
Efficient Model Checking of Applications with

Input/Output

Cyrille Artho1, Boris Zweimüller2, Armin Biere3, Etsuya Shibayama1, and
Shinichi Honiden4

1 Research Center for Information Security (RCIS),
National Inst. of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

2 Computer Systems Institute, ETH Zürich, Switzerland
3 Johannes Kepler University, Linz, Austria

4 National Institute of Informatics, Tokyo, Japan

Abstract. Most non-trivial applications use some form of input/output
(I/O), such as network communication. When model checking such an
application, a simple state space exploration scheme is not applicable, as
the process being model checked would replay I/O operations when re-
visiting a given state. Thus software model checking needs to encapsulate
such operations in a caching layer that is capable of hiding redundant
executions of I/O operations from the environment.

Keywords: Software model checking, network communication, software
testing

1 Introduction

Model checking explores the entire behavior of a system under test (SUT) by
investigating each reachable system state [5] for different thread schedules. Re-
cently, model checking has been applied directly to software [2,4,6,7,13]. However,
conventional software model checking techniques are not applicable to networked
programs. The problem is that state space exploration involves backtracking.
After backtracking, the model checker will execute certain parts of the program
(and thus certain input/output operations) again. However, external processes,
which are not under the control of the model checking engine, cannot be kept in
synchronization with backtracking, causing direct communication between the
SUT and external processes to fail.

Our work proposes a solution to this problem. It covers all input/output
(I/O) operations on streams and is applicable as long as I/O operations of the
SUT always produce the same data stream, regardless of the non-determinism
of the schedule.

This paper is organized as follows: An intuition for our algorithm is given
in Section 2, while Section 3 formalizes our algorithm. Experiments are given in
Section 4. Section 5 describes related work. Future work is outlined in Section 6,
which concludes this paper.

2 Intuition of the Caching Algorithm

Model checking of a multi-threaded program analyzes all non-deterministic deci-
sions in a program. Non-determinism includes all possible interleavings between
threads that can be generated by the thread scheduler. Alternative schedules
are explored by storing the current program state and executing copies of said
program state under different schedules. When model checking a SUT that is
part of a distributed system using multiple processes, external processes are not
backtracked during model checking. Thus, two problems arise:

1. The SUT will re-send data after backtracking. This will interfere with the
correct functionality of an external process.

2. After backtracking, the SUT will expect external input again. However, an
external process does not re-send previously transmitted data.

One possible solution to this problem is to lift the power of a model checker
from process level to operating system (OS) level. This way, any I/O operation
is under control of the model checker [10]. However, this approach suffers from
scalability problems, as the combination of multiple processes yields a very large
state space.

Similar scalability problems arise if one transforms several processes into a
single process by a technique called centralization [11]. With a model for TCP/IP,
networked applications can be model checked, but the approach does not scale
to large systems [1,3].

Our approach differs in that it only executes a single process inside the model
checker, and runs all the other applications externally. Inter-process communi-
cation is supported by intercepting any network traffic in a special cache layer.
This cache layer represents the state of communication between the SUT and
external processes at different points in time. After backtracking to an earlier
program state, data previously received by the SUT is replayed by the cache
when requested again. Data previously sent by the SUT is not sent again over
the network; instead, it is compared to the data contained in the cache. The
underlying assumption is that communication between processes has to be in-
dependent of the thread schedule. Therefore, the order in which I/O operations
occur must be consistent for all possible thread interleavings. If this were not
the case, behavior of the communication resource would be undefined. Whenever
communication proceeds beyond previously cached information, the new data is
both physically transmitted over the network and also added to the cache. The
only exception to this is closing a connection. The cache simulates the effect
of closing communication but allows connections to remain physically open for
subsequent backtracking.

For this approach to work, communication with the environment must be
independent of thread scheduling. Therefore, the order in which I/O operations
occur and data is sent, must be consistent for all possible thread interleavings.
If this were not the case, behavior of the communication resource would be
undefined, as all communication is assumed to be deterministic.

3 Formalization of Stream I/O with Rollback

The following definitions assume a semantics for variables as in computer pro-
grams, allowing for updates of variables and functions using assignment operator
:=.

3.1 Stream abstraction

Programs operate on a set S of data streams (which correspond to streams or
sockets in a given programming language). A communication trace t is a finite
sequence of data: t = 〈t0, . . . , ti〉. Without loss of generality, we assume a uniform
size for all data values used. Let |t| denote the length of a trace and T the set
of all traces. A data stream s 〈t, st〉 consists of a communication trace t and a
stream state st . A stream state st 〈c, p〉 consists of a connection state c where
c ∈ {open , closed}, and the current position p in the associated communication
trace. Function t(s) returns the corresponding trace of a data stream; c(s) and
p(s) return the connection state of a stream state and its position, respectively.
The current stream state for a given stream s is returned by function state : s →
st .

A milestone m consists of the full program state, including current stream
states. Stored stream states are modeled by function mstate. This function re-
turns a function containing stored stream states, mstate : m → state. Let “linear
mode” denote execution when no milestone is active, and “milestone mode” an
execution trace during which at least one milestone has been created (and not yet
removed). In milestone mode, the model checker maintains a set of all milestones
M .

3.2 Execution semantics

Model checking of a program using I/O is performed as follows: In linear mode,
all operations are directly executed, using the functionality provided by the stan-
dard library. The result of the library function, using the correct set of parame-
ters, will be denoted by lib(. . .). In milestone mode, all subsequent changes to
communication traces are recorded in T . Communication traces in T are recorded
globally, outside each milestone.

A communication trace of a given stream, t(s), is consistent w.r.t. a previ-
ously seen communication trace t ∈ T iff, for the current schedule, the same
trace is encountered up to position p(s) of stream s. In our approach, all com-
munication traces have to be consistent with the first seen communication trace.
During any non-deterministic run of a program, there has to be one unique
communication trace t′ such that for all thread schedules, t(s) = t′.

All data sent over a stream has to be equal across all possible program sched-
ules, as the schedule should not change application behavior. Actions extending
the system state beyond a previously cached state extend cache information with
new data. In order to denote this, position p reflects the current position of the

cached trace, which is increased when the current trace exceeds a previously
cached one, as defined below.

Creation of a milestone m requires the model checker to record the current
state of all streams in m, i.e., mstate(m) := state. In milestone mode, execution

behaves as follows:

– Reading data: read(s) returns

{

tp(s)(s) if p(s) ≤ |t(s)|
lib(. . .) otherwise

This operation also sets tp(s) to the value returned and increments p(s) after
that.

– Writing data: write(s, d)

{

checks if tp(s)(s) = d if p(s) ≤ |t(s)|
calls lib(. . .) and sets tp(s) := d otherwise

If tp(s) 6= d, the program trace is inconsistent with a previously checked
schedule, and model checking is aborted. Otherwise, p(s) is incremented
after access to tp(s).

– Opening a stream: open(s)

{

returns an error if c(s) = open

sets c(s) := open otherwise

– Closing a stream: close(s)

{

returns an error if c(s) = closed

sets c(s) := closed otherwise
The error codes returned for open and close correspond to the ones returned
by lib in the same situation.

A rollback operation affects the state of each stream in m, restoring them to their
previous value: state := mstate(m). The cached communication trace t of each
data stream is not reverted. If previously recorded parts of a communication
trace are re-sent by the model checker, they are only accepted if they match the
given history. Changes in t reflect the fact that the current exploration sent more
data to the network than in previously seen subsets of the state space.

When a milestone is removed from M , its associated state information is
discarded. Communication traces are stored and mapped as long as milestones
containing them exist. A stream is physically closed when the last milestone
containing it is removed and c(s) = closed .

3.3 Limitations of replay-based approaches

Any program whose communication fulfills the criteria defined above can be
model checked successfully using our approach. However, there are classes of
programs that are normally considered to be valid, for which our criteria are too
strict. This includes software that logs events to a file or network connection. For
this discussion it is assumed that logging occurs by using methods open, write,
and close. Assume further that actions of each thread can be interleaved with
actions of other threads, which include logging.

If log entries of individual threads depend on thread-local data, they are
independent of each other. In such a case, different correct interleavings of log
entries can occur without violating program correctness. If log data is sent over a
single shared communication channel, occurrence of different message interleav-
ings violates the criterion saying that written data at a specific position must

be equal for all thread interleavings. Such programs can therefore not be model
checked with our approach, unless some messages were treated specially, e.g. by
ignoring the order in which they appear in the trace.

Note that this limitation only applies if several threads share the same connec-
tion. If each thread has its own connection, then the order in which connections
are used may be affected by the schedule, but as long as the content of each
communication trace does not vary across schedules, our consistency criterion is
fulfilled.

On a more general level, applications where communication depends on the
global application state are not applicable to our approach. A chat server that
responds to requests by sending the number of currently connected clients is
an example for this. Communication (the server response) depends on the to-
tal number of clients connected. Assume a chat client is run inside the model
checker, which has two threads connecting to the server. When replaying a par-
tial communication trace of one thread, this communication trace may not match
with a previously seen trace, because the number of clients currently connected
varies depending on the thread schedule. Similar problems appear if communi-
cation content depends on the state of other processes. Such cases can only be
model checked by using application centralization [1,3].

3.4 Limitations of our implementation

Our approach is strictly stream-based. Our initial implementation does not prop-
erly distinguish between communication channels used by different threads, and
therefore does not work on more complex applications. While we have success-
fully run our tool on a simple web server, where each request and response
consists of a single, atomic message, the implementation fails for more complex
protocols. Work is in progress to address this problem.

4 Experiments

It is not obvious how communicating applications can or should be tested.
Clearly, it is necessary to have at least two communicating applications: the
SUT running inside a model checker, and the remote application running inde-
pendently. Even though applications can be truly distributed, running on dif-
ferent hosts, it is necessary to execute them on the same host for expedient
automation of such a test. In order to allow for easier automation, both the
internal and “remote” application are launched by our model checker, JNuke.

Both the SUT and the remote application have to be synchronized for ini-
tiating a test. If this was not the case, it could happen that a client attempts
to contact a server that is not ready yet. Indeed, it is not trivial to avoid such
a scenario, as the state of the external application cannot be supervised or in-
fluenced by the model checker. There are two ways to prevent premature client
startup:

1. Extra control code could be added to the client, ensuring that the server is
ready. For instance, the client could retry a communication attempt in the
event of failure.

2. Starting the client is delayed after starting the server. This allows the server
to initialize itself and be ready for communication.

The second approach is less reliable, but more practical, as it does not require
modification of the SUT. Experiments with this approach worked quite reliably
under different settings. Reliability could be further improved by using operating
system utilities to supervise system calls. Such tools include trace, strace, and
truss [8]. Unfortunately, it is not possible to access them in a uniform manner
from inside an application on different platforms.

Initial experiments tested the performance of our I/O layer with no model
checking enabled (linear execution). These tests were run on two Pentium 4
computers with a clock frequency of 1.3 GHz and 512 MB of RAM. Table 1
shows that our implementation is not yet quite as fast as the one in Sun’s VM
but delivers a comparable performance for sending larger bursts of data (more
than 1 KB per call). For experiments, 100 MB were transmitted. User time (the
time spent while executing bytecode and native methods in the VM) and total
time (real time) were measured. The difference indicates the time needed to
execute the system calls of the operating system.

Table 1. Performance of network I/O when transmitting 100 MB.

Bytes per read/write operation Sun’s VM [s] JNuke VM [s]

User Total User Total

100 2.3 8.7 35.1 58.1

1,000 0.5 8.7 11.7 19.2

10,000 0.4 8.7 8.9 13.9

We have used the same approach to test application behavior when the target
application runs in model checking mode, communicating with external appli-
cations. Implementation problems with disambiguating streams across multiple
threads have lead to failures for sample applications that involve more than a
single message per channel. Work in progress addresses these problems.

5 Related Work

Software model checkers [2,4,6,7,13] store the full program state (or differences
to a previously stored state) for backtracking. They are typically implemented as
explicit-state model checkers. Milestone creation and rollback operations occur
many times during state space exploration. This causes operations to be executed
several times when a set of schedules is explored. Such exploration does not treat
communication behavior accurately, as described in this paper. One solution is

to model I/O operations as open operations. This abstraction is elegant but
generates many spurious behaviors [4,7].

A more general solution to this problem is to lift the power of a model checker
from process level to OS level. This way, the effect of an I/O operation is still vis-
ible inside the model checker. An existing system that indeed stores and restores
full OS states is based on user-mode Linux [10]. That model checker uses the
GNU debugger to store states and intercept system calls. The effects of system
calls are modeled by hand, but applications can be model checked together with-
out modifying the application code. In that approach, the combined state space
of all processes is explored. Our approach analyzes a single process at a time
inside a model checker, while running other processes normally. Our approach is
therefore more scalable but requires programs to fulfill certain restrictions.

Other virtual machines with such extended replay capabilities have existed
before. Initial implementations replayed executions through checkpointing and
logging but could not handle system calls [14]. More recent implementations can
replay system calls without executing them twice by storing the entire state, in-
cluding processor registers, before and after such a call [9,12]. They are intended
for manual use in conjunction with a debugger, in order to replay one sequence
of events. Therefore, they do not allow for systematic state space exploration
of a program, which explores a set of states. Furthermore, they use a different
approach, intercepting communication at device level, where the network device
itself is wrapped. We intercept communication at system call level.

Conventional software model checkers analyze a single process. The results
of communication lie outside the scope of such model checkers. Therefore, they
cannot be used to model check multi-process applications. One way to solve
this problem is to centralize a distributed application, i.e., to transform pro-
cesses into threads [11]. This allows several processes to run in the same model
checker, but does not solve the problem of modeling inter-process communication
(input/output). Recent work modeled network communication in the centralized
model where all processes are executed inside the model checker [1,3].

Centralization model checks multiple communicating processes. However, it
may not be possible to execute all processes inside one model checker. To our
knowledge, our work is the first approach that allows I/O operations to be car-
ried out by a model checker while still limiting the scope of the model checker
to a single process. Furthermore, it even allows model checking of applications
where external processes are not running on a platform that the model checkers
supports. For example, a server may be written in Java, but clients may be writ-
ten in a different programming language. While clients cannot run in the model
checker VM of JNuke, the server can still be model checked.

6 Conclusions and Future Work

With traditional approaches for model checking software, input/output opera-
tions had to be removed by abstraction. Directly resetting program states and
executing different branches of a non-deterministic decision is not applicable for

communication, as it interacts with the environment of the program and external
applications.

In order to solve this problem, a special rollback semantics for stream-based
I/O was defined, which includes network communication. If program behavior
is independent of the execution schedule, such a program can be model checked
using our caching layer semantics. For protocols that do not require repeated
interaction, this semantics was successfully implemented in the JNuke model
checking engine.

Future work includes possible relaxations of the completeness criteria defined,
regarding the order of I/O operations. Specifically, certain interleaved actions
should be allowed, such as log entries.

References

1. C. Artho and P. Garoche. Accurate centralization for applying model checking on
networked applications. In Proc. 21st Int’l Conf. on Automated Software Engineer-
ing (ASE 2006), Tokyo, Japan, 2006.

2. C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller.
JNuke: Efficient Dynamic Analysis for Java. In R. Alur and D. Peled, editors,
Proc. CAV ’04, Boston, USA, 2004. Springer.

3. C. Artho, C. Sommer, and S. Honiden. Model checking networked programs in
the presence of transmission failures. In Proc. 1st Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering (TASE 2007), Shanghai, China, 2007.

4. T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions for
Model Checking C Programs. In Proc. TACAS’01: Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, Italy, 2001.

5. E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
6. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.

Bandera: Extracting finite-state models from Java source code. In Proc. 22nd
Intl. Conf. on Software Engineering (ICSE ’00), Ireland, 2000. ACM Press.

7. P. Godefroid. Model checking for programming languages using VeriSoft. In
Proc. 24th ACM Symposium on Principles of Programming Languages (POPL ’97),
pages 174–186, France, 1997.

8. I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A secure environment for
untrusted helper applications. In Proc. 6th Usenix Security Symposium, San Jose,
USA, 1996.

9. S. King, G. Dunlap, and P. Chen. Debugging operating systems with time-traveling
virtual machines. In Proc. USENIX 2005 Annual Technical Conference, pages 1–15,
Anaheim, USA, 2005.

10. Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya, and K. Kato. Model checking
of multi-process applications using SBUML and GDB. In Proc. Workshop on
Dependable Software: Tools and Methods, pages 215–220, Yokohama, Japan, 2005.

11. S. Stoller and Y. Liu. Transformations for model checking distributed Java pro-
grams. In Proc. SPIN 2001, volume 2057 of LNCS, pages 192–199. Springer, 2001.

12. Virtutech. Simics Hindsight, 2005.
http://www.virtutech.se/products/simics-hindsight.html.

13. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2), April 2003.

14. M. Zelkowitz. Reversible execution. Commun. ACM, 16(9):566, 1973.

