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Introduction

Completeness of local search algorithms

−→ local search in general does not allow to determine unsatisfiability

−→ Probabilistically Approximately Complete (PAC) [AAAI’99]

◦ will find a solution (if there is one)
◦ given unlimited run time
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Introduction

Bit-Vectors in Sat Modulo Theories (SMT)

• State-of-the-art: Bit-Blasting

◦ eager reduction to propositional logic (SAT)

◦ relies heavily on rewriting and other techniques to simplify the input formula

−→ efficient in practice, may not scale if input size not reduced sufficiently

• Recently: Stochastic Local Search (SLS) for SMT [AAAI’15][DIFTS’15]

◦ lifts SLS from SAT (bit-level) to the theory level (word-level)

◦ without bit-blasting (orthogonal approach)

[AAAI’15] implemented in Z3

−→ mostly simulates bit-level local search
−→ focus on single bit flips

[DIFTS’15] implemented in Boolector

−→ extends [AAAI’15] by introducing an additional propagation-based strategy
−→ exploits word-level structure

−→ both rely on brute force randomization and restarts to achieve completeness
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Introduction

This work

• complete propagation-based local search strategy

−→ relies on propagation of assignments only

−→ without SLS techniques

−→ no brute force randomization, no restarts to achieve completeness

• lifts the concept of backtracing from ATPG to the word-level

◦ new notion: essential inputs

−→ lifts the notion of controlling inputs from the bit-level to the word-level

• provides a formal completeness proof
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Basic Idea
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Down Propagation of Assignments via Backtracing

·
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Word-Level

−→ maximally reduce non-deterministic choices

−→ without sacrificing completeness

• Path Selection

◦ Bit-Level: controlling inputs

◦ Word-Level: essential inputs

−→ select essential input if any, else choose randomly

lifted

• Value Selection

−→ compute consistent or inverse value
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Path Selection
Controlling vs. Essential Inputs

Definition An input to a node is controlling (essential), if the node can not
assume a given target value as long as the value of the input does not change.

Example Bit-Level - controlling inputs
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Value Selection
Consistent vs. Inverse Values
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Definition A value is inverse for an input to
a node, if it produces the target value without
changing the value of other inputs.

Definition A value is consistent, if it allows
the node to assume a target value after changing
the value of other inputs if necessary.

• select inverse over consistent values with higher probability

• if no inverse value exists, select non-inverse consistent value

−→ using only inverse values without further randomization is incomplete!
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Value Selection
Why Consistent Values?

Example v + v + 2[2] = 0[2]
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Completeness
Proof Idea

Goal: Show that our strategy is distance reducing, therefore complete (PAC).

−→ show that there always exists a propagation path from the root to a primary
input that reduces the Hamming Distance (HD(σ, ω)) between σ and ω
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Experimental Evaluation

Benchmark Set: 16436 total

all SMT-LIBv2 compliant QF BV benchmarks
in SMT-LIB with status sat and unknown
except those

• solved through rewriting alone

• proved by Bb to be unsat within 1200
seconds

Boolector Configurations:

• Bit-blasting engine: Bb
winner of QF BV main track of

SMT-COMP’15

• Propagation-based: Pw

• Sequential portfolio: Bb+Pw
Bb with Pw as a preproc. step

Results:

Pw Bb Bb+Pw

time limit 1 sec 1200 sec 1200 sec

# solved 7632 14806 14866 +60

total time 9106 2611840 2513348
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Conclusion

• complete propagation-based local search for SMT

−→ propagation of assignments only

−→ without brute force randomization or restarts

• improves performance

−→ especially within a sequential portfolio

−→ in combination with state-of-the-art bit-blasting (Bb+Pw)

• here: for the theory of quantifier-free bit-vectors (QF BV)

−→ but not limited to QF BV

−→ application to other logics interesting direction for future work
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Appendix

Bb  Runtime [s]

B
b+

P
w

  R
un

tim
e 

[s
]

0.01 0.1 1 10 100 1000

0.
01

0.
1

1
10

10
0

10
00 10x faster (1477)

100x faster (492)
1000x faster (254)

Time limit 1200 seconds (total),
1000 propagations for Pw

Memory limit 7GB

Bb  Runtime [s]
B

b+
P

w
  R

un
tim

e 
[s

]

0.01 0.1 1 10 100 1000

0.
01

0.
1

1
10

10
0

10
00 10x faster (1537)

100x faster (528)
1000x faster (281)

Time limit 1200 seconds (total),
10000 propagations for Pw

Memory limit 7GB



14 / 12

References

H. H. Hoos. On the Run-time Behaviour of Stochastic Local Search
Algorithms for SAT. In Proc. AAAI/IAAI’99,AAAI Press / The MIT Press,
1999.
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