 12.7 12.7 1.5 1.5 1.5
Sakallah 0 0 0.0 0.0 0.0 0.0 0.0 0.0
Scholl-Becker 11 10 31.1 3.1 0.2 16.4 1.6 0.1
SortingNet 6 5 360.3 72.1 6.7 93.1 18.6 0.9
SzymanskiP 0 0 0.0 0.0 0.0 0.0 0.0 0.0
tipdiam 3 2 275.3 1377 137.7 343.1 1716 171.6
tipfixpoint 9 9 2.3 0.3 0.1 2.1 0.2 0.0
Toilet 40 40 108.4 2.7 0.0 57.4 1.4 0.0
VonNeumann 2 2 4.9 2.4 2.4 1.2 0.6 0.6
total 362 348 | 16044.0 46.1 0.5 | 5682.8 16.3 0.2

Table 6.2: QBFEVAL’10: family overview (runtime). Runtime considers
checked instances only, all times are wall-clock times in seconds.

47

Chapter 6. Experimental Results

Tables[6.1]and [6.2] show the aggregated runtime results on the QBFEVAL’08
and QBFEVAL’10 benchmark sets, grouped by family. The first column
(“Instances”) indicates the number of instances solved by DepQBF per family
(“sv”) and the number of instances (out of the instances solved) that were
checked by QRPcheck (“ch”), respectively. The second (“Time DepQBF”)
and third (“Time QRPcheck”) columns state the total, average and median
runtime (in seconds) for solving and checking all instances that were checked
by QRPcheck within given time and memory constraints. Note that all times
considered are wall-clock times. Further, both the solving and checking time
are to be considered as the total runtime required by DepQBF (incl. tracing)
and QRPcheck (incl. extracting the QRP proof to disk), respectively. Hence,
in both cases, I/O operations consume a considerable amount of the resp.
total runtime (cf. Tables and [6.6]).

Within given time and memory constraints, out of 1228 (QBFEVAL’08)
and 362 (QBFEVAL’10) solved by DepQBF we were able to check 1166 and
348, respectively. On average, on the benchmark set 2008 (2010) QRPcheck
required a third of the runtime of DepQBF, with an average and median
runtime of 6.9 (16.3) seconds and less than 0.1 (0.2) seconds, respectively.
Further, on all families in both benchmark sets except for the “Tree” (2008)
and the “tipdiam” (2010) families, which contain instances that consumed
up to 65% of the total runtime when extracting the QRP proof representa-
tion to disk, QRPcheck required (considerably) less runtime than DepQBF.
A more detailed runtime comparison of DepQBF and QRPcheck is given in
Table and Figure Note that in Figure [6.2] checked instances that
were solved in less than 0.2 seconds were not considered.

Table gives an overview of the percentages of parsing (total for QRP and
QDIMACS input) and checking (total for proof and initial cube checking) on
both benchmark sets 2008 and 2010 with the total runtime of QRPcheck as
a base. A more detailed runtime overview of QRPcheck is given in Table
On all checked instances of the benchmark set 2008 (2010), parsing the in-
put QRP trace required 18% (15%) of the total runtime, with an average
and median runtime of 1.2 (3.5) seconds and less than 0.1 seconds (on both
sets), respectively. Proof checking (without initial cube checking) required
19% (26%) of the total runtime, with an average and median runtime of
1.3 (3.8) seconds and less than 0.1 seconds (on both sets), respectively. For
satisfiable instances, on the benchmark set 2008 (2010) checking the set of
initial cubes given required 20% (12%) of the total runtime, where 1704 (0)
out of 18.3M (5.6M) initial cubes were non-covering sets. That is, for all
instances of the benchmark set 2010, all initial cubes given were cover sets
and PicoSAT was not required for initial cube checking on any instance. For
all 44 instances of the benchmark set 2008 were the set of initial cubes con-
tained non-covering sets, actually all initial cubes given were non-covering
sets and initial cube checking required a total of less than 0.1 seconds.

48

Chapter 6. Experimental Results

500 + DepQBF —&— 500
250 | QRPcheck —-+— ;‘ 250
100 1 100
50 | ‘ 1 50
m 25 1 25
e}
c
§ 10 1 10
o 5 15
(0]
=
T 1 1
0.5 1 0.5
|
600 700 800 900 1000 1100
checked formulas, sorted by runtime
(a) QBFEVAL’08
500 | DepQBF —= 500
QRPcheck -+ :
250 4 250
100 1 100
% 50 190
2
[&]
(O]
< 10 1 10
(0]
= 15
|_
1 4
0.5 3= 1 05

180 200 220 240 260 280 300 320 340
checked formulas, sorted by runtime
(b) QBFEVAL’10

Figure 6.2: Runtime comparison: DepQBF vs. QRPcheck. Considers checked
instances that were solved within > 0.2 seconds only, all times are wall-clock
times in seconds.

49

Chapter 6. Experimental Results

Instances DepQBF QRPcheck

SV ch total avg med total avg med

sat 494 476 13868.5 29.1 0.1 4293.8 9.0 0.0

2008 | unsat 734 690 11553.6 16.7 0.1 3713.6 5.4 0.1
total | 1228 1166 | 25422.1 21.8 0.1 | 8007.3 6.9 0.0

sat 157 153 11289.5 73.8 4.6 | 47378 31.0 1.6

2010 | unsat 205 195 4754.5 24.4 0.3 945.1 4.8 0.1
total 362 348 | 16044.0 46.1 0.5 | 5682.8 16.3 0.2

Table 6.3: Runtime: DepQBF vs. QRPcheck.

Runtime consideres checked

instances only, all times are wall-clock times in seconds.

Time [s] parse check other

sat 4293.8 735.5 17.1 % 1483.5 34.5 % 48.3 %

2008 | unsat 3713.6 843.1 22.7 % 889.8 24.0 % 53.3 %
total 8007.3 | 1578.6 19.7 % | 2373.3 29.6 % | 50.6 %

sat 4737.8 591.7 12.5 % 1684.0 35.5 % 52.0 %

2008 | unsat 945.1 288.9 30.6 % 187.6 19.8 % 49.6 %
total 5682.8 880.6 15.5 % | 1871.5 32.9 % | 51.6 %

Table 6.4: Runtime (percentage): QRPcheck total vs. parsing vs. checking.

Column ”other“ roughly corresponds to I/O for proof extraction. Runtime
considers checked instances only, all times are wall-clock times in seconds.

Time [s] parse QRP parse QDIMACS
total avg med total avg med total avg med
sat 4293.8 9.0 0.0 604.3 1.3 0.0 | 1312 0.3 0.0
2008 | unsat 3713.6 5.4 0.1 843.1 1.2 0.0 - - -
total | 8007.3 6.9 0.0 | 1447.4 1.2 0.0 | 131.2 0.3 0.0
sat 47378 31.0 1.6 587.6 3.8 0.3 4.2 0.0 0.0
2010 | unsat 945.1 4.8 0.1 2889 1.5 0.0 - - -
total | 5682.8 16.3 0.2 876.5 2.5 0.0 4.2 0.0 0.0
Time [s] check proof check initial
total avg med total avg med total avg med
sat 4293.8 9.0 0.0 634.6 1.3 0.0 848.9 1.8 0.0
2008 | unsat | 3713.6 5.4 0.1 889.8 1.3 0.0 - - -
total | 8007.3 6.9 0.0 | 1524.4 1.3 0.0 | 848.9 1.8 0.0
sat 4737.8 31.0 1.6 | 11199 7.3 0.0 | 564.1 3.7 0.0
2010 | unsat 945.1 4.8 0.1 187.6 1.0 0.0 - - -
total | 5682.8 16.3 0.2 | 1307.4 3.8 0.0 | 564.1 3.7 0.0

Table 6.5: Runtime: QRPcheck total vs. parsing (QRP and QDIMACS) and
QRPcheck total vs. checking (proof and initial cubes). Runtime considers
checked instances only, all times are wall-clock times in seconds.

50

Chapter 6. Experimental Results

Time [s .
sV total rnax[] avg med Tracing

sat 495 19686.9 868.0 39.8 0.1

unsat 743 23245.7 878.7 31.3 0.1 no
2008 total | 1238 | 42932.7 878.7 34.7 0.1
sat 494 29979.1 1605.7 60.7 0.2

unsat 734 45769.0 1706.2 62.4 0.2 yes
total | 1228 | 75748.1 1706.2 61.7 0.2
sat 157 9364.7 824.5 59.6 2.8

unsat 205 5970.7 531.4 29.1 0.2 no
2010 total 362 | 15335.4 824.5 42.4 0.4
sat 157 14899.9 1095.9 94.9 4.8

unsat 205 11686.5 884.7 57.0 0.4 yes
total 362 | 26586.5 1095.9 73.4 0.6

Table 6.6: Runtime: DepQBF with tracing vs. without tracing. Runtime
considers solved instances only, all times are wall-clock times in seconds.

Considering the overall percentages of parsing and checking w.r.t. the to-
tal runtime of QRPcheck as shown in Table parsing required 19.7%
(15.5%), whereas checking required 29.6% (32.9%) of the total runtime on
the benchmark set 2008 (2010). The remaining 50.6% (51.6%) indicated in
column “other” roughly corresponds to the runtime required for 1/O oper-
ations when extracting the QRP proof representation to disk.

Table gives a comparison of the runtime of DepQBF on both bench-
mark sets with and without tracing enabled. Considering all instances of
the benchmark set 2008 (2010) that were solved by DepQBF within 900 sec-
onds, with tracing enabled, DepQBF required 1.8 (1.7) times the runtime of
DepQBF without tracing enabled. This, again, is due to I/O operations as
the trace is recorded to disk on-the-fly. Hence, due to given time constraints
DepQBF “looses” 10 (1) instances on the benchmark set 2008 (2010) if trac-
ing is enabled.

An overview of the minimum, maximum, average and median file size of QRP
traces and their corresponding QRP proofs is given in Tables and
Table |6.7] considers file size in number of Bytes and compares trace sizes of
all instances solved by DepQBF within 900 seconds with trace and corre-
sponding proof sizes of all instances that were checked by QRPcheck within
given time and memory constraints. Table considers checked instances
only and compares trace and proof sizes in the total number of steps resp.
literals given. Considering all instances solved by DepQBF, on the bench-
mark set 2008 (2010) QRP trace file sizes in Byte range from 104B (477B) to
55.3 GB (26.7 GB), with an average and median size of 1.2 GB (on both sets)
and 2.3 MB (11.2 MB), respectively. However, considering checked instances
only, due to given memory constraints (7 GB) the maximum QRP trace size
QRPcheck was able to check was 6.7 GB (6.4 GB) with a corresponding QRP

51

Chapter 6. Experimental Results

File Size
min max avg med
sat 104 B 38.2 GB 823.1 MB 1.6 MB
Trace* | unsat 866 B 55.3 GB 1.4 GB 3.0 MB
total | 104 B 55.3 GB 1.2 GB 2.3 MB
sat 104 B 6.7 GB 295.2 MB 1.2 MB

2008 Trace unsat 866 B 6.0 GB 285.9 MB 2.1 MB
total | 104 B 6.7 GB 289.7 MB 1.8 MB
sat 52 B 5.2 GB 145.1 MB 154.4 kB
Proof | unsat 598 B 5.5 GB 89.8 MB 351.5 kB
total 52 B 5.6 GB 112.4 MB 272.5 kB

sat 477 B 23.8 GB 1.3 GB 78.7 MB
Trace* | unsat 670 B 26.7 GB 1.1 GB 9.2 MB
total | 477 B 26.7 GB 1.2 GB 11.2 MB
sat 477 B 6.3 GB 904.5 MB 75.6 MB

2010 Trace unsat 670 B 6.2 GB 327.4 MB 6.2 MB
total | 477 B 6.3 GB 581.1 MB 9.1 MB
sat 173 B 5.0 GB 518.4 MB 2.8 MB
Proof | unsat 274 B 5.8 GB 66.7 MB 729.9 kB
total | 173 B 5.8 GB 265.3 MB 1.0 MB

Table 6.7: File size (Byte): QRP trace vs. QRP proof. “Trace*” considers
all instances solved by DepQBF, “Trace” and “Proof” considers checked
instances only.

Steps Literals
min max avg med | min max avg med
sat 7 13M 324k 8k 12 1396M 66M 242k
Trace | unsat 46 18M 380k 14k | 131 1295M 60M 379k
2008 total 7 18M 357k 11k 12 1396M 62M 334k
sat 2 IM 127k 119 2 13656M 33M 32k
Proof | unsat 3 18M 155k 1k 3 1212M 19M 58k
total 2 18M 144k 747 2 1365M 25M 43k
sat 29 ™ 785k 96k 78 1501M 200M 17M
Trace | unsat 43 11M 376k 25k 88 1358M 70M 1M
2010 total 29 11M 556k 32k 78 1501M 127TM 2M
sat 3 3M 308k 1k 3 12656M 117M 626k
Proof | unsat 3 8M 135k 2k 3 1262M 14M 146k
total 3 8M 211k 2k 3 1265M 60M 175k

Table 6.8: File size (Steps, Literals): QRP trace vs. QRP proof. File size
considers checked instances only.

52

Chapter 6. Experimental Results

proof size of 483.8 MB (4.1 GB). On all checked instances of the benchmark
set 2008 (2010), QRP proof file sizes in Byte range from 52B (173B) to
5.5 GB (5.8 GB), with an average and median size of 112.4 MB (265.3 MB)
and 272.5 kB (1.0 MB), respectively. Note that maximum numbers of liter-
als of 1396M (1501M) and 1365M (1265M) for traces resp. proofs were the
main reason for not storing literals in memory but reading them on-demand
via mapping the input QRP trace to memory. Further, note that both in
Byte file size and in the number of steps (resp. literals) trace sizes are mul-
tiples of the size of their corresponding proofs, in general.

On all 62 (QBFEVAL’08) and 14 (QBFEVAL’10) instances that were not
checked by QRPcheck within given time and memory constraints (1800 sec-
onds, 7 GB), QRPcheck ran out of memory due to input traces with an
average (maximum) file size of 17 GB (52 GB) and 16 GB (27 GB), respec-
tively. For the 14 instances from the benchmark set 2010 that QRPcheck
was not able to check due to the 7 GB memory limit, we lifted the memory
limit and rerun the experiments on a 2.4 GHz Intel Xeon hexa-core machine
with 96 GB RAM, running Ubuntu 11.10. As a consequence, we were able
to check all 14 instances successfully. An overview of the resulting runtime
(DepQBF and QRPcheck) and trace resp. proof sizes is given in Tables
and Trace file sizes ranged from 7.4 GB to 26.7 GB with corresponding
proof file sizes of 0.4 GB and 0.2 GB, respectively. The average (median)
proof size was 3.3 GB (291.0 MB), with a maximum file size of 14.6 GB.
The average (median) runtime of QRPcheck was 207.1 (94.5) seconds, out of
which parsing the input (QRP and QDIMACS) and (proof and initial cube)
checking required 64.3 (58.8) seconds and 50.0 (4.1) seconds, respectively.
Further, for all 14 instances, QRPcheck required an average (median) of
16.1 GB (15.3 GB) of memory, with a maximum memory usage of 27.1 GB
(which correlates with an input trace file size of 26.7 GB).

Note that all instances from both benchmark sets that were checked by

QRPcheck within given time and memory constraints also proved to have
been solved correctly by DepQBF.

53

Chapter 6. Experimental Results

Formula Trace Proof

File Size Steps File Size Steps
BLOCKS4ii.7.2-shuffled 11.4 GB 38.0M 1.5 GB 5.2M
(C432.blif_0.10_1.00_0_0_out_*-sh* 11.0 GB 37.56M 8.7 GB 29.7M
biu.*-b003-*-1*01-*.c*f04.*-shuffled 16.8 GB 9.7TM 14.2 GB 8.0M
biu.*-b003-*-1*01-*.c*f06.*-shuffled 17.7 GB 2.0M 19.0 MB 37.4k
biu.*-b003-*-1*03-*.c*f02.*-shuffled 25.3 GB 14.4M 14.6 GB 8.4M
biu.*-b003-*-1*03-*.c*f05.*-005-sh* 12.3 GB 0.6M 33.7 MB 36.6k
biu.*-b003-*-1*03-*.c*f06.*-shuffled 26.7 GB 10.0M 0.2 GB 0.1M
biu.*-b003-*-M*04-*.c*{05.*-008-sh* 16.6 GB 5.1M 5.4 GB 1.8M
biu.*-b003-*-M*04-*.c*f06.*-002-sh* 12.2 GB 3.9M 12.7 kB 91
blocks_enc_2_b3_ser—opt-9_-shuffled 17.1 GB 50.9M 46.9 kB 38
emptyroom_e3_ser—opt-20_-shuffled 10.7 GB 51.9M 0.4 MB 0.2k
ev-pr-8x8-11-7-0-1-2-lg-shuffled 7.4 GB 1.0M 0.4 GB 0.4M
sortnetsort10.v.stepl.012-shuffled 23.8 GB 16.0M 45.4 MB 6.1k
vis.prodcell"01.E-d4-shuffled 13.8 GB 1.8M 1.0 GB 98.3k
max 26.7 GB 51.9M 14.6 GB 29.7M
avg 15.9 GB 17.3M 3.3 GB 3.8M
med 15.2 GB 9.8M | 291.0 MB 102.9k
total 222.9 GB 242.8M | 46.1 GB 53.7TM

Table 6.9: Trace and proof size for the 14 instances from the QBFEVAL’10
benchmark set that were further investigated with extended time (3600s)
and memory (96 GB) constraints.

QRPcheck
Formula DepQBF total parse check
BLOCKS4ii.7.2-shuffled 547.3 116.2 49.7 21.6
(C432.blif_0.10_1.00_0_0_out_*-sh* 528.0 471.6 57.3 1325
biu.*-b003-*-1¥*01-*.c*{04.*-shuffled 449.7 665.6 61.0 2178
biu.*-b003-*-1*01-*.c*{06.*-shuffled 854.8 75.4 74.7 0.3
biu.*-b003-*-1¥03-*.c*f02. *-shuffled 667.1 699.3 89.9 214.1
biu.*-b003-*-1*03-*.c*f05.*-005-sh* 639.4 56.6 55.3 0.5
biu.*-b003-*-1*03-*.c*{06.*-shuffled 700.1 97.2 90.2 2.6
biu.*-b003-*-M*04-*.c*f05.*-008-sh* 440.7 281.3 57.2 76.9
biu.*-b003-*-M*04-*.c*f06.*-002-sh* 611.9 53.4 53.3 0.0
blocks_enc_2_b3_ser—opt-9_-shuffled 981.6 85.4 85.2 0.0
emptyroom_e3_ser—opt-20_-shuffled 624.2 47.4 47.2 0.3
ev-pr-8x8-11-7-0-1-2-1g-shuffled 594.5 44.4 29.5 5.5
sortnetsort10.v.stepl.012-shuffled 935.3 91.8 89.6 1.0
vis.prodcell"01.E-d4-shuffled 833.2 113.9 60.3 26.7
max 981.6 699.3 90.2 217.8
avg 672.0 207.1 64.3 50.0
med 631.8 94.5 58.8 4.1
total 9407.8 | 2899.5 900.4 699.8

Table 6.10: Runtime (in seconds) of DepQBF and QRPcheck for the 14 in-
stances from the QBFEVAL’10 benchmark set that were further investigated
with extended time (3600s) and memory (96 GB) constraints.

54

Chapter 7

Conclusion

In this thesis, we presented the extraction and validation of Q-resolution
proofs of (un)satisfiability as part of the certification workflow for the state-
of-the-art QBF-solver DepQBF.

We introduced QRP format, a novel text-based and explicit representa-
tion for Q-resolution-based traces and proofs. Given a trace in QRP format,
QRP proofs can be extracted and checked in deterministic log space, a desir-
able property of proof formats suggested in [34]. Checking QRP proofs fur-
ther does not show exponential worst-case behaviour, as it is not necessary
to reconstruct resolvents from unordered lists of antecedents as in [38, [35].

We extended DepQBF to record traces in QRP format and extraced
and validated the corresponding Q-resolution proofs of (un)satisfiability
with our proof checker QRPcheck. The QRP representation of these proofs
serves as a base for extracting Skolem/Herbrand function-based certificates
of (un)satisfiability as described in [26].

We applied tracing, proof extraction, and proof checking on the bench-
mark sets of the QBF competitions 2008 and 2010 and presented an extensive
evaluation of the results. It shows that within given time and memory con-
straints of 1800 seconds and 7 GB, QRPcheck was able to validate over 95%
of all solved instances. After lifting the memory limit of 7 GB, all instances
solved by DepQBF within 900 seconds were validated successfully. Further,
all solved instances of both benchmark sets that were successfully validated
by QRPcheck proved to have been solved correctly by DepQBF.

Overall, even though extracting the QRP proof representation to disk
required a considerable amount of the total runtime of QRPcheck, proof
checking with QRPcheck proved to be time efficient. Considering that QRP
proof extraction is optional and further not necessary if given QRP input is
a proof rather than a trace, the runtime overhead for I/O operations may be
disregarded. However, the runtime overhead for recording a trace in QRP
format to disk is to be considered significant—especially since traces may
grow up to several GB in file size very quickly. Further, even though huge

55

Chapter 7. Conclusion

trace files do not produce any overhead in time for the actual proof checking
in QRPcheck, the input trace file size does affect its overall memory usage.
Hence, a compact binary representation of the QRP format would be de-
sirable. However, to further enhance the overall performance of the proof
checking workflow, in-memory proof maintenance rather than the current
tracing approach would be a desirable future property to be integrated in
DepQBF. Promising possible in-memory approaches have already been pro-
posed for SAT solving in [IJ.

Note that currently, QRPcheck does not support one of the key features
of DepQBF—the use of advanced dependency schemes. Even though proof
checking might become more complex if advanced dependency schemes are
supported, this is a desirable property of QRPcheck to be considered as fu-
ture work.

QRPcheck and the extended version of DepQBF are available at
http://www.fmv. jku.at/cdepgbf/.

56

http://www.fmv.jku.at/cdepqbf/

Bibliography

1]

Acha, R.J.A., Nieuwenhuis, R., Oliveras, A., Rodriguez-Carbonell, E.:
Practical Algorithms for Unsatisfiability Proof and Core Generation in
SAT Solvers. AT Communications (AICOM) 23(2-3), 145-157 (2010)

Audemard, G., Sais, L.: A Symbolic Search Based Approach for Quan-
tified Boolean Formulas. In: Proceedings of the 8th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2005).
Lecture Notes in Computer Science, vol. 3569, pp. 16-30. Springer
(2005)

Balabanov, V., Jiang, J.H.R.: Resolution Proofs and Skolem Functions
in QBF Evaluation and Applications. In: Proceedings of the 23rd In-
ternational Conference on Computer Aided Verification (CAV 2011).
Lecture Notes in Computer Science, vol. 6806, pp. 149-164. Springer
(2011)

Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In:
Proceedings of the 20th International Conference on Automated De-
duction (CADE-20). Lecture Notes in Computer Science, vol. 3632, pp.
369-376. Springer (2005)

Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Ex-
perience and Perspectives. Journal on Satisfiability (JSAT) 5(1-4), 133
191 (2008)

Biere, A.: PicoSAT Essentials. Journal on Satisfiability (JSAT) 4(2-4),
75-97 (2008)

Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Check-
ing without BDDs. In: Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’99). Lecture Notes in Computer Science, vol. 1579, pp. 193—
207. Springer (1999)

Biining, H.K., Bubeck, U.: Theory of Quantified Boolean Formulas. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of

o7

Bibliography Bibliography

[18]

Satisfiability, Frontiers in Artificial Intelligence and Applications, vol.
185, pp. 735-760. IOS Press (2009)

Biining, H.K., Karpinski, M., Flégel, A.: Resolution for Quantified
Boolean Formulas. Information and Computation 117(1), 12-18 (1995)

Buning, H.K., Zhao, X.: On Models for Quantified Boolean Formulas.
In: Logic versus Approximation. Lecture Notes in Computer Science,
vol. 3075, pp. 18-32. Springer (2004)

Cadoli, M., Giovanardi, A., Schaerf, M.: An Algorithm to Evaluate
Quantified Boolean Formulae. In: Proceedings of the 15th National
Conference on Artificial Intelligence (AAAT’98) and 10th Innovative
Applications of Artificial Intelligence Conference (IAAI'98). pp. 262—
267. AAAT Press / The MIT Press (1998)

Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An Algorithm
to Evaluate Quantified Boolean Formulae and Its Experimental Evalu-
ation. Journal of Automated Reasoning (JAR) 28(2), 101-142 (2002)

Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for
Theorem-Proving. Communications of the ACM 5(7), 394-397 (1962)

Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with
QBF. In: Proceedings of the 8th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2005). Lecture Notes in
Computer Science, vol. 3569, pp. 408-414. Springer (2005)

Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving Advanced Rea-
soning Tasks Using Quantified Boolean Formulas. In: Proceedings of
the 7th National Conference on Artificial Intelligence (AAAT’00). pp.
417-422. AAAT Press / The MIT Press (2000)

Fitting, M.: First-order Logic and Automated Theorem Proving (2nd
ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA (1996)

Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A System for
Deciding Quantified Boolean Formulas Satisfiability. In: Proceedings
of the 1st International Joint Conference on Automated Reasoning (IJ-
CAR 2001). Lecture Notes in Computer Science, vol. 2083, pp. 364-369.
Springer (2001)

Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF Reasoning on Real-
World Instances. In: Revised Selected Papers of the 7th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2004). Lecture Notes in Computer Science, vol. 3542, pp. 105-121.
Springer (2004)

58

Bibliography Bibliography

[19]

[20]

[21]

[29]

[30]

Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolu-
tion and Learning in the Evaluation of Quantified Boolean Formulas.
Journal of Artificial Intelligence Research (JAIR) 26, 371-416 (2006)

Goultiaeva, A., Gelder, A.V., Bacchus, F.: A Uniform Approach for
Generating Proofs and Strategies for Both True and False QBF For-

mulas. In: Proceedings of the 22nd International Joing Conference on
Artificial Intelligence (IJCAI 2011). pp. 546-553. IJCAI/AAAI (2011)

Jussila, T., Biere, A., Sinz, C., Kroning, D., Wintersteiger, C.M.: A
First Step Towards a Unified Proof Checker for QBF. In: Proceedings
of the 10th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2007). Lecture Notes in Computer Science,
vol. 4501, pp. 201-214. Springer (2007)

Kroning, D., Strichman, O.: Decision Procedures: An Algorithmic
Point of View. Springer, Berlin, Heidelberg (2008)

Lonsing, F., Biere, A.: DepQBF: A Dependency-Aware QBF Solver.
Journal on Satisfiability (JSAT) 7(2-3), 71-76 (2010)

Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-
Based QBF Solvers. In: Proceedings of the 13th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT 2010).
Lecture Notes in Computer Science, vol. 6175, pp. 158-171. Springer
(2010)

Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating
and Certifying QBFs: A Comparison of State-Of-The-Art Tools. Al
Communications (AICOM) 22(4), 191-210 (2009)

Preiner, M.: Extracting and Validating Skolem/Herbrand Function-
Based QBF Certificates. Master’s thesis, Johannes Kepler University,
Linz (2012)

Rintanen, J.: Constructing Conditional Plans by a Theorem-Prover.
Journal of Artificial Intelligence Research (JAIR) 10, 323-352 (1999)

Rintanen, J.: Asymptotically Optimal Encodings of Conformant Plan-
ning in QBF. In: Proceedings of the 22nd AAAI Conference on Artificial
Intelligence (AAAT07). pp. 1045-1050. AAAT Press (2007)

Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM 12(1), 23-41 (1965)

Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Pro-
ceedings of the 12th International Conference on Principles and Prac-
tice of Constraint Programming (CP 2006). Lecture Notes in Computer
Science, vol. 4204, pp. 514-529. Springer (2006)

59

Bibliography Bibliography

[31]

32]

[35]

[36]

[37]

Silva, J.P.M., Lynce, I., Malik, S.: Conflict-Driven Clause Learning
SAT Solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T.
(eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 131-153. IOS Press (2009)

Staber, S., Bloem, R.: Fault Localization and Correction with QBF'. In:
Proceedings of the 10th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT 2007). Lecture Notes in Computer
Science, vol. 4501, pp. 355-368. Springer (2007)

Stockmeyer, L.J., Meyer, A.R.: Word Problems Requiring Exponential
Time: Preliminary Report. In: Proceedings of the 5th Annual ACM
Symposium on Theory of Computing (STOC’73). pp. 1-9. ACM (1973)

Van Gelder, A.: Verifying Propositional Unsatisfiability: Pitfalls to
Avoid. In: Proceedings of the 10th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2007). Lecture Notes in
Computer Science, vol. 4501, pp. 328-333. Springer (2007)

Yu, Y., Malik, S.: Validating the Result of a Quantified Boolean For-
mula (QBF) Solver: Theory and Practice. In: Proceedings of the 2005
Conference on Asia South Pacific Design Automation (ASP-DAC 2005).
pp. 1047-1051. ACM Press (2005)

Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified Boolean
Satisfiability Solver. In: Proceedings of the 2002 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD 2002). pp.
442-449. ACM (2002)

Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction
and Conflicts in Quantified Boolean Formula Evaluation. In: Proceed-
ings of the 8th International Conference on Principles and Practice of
Constraint Programming (CP 2002). Lecture Notes in Computer Sci-
ence, vol. 2470, pp. 200-215. Springer (2002)

Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent
Resolution-Based Checker: Practical Implementations and Other Ap-
plications. In: Proceedings of the 2003 Conference and Exposition on
Design, Automation and Test in Europe (DATE 2003). pp. 10880-
10885. IEEE Computer Society (2003)

60

