
1 / 12

Precise and Complete Propagation-Based Local Search for
Satisfiability Modulo Theories

Aina Niemetz, Mathias Preiner, and Armin Biere

Institute for Formal Models and Verification (FMV)
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

CAV 2016
July 17 - 23, 2016

Toronto, Ontario, Canada

http://fmv.jku.at/

2 / 12

Introduction

Completeness of local search algorithms

−→ local search in general does not allow to determine unsatisfiability

−→ Probabilistically Approximately Complete (PAC) [AAAI’99]

◦ will find a solution (if there is one)
◦ given unlimited run time

3 / 12

Introduction

Bit-Vectors in Sat Modulo Theories (SMT)

• State-of-the-art: Bit-Blasting

◦ eager reduction to propositional logic (SAT)

◦ relies heavily on rewriting and other techniques to simplify the input formula

−→ efficient in practice, may not scale if input size not reduced sufficiently

• Recently: Stochastic Local Search (SLS) for SMT [AAAI’15][DIFTS’15]

◦ lifts SLS from SAT (bit-level) to the theory level (word-level)

◦ without bit-blasting (orthogonal approach)

[AAAI’15] implemented in Z3

−→ mostly simulates bit-level local search
−→ focus on single bit flips

[DIFTS’15] implemented in Boolector

−→ extends [AAAI’15] by introducing an additional propagation-based strategy
−→ exploits word-level structure

−→ both rely on brute force randomization and restarts to achieve completeness

4 / 12

Introduction

This work

• complete propagation-based local search strategy

−→ relies on propagation of assignments only

−→ without SLS techniques

−→ no brute force randomization, no restarts to achieve completeness

• lifts the concept of backtracing from ATPG to the word-level

◦ new notion: essential inputs

−→ lifts the notion of controlling inputs from the bit-level to the word-level

• provides a formal completeness proof

5 / 12

Basic Idea

r

v1

0 1

σ1

σ1(r) = 0

initial assignment

◦ complete

◦ not satisfying

single-rooted DAG
with root r

force r to assume
target value t = 1

propagate t along
a path towards

the primary inputs
(backtracing)

r

v2

0 1

. . .

σ2

v1 7→x1 v2 7→x2

σ2(r) = 0

r

vk

0 1

σk

σk(r) = 0

r

1

ω

vk 7→xk

ω(r) = 1

satisfying assignment

6 / 12

Down Propagation of Assignments via Backtracing

·

00 10

00 10 11

Word-Level

−→ maximally reduce non-deterministic choices

−→ without sacrificing completeness

• Path Selection

◦ Bit-Level: controlling inputs

◦ Word-Level: essential inputs

−→ select essential input if any, else choose randomly

lifted

• Value Selection

−→ compute consistent or inverse value

7 / 12

Path Selection
Controlling vs. Essential Inputs

Definition An input to a node is controlling (essential), if the node can not
assume a given target value as long as the value of the input does not change.

Example Bit-Level - controlling inputs

¬

0 1

1

¬

1 0

0

∧

0 1

0 1

∧

0 1

1 0

∧

0 1

0 0

∧

1 0

1 1

Example Word-Level - essential inputs

&

10 01

10 11

+

11 10

00 11

·

00 10

00 10

÷

01 10

01 01

mod

00 10

01 01

◦

01 11

0 1

8 / 12

Value Selection
Consistent vs. Inverse Values

·

00 10

00 11 10

inverse value

·

00 10

00 10 10

consistent value

Definition A value is inverse for an input to
a node, if it produces the target value without
changing the value of other inputs.

Definition A value is consistent, if it allows
the node to assume a target value after changing
the value of other inputs if necessary.

• select inverse over consistent values with higher probability

• if no inverse value exists, select non-inverse consistent value

−→ using only inverse values without further randomization is incomplete!

9 / 12

Value Selection
Why Consistent Values?

Example v + v + 2[2] = 0[2]

=

+ 00

+

v 10

0 1

10 00

10 00

00 10

σ1

in
v

in
v

in
v

v 7→ 10

v 7→ 00

=

+ 00

+

v 10

0 1

10 00

00 10

10 00

σ2

in
v

in
v

in
v

=

+ 00

+

v 10

0 1

10 00

10 11

00 01

σ1

in
v

co
n

in
v

ω
v 7→ 01

10 / 12

Completeness
Proof Idea

Goal: Show that our strategy is distance reducing, therefore complete (PAC).

−→ show that there always exists a propagation path from the root to a primary
input that reduces the Hamming Distance (HD(σ, ω)) between σ and ω

r

v1

0 1

σ1

π1

σ1(r) = 0

σ1(v1) 6= ω(v1)

x1 = ω(v1)

r

v2 v1

0 1

. . .

σ2

π2

v1 7→x1 v2 7→x2

σ2(r) = 0

σ2(v1) = ω(v1)

σ2(v2) 6= ω(v2)

x2 = ω(v2)

r

vkv2 v1

0 1

σk

πk

σk (r) = 0

σk (v1) = ω(v1)

σk (v2) = ω(v2)

σk (vk) 6= ω(vk)

xk = ω(vk)

r

vkv2 v1

1

ω

vk 7→xk

ω(r) = 1

∀ n ∈ πi . ∃ x .
x = ω(n) 6= σi (n)

Invariant

HD(σ1, ω) > HD(σ2, ω)
HD(σ2, ω) > HD(σk , ω)

HD(σk , ω) > 0

11 / 12

Experimental Evaluation

Benchmark Set: 16436 total

all SMT-LIBv2 compliant QF BV benchmarks
in SMT-LIB with status sat and unknown
except those

• solved through rewriting alone

• proved by Bb to be unsat within 1200
seconds

Boolector Configurations:

• Bit-blasting engine: Bb
winner of QF BV main track of

SMT-COMP’15

• Propagation-based: Pw

• Sequential portfolio: Bb+Pw
Bb with Pw as a preproc. step

Results:

Pw Bb Bb+Pw

time limit 1 sec 1200 sec 1200 sec

solved 7632 14806 14866 +60

total time 9106 2611840 2513348

Bb runtime [s]

B
b+

P
w

 r
un

tim
e

[s
]

0.01 0.1 1 10 100 1000

0.
01

0.
1

1
10

10
0

10
00 10x faster (1487)

100x faster (585)
1000x faster (270)

Time limit 1200 seconds (total),
1 second for Pw

Memory limit 7GB

12 / 12

Conclusion

• complete propagation-based local search for SMT

−→ propagation of assignments only

−→ without brute force randomization or restarts

• improves performance

−→ especially within a sequential portfolio

−→ in combination with state-of-the-art bit-blasting (Bb+Pw)

• here: for the theory of quantifier-free bit-vectors (QF BV)

−→ but not limited to QF BV

−→ application to other logics interesting direction for future work

13 / 12

Appendix

Bb Runtime [s]

B
b+

P
w

 R
un

tim
e

[s
]

0.01 0.1 1 10 100 1000

0.
01

0.
1

1
10

10
0

10
00 10x faster (1477)

100x faster (492)
1000x faster (254)

Time limit 1200 seconds (total),
1000 propagations for Pw

Memory limit 7GB

Bb Runtime [s]
B

b+
P

w
 R

un
tim

e
[s

]

0.01 0.1 1 10 100 1000

0.
01

0.
1

1
10

10
0

10
00 10x faster (1537)

100x faster (528)
1000x faster (281)

Time limit 1200 seconds (total),
10000 propagations for Pw

Memory limit 7GB

14 / 12

References

H. H. Hoos. On the Run-time Behaviour of Stochastic Local Search
Algorithms for SAT. In Proc. AAAI/IAAI’99,AAAI Press / The MIT Press,
1999.

A. Fröhlich, A. Biere, C. M. Wintersteiger and Y. Hamadi. Stochastic
Local Search for Satisfiability Modulo Theories. In Proc. AAAI’15, AAAI
Press, 2015.

A. Niemetz, M. Preiner, A. Biere and A. Fröhlich. Improving Local Search
For Bit-Vector Logics in SMT with Path Propagation. In Proc. DIFTS’15,
2015.

	Introduction
	Basic Idea
	Backtracing
	Experimental Evaluation
	Conclusion
	Appendix
	References

