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Tomáš Balyoa, Armin Biereb, Markus Isera, Carsten Sinza

a Karlsruhe Institute of Technology (KIT)
Department for Informatics

Building 50.34, Am Fasanengarten 5, 76131 Karlsruhe, Germany
{ tomas. balyo,markus. iser,carsten. sinz}@ kit. edu

b Johannes Kepler University Linz (JKU)
Faculty of Engineering and Natural Sciences

Altenbergerstr. 69, 4040 Linz, Austria
biere@ jku. at

Abstract

Boolean satisfiability (SAT) solving is one of the most competitive research areas
of theoretical computer science. The performance of state-of-the-art SAT solvers
has been continuously improving in the last decades and has reached a level
where SAT solvers can be employed to solve real world problems in fields such as
hardware and software verification, automated planning and many others. One
of the important driving forces of this progress are the yearly organized (since
2002) SAT competitions. In this paper we describe the 2015 SAT Race that
featured the traditional sequential and parallel tracks (with 64 core computers)
and introduced the Incremental Library Track, which is particularly interesting
for developers of SAT based applications. We describe the 2015 SAT Race and
provide a detailed analysis of its results.
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1. Introduction

One of the most studied problems of theoretical computer science is the
Boolean satisfiability (SAT) problem. SAT solving has many practical ap-
plications, and SAT solvers are used in the background as high performance
reasoning engines in several A.I. applications such as automated planning and
scheduling [1], formal verification [2] or automated theorem proving [3]. Despite
the fact, that SAT is NP-complete [4] the performance of state-of-the-art SAT
solvers has increased dramatically in the last decades thanks to the invention of
advanced heuristics [5], preprocessing and inprocessing techniques [6] and data
structures that allow efficient implementation of search space pruning [5].
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One of the ways to keep up the driving force in improving SAT solvers is the
organization of SAT competitions. The first SAT competition was organized in
1992 [7] followed by the second in 1993 [8] and the third in 1996. Since 2002 a
SAT competition – sometimes under the names SAT Race and SAT Challenge
– is organized every year and is associated with the SAT conference1.

SAT Races – the first being organized in 2006 – put a strong emphasis on
application benchmarks and are generally on a smaller scale (fewer benchmarks,
smaller time limits) than SAT Competitions, which also include tracks for ran-
dom and “crafted” formulas, the latter being purposefully built to challenge
current SAT algorithms. A more detailed overview of the history of the SAT
competitions can be found in [9].

Even though sharing the same motivation, the SAT Race organized in 2015
was different from previous competitions in several aspects.

• Five runs were performed for each benchmark/solver pair in the Main
Track (in previous competitions only one).

• We used a higher number of cores (64) in the Parallel Track than previous
competitions (16–32).2

• For the first time an Incremental Library Track was organized and a new
standard interface for incremental SAT solving (IPASIR) was introduced.

This paper describes the 2015 SAT Race, its organizational details and re-
sults. Large part of the paper is devoted to the Incremental Track and the
detailed description of the proposed incremental interface – IPASIR. We hope
that IPASIR (or its extension) becomes a standard interface for incremental
SAT solver implementations.

2. Preliminaries

A Boolean variable is a variable with two possible values True and False.
By a literal of a Boolean variable x we mean either x or x (positive or negative
literal). A clause is a disjunction (OR) of literals. A conjunctive normal form
(CNF) formula is a conjunction (AND) of clauses. A clause can be also inter-
preted as a set of literals and a formula as a set of clauses. A truth assignment φ
of a formula F assigns a truth value to its variables. The assignment φ satisfies
a positive (negative) literal if it assigns the value True (False) to its variable and
φ satisfies a clause if it satisfies at least one of its literals. Finally, φ satisfies a
CNF formula if it satisfies all of its clauses. A formula F is said to be satisfiable
if there is a truth assignment φ that satisfies F . Such an assignment is called
a satisfying assignment. The satisfiability problem (SAT) is to find a satisfying
assignment of a given CNF formula or determine that it is unsatisfiable.

1Full name: International Conference on Theory and Applications of Satisfiability Testing
2However, 32 of the cores are due to hyper-threading.
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Most current complete state-of-the-art SAT solvers are based on the conflict-
driven clause learning (CDCL) algorithm [10]. For a detailed description of
CDCL refer to [11].

3. Competition Overview

The 2015 SAT Race featured three tracks. Two traditional tracks – the
Sequential and Parallel Tracks and the Incremental Library Track, which had
its debut. An overview of all participants and their solvers is presented in
Table 1. Each participant was allowed to submit at most two solvers (or two
versions of one solver) to each track. Except for the Incremental Library Track
the submission of source code was optional. The following sections describe
organizational aspects of the tracks.

4. Main Track

The Main Track is the most popular track of each SAT competition. In total
28 solvers (solver versions) developed by 18 different groups participated in the
2015 SAT Race. Except for CBPeneLoPe each solver had at least one version
participating in the Main Track. See Table 1 for a complete list of solvers and
their authors.

In the remainder of the section we describe the benchmarks submitted for the
competition, the method we used to select the final set of benchmark problems
and how the results were evaluated.

4.1. Submitted Benchmarks

In the following text we briefly describe the 6 benchmark families submitted
for 2015 SAT Race. All of them are – in the spirit of the SAT Races – con-
sidered application or industrial benchmarks. The detailed descriptions of the
benchmarks can be found on the website of the SAT Race3.

Factorization by Joe Bebel. These satisfiable instances encode the factorization
of the products of pairs of large prime numbers. The generator is based on
Karatsuba multiplication.

Pseudo-Industrial Random by Jesús Giráldez-Cru and Jordi Levy. The genera-
tor is using the Community Attachment model to create random instances with
high modularity (a property characteristic for “real-world” problems).

Modulo Game Solving by Tobias Sebastian Hahn, Norbert Manthey and Tobias
Philipp. The Modulo game is a combinatorial puzzle where tiles are to be placed
on a field such that the sum of all overlaying values of a cell sums up to a multiple
of a predefined value.

3http://baldur.iti.kit.edu/sat-race-2015/index.php?cat=downloads
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Solvers Authors M P I

Ratselfax Jan Bruns 1 – –

CryptoMiniSat Mate Soos, Marius Lindauer 2 2 2

multi-SAT Sajjad Siddiqui, Jinbo Huang 2 – –

OR-Tools Frederic Didier 1 – –

CBPeneLoPe Tomohiro Sonobe – 1 –

COMiniSatPS Chanseok Oh 2 – 2

GlueMiniSat
Hidemoto Nabeshima, Koji

Iwanuma, Katsumi Inoue
2 – –

Riss
Lucas Kahlert, Franziska Krüger

Norbert Manthey, Aaron Stephan
2 2 2

Glucose Gilles Audemard, Laurent Simon 2 2 1

(Para)Glueminisat Seongsoo Moon, Inaba Mary 1 1 –

abcdSat, MiniSAT BCD Jingchao Chen 2 – –

(Lin|Plin|Treen)geling Armin Biere 2 2 –

satUZK Alexander van der Grinten 1 1 1

Glucose Comm. Switch. Hitoshi Togasaki 1 – –

Nigma Chuan Jiang, Gianfranco Ciardo 2 – –

BreakIDGlucose Jo Devriendt, Bart Bogaerts 1 – –

DCCASatToRiss
Chuan Luo, Shaowei Cai,

Wei Wu, Kaile Su
1 – –

CCAglucose2 Shaowei Cai, Chuan Luo, Kaile Su 1 – –

Glucose nbSat Chu Min Li, Fan Xiao, Ruchu XU 2 – –

Table 1: The list of solvers participating in the 2015 Sat Race. The columns labeled M, P
and I indicate the number of solvers (solver versions) submitted to the Main, Parallel and
Incremental Tracks respectively.
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Single Track Gray Codes by Norbert Manthey. These instances allow the con-
struction of (Single Track) Gray codes by searching a solution to a specification.

Multi-Robot Path Planning by Pavel Surynek. The instances model the question
whether a set of robots can find paths in a grid with obstacles in a given number
of time steps.

Verification of Cryptographic Algorithms by Aaron Tomb. These benchmarks
are derived from the problem of comparing reference and production implemen-
tations of cryptographic algorithms.

4.2. Benchmark Selection

Since the number of available benchmark problems for SAT solving is huge
while computational resources are limited it is necessary to somehow select
a subset of the instances to be used for a competition. A good competition
benchmark collection should have the following properties.

• The instances are not too easy – Comparing solvers on trivial instances
that any solver can solve is not interesting and can be disadvantageous for
complex solvers using advanced and novel techniques.

• The instances are not too hard – Instances that none of the participating
solvers can solve in the given time limit do not provide any information
about the relative performance of the competing solvers.

• The selection is unbiased and fair – A selection can be favoring a certain
solver or group of solvers and/or being disadvantageous for others.

• Many new instances are included – Using the same (or very similar) in-
stances every year could result in solvers being over-optimized for compe-
tition benchmarks and not performing well on other problems of interest.

We used the following selection algorithm to select 300 instances for the
Main (and 100 for the Parallel) Track from among the newly submitted bench-
marks and the benchmarks used in the last years (2014) SAT competition. The
selection method is similar to the ones used in the previous competitions.

• First we randomly selected 3 out of the top 7 solvers from the previous
competition (participants of the Sequential and Application SAT+UNSAT
Tracks of the SAT Competition 2014).

• We ran the selected solvers on all the benchmarks (newly submitted and
2014 SAT Competition) with a 1 hour time limit.

• Let us define the hardness of an instance as the total time the three solvers
spent on it (maximum is 3 hours in the case that none of the solvers could
solve the instance within the time limit). Using the hardness value, we
randomly selected 300 instances based on the normal distribution with
mean 1.5 and standard deviation 1.
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• Those 300 instances were used for the Main Track and the hardest 100
among them for the Parallel Track.

The final selection contained 167 new and 133 old benchmark problems.
Therefore the goal of including many new benchmarks was satisfied. As for the
fairness, this selection method is not ideal. Its main drawback is that we are us-
ing the previous winning solvers to select new benchmarks. Therefore instances
that are too hard for them are not selected which can be disadvantageous for
other (innovative) solvers that might be able to solve them. On the other hand,
benchmarks that are easy for the previous winners but hard for others are also
omitted resulting in a disadvantage for the previous winners. Designing a fair
benchmark selection method is a complex issue which should be studied further
and improved in the following competitions.

4.3. Evaluation and Prizes

In this year’s SAT Race we did five runs for each solver benchmark pair4.
The solvers were compared based on the average number of problem instances
solved within the time limit of one hour in the five runs.

The evaluation was performed using the StarExec cross community logic
solving service developed at the University of Iowa5 [12]. StarExec consists of
192 nodes with Intel(R) Xeon(R) CPU E5-2609 processors, having four com-
pute cores (no hyper-threading) running at 2.40GHz (2393 MHZ) and 256GB
of main memory using the Red Hat Enterprise Linux6 operating system. The
participants uploaded their solvers in the form of binary executables using a
web interface, therefore the compilation was performed by the participants.
Our experience with StarExec was very positive, it is a very convenient tool for
organizing a SAT (or other) competitions.

Three prizes were given out to the top three solvers (solving the highest
number of instances) and a fourth (special) prize to the “most innovative” solver.
The special prize was selected by a ranking method that uses the number of
solved instances not solved by the top three solvers of the track. Each solver
received for each instance it solved:

• 4 points if none of the top three solvers solved the instance.

• 2 points if exactly one of the top three solvers solved the instance.

• 1 point if exactly two of the top three solvers solved the instance.

• 0 points if all the top three solvers solved the instance.

The special prize was awarded to the solver receiving the highest number of
points.

4Initially we planned only one run, but since the solvers performed very well and the
measurements were finished much sooner than expected we were able to execute four extra
runs. In hindsight, it might have been better to increase the number of benchmarks instead.

5https://www.starexec.org/starexec/public/about.jsp
6Server version release 7.2

6



5. Parallel Track

Parallel computing is a hot research topic in computer science, especially
since parallel computers became ubiquitous.

However, there are inherent limitations to the efficient parallelizability of
resolution-based SAT procedures. This is in part due to the structure of resolu-
tion proofs [13], but also due to the fact that most sequential SAT solvers spend
80% of their runtime by doing unit propagation [14] which is a P-complete prob-
lem [15]. Still, modern parallel solvers such as ManySat [16] or Plingeling [17]
often achieve superlinear speedups for many benchmarks.

5.1. Portfolios

A common way of designing a parallel SAT solver is the so called portfolio
approach. A portfolio is a collection of SAT solvers (different SAT solvers or
different versions of the same SAT solver). The solvers are ran on the same
problem in parallel until one of them finds a solution. The solvers can addi-
tionally exchange useful information such as learned clauses or variable activity
statistics. All current state-of-the-art parallel SAT solvers are based on this
approach (judging by the results of recent SAT competitions).

Nevertheless, in the context of SAT competitions the portfolio approach is
somewhat problematic. As demonstrated by the solver PPfolio in the 2011 SAT
Competition, it is possible to win several tracks of the competition by just taking
the best solvers from the previous competition and trivially combine them using
a shell script into a portfolio. The author of PPfolio argues that such a simple
portfolio solver can serve as approximating the “virtual best solver” (see Sec. 7).
But he also ”shamelessly claims” [18] that “it’s probably the laziest and most
stupid solver ever written” which “does not even parse the CNF” and “knows
nothing about the clauses”. A portfolio solver winning the competition can
be very demotivating for the developers of core solvers since someone else is
winning with their solver.7

To avoid this situation in the 2012 SAT Challenge and 2013 SAT Compe-
tition a special track was created for portfolio solvers, which were not allowed
to enter any of the other tracks. In the 2014 Sat Competition portfolio solvers
were not allowed to participate in any of the tracks. In our competition we took
a different approach. Portfolio SAT solvers were allowed to participate in each
track provided that the authors of the portfolio had consulted all the authors
of the used core solvers and received permission for such usage.

5.2. Benchmarks and Evaluation

The hardest 100 instances of the 300 instances selected for the Main Track
(see Section 4.2) were used as benchmarks for the Parallel Track. The hardness

7It should be noted that non-portfolio solvers are often derived from existing solvers, too.
However, they typically give reference to the original solver, e.g., by having a name derived
from the original solver’s name. Moreover, some competitions included a “Hack Track”, in
which small modifications to an existing solver can be submitted.
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is defined in Section 4.2. Eleven solvers (solver versions) participated in the
Parallel Track. The list of participating solvers is displayed in Table 1.

Due to limited computation resources only one evaluation run was performed
for each solver-benchmark pair. The wall-clock time (as opposed to CPU time)
was measured for each run. The evaluation was performed on a computer with
four octa-core Intel Xeon E5-4640 (2.4GHz) processors (in total 32 physical and
32 hyper-threading cores) with 512 GB of main memory. This is the highest
level of parallelism used in the history of SAT competitions8. It should be noted,
though, that the virtual cores provided by hyper-threading are not equivalent
to physical cores, as they benefit only from wait states of a physical core to
execute instructions of another thread. In fact, some solvers decided to use only
32 worker threads. We expect that for those solvers the authors experimentally
determined that they do not profit from the additional virtual cores. Solvers
using only 32 worker threads in the 2015 SAT Race were Plingeling and one
version of Glucose (glucose-default). For the solvers pcasso-bb and pcasso it
could not be determined how many worker threads they employed.

Three prizes were awarded in the Parallel Track based on the number of
solved instances in the time limit of one hour per instance. The actual runtimes
were not considered for the ranking.

6. Incremental Library Track

In the 2015 SAT Race we introduced a new track for solvers supporting
interactive incremental SAT solving – the Incremental Library Track (ILT).
The ILT differs significantly from all the other (traditional) tracks of the SAT
competitions in the following aspects:

• In the traditional tracks we evaluate command line applications which
take text files as input and produce text output. In the ILT we evaluate
software libraries and communicate with them via function calls.

• The benchmarks for the traditional tracks are text files specifying a CNF
formula. A benchmark for the ILT is an application (and inputs for it)
that uses SAT solvers interactively.

In this section we first describe the motivation for the ILT and then give
the detailed specification of the application program interface (API) that we
designed and used to evaluate the incremental SAT solvers. The section is
concluded by describing the benchmark programs used in the ILT (which also
serve as demonstration of the API usage) and discussing the evaluation process
of the ILT participants.

8The second place goes to the 2011 SAT Competition with 32 (physical) cores and the
third to the 2009 SAT Competition with 16 cores.
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6.1. Motivation

Many applications of SAT are based on solving a sequence of similar SAT
formulas. The next formula in a sequence is usually generated by adding/re-
moving a few clauses or variables to/from the previous formula. It is possible to
solve such problems by solving the incrementally generated instances indepen-
dently, however this might be very inefficient compared to an incremental SAT
solver, which can reuse knowledge acquired while solving the previous instances
(for example the learned clauses and variable activity statistics).

Most of the current state-of-the-art SAT solvers support incremental SAT
solving, however each has its own interface, which differs from the others. That
makes comparing them difficult. We believe it would be beneficial to have a
single universal interface implemented by all the solvers supporting incremental
SAT solving. Users who need to use incremental SAT solvers in their applica-
tions would strongly benefit from such a unified interface. Applications could
be written without selecting a concrete incremental SAT solver in advance and
migrating to a different solver would be just a matter of updating linking pa-
rameters.

6.2. The Proposed Interface - IPASIR

The name of the interface proposed for the 2015 SAT Race is IPASIR, which
is the reversed acronym for “Re-entrant Incremental Satisfiability Application
Program Interface9”

The interface was designed to have the following properties:

• Easy to implement by SAT solver developers.

• Easy to use, so that anyone can easily build SAT based applications (for
industrial, scientific, educational or other purposes).

• Universal and powerful, i.e., usable in a broad range of applications.

The interface consists of nine C language functions which are inspired by
the incremental interfaces of PicoSAT and Lingeling. The declarations of the
functions along with short descriptions are displayed in Figure 1. The detailed
specifications are given below.

The nine functions of the IPASIR interface can be split into two groups.
The first group (service functions) contains four functions: ipasir signature,
ipasir init, ipasir release and ipasir set terminate.

ipasir signature. The function ipasir signature is used to identify the solver
implementing the interface. The SAT solver is expected to return a C-style
string containing its name and version.

9With an additional space and question mark it can also serve as an expression for offering
a brewed beverage to a gentleman.
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// Get s o l v e r name and v e r s i o n
const char∗ i p a s i r s i g n a t u r e ( ) ;
// I n i t i a l i z e a s o l v e r i n s t a n c e and re turn a p o i n t e r to i t
void∗ i p a s i r i n i t ( ) ;
// Destroy the s o l v e r i n s t a n c e
void i p a s i r r e l e a s e ( void∗ s o l v e r ) ;
// Set a c a l l b a c k f u n c t i o n f o r a b o r t i n g s o l v i n g
void i p a s i r s e t t e r m i n a t e ( void∗ so lve r , void∗ s ta te ,

int (∗ terminate ) ( void∗ s t a t e ) ) ;
// Add a l i t e r a l or f i n a l i z e c l a u s e
void i p a s i r a d d ( void∗ so lve r , int l i t o r z e r o ) ;
// Assume a l i t e r a l f o r the next s o l v e c a l l
void i pa s i r a s sume ( void∗ so lve r , int l i t ) ;
// So lve the formula
int i p a s i r s o l v e ( void∗ s o l v e r ) ;
// R e t r i e v e a v a r i a b l e s t r u t h v a l u e (SAT case )
int i p a s i r v a l ( void∗ so lve r , int l i t ) ;
// Check f o r a f a i l e d assumption (UNSAT case )
int i p a s i r f a i l e d ( void∗ so lve r , int l i t ) ;

Figure 1: Declarations of the nine functions in the IPASIR interface.

ipasir init. The purpose of the ipasir init function is to create a new instance
of the solver and return a pointer to it. This pointer is used as the first argument
in all of the remaining seven functions.

ipasir release. To destroy a solver, i.e., release all its resources and deallocate
the memory it used we provide the ipasir release function. The solver pointer
cannot be used for any purposes after calling this function.

ipasir set terminate. The ipasir set terminate function can be used to spec-
ify a callback function which indicates whether the search should be aborted.
The signature of the callback function is ”int terminate(void* state)”. It
returns a non-zero value if the search is to be terminated. The solver is required
to call this function periodically during the search process and abort it as soon
as possible when a non-zero value is returned. The value of the parameter state
in the calls of the callback function is identical to value received as the second
argument of ipasir set terminate.

The second group of functions is used for SAT solving and contains the
remaining five functions of the IPASIR interface. To better understand the
semantics of these functions we define four states of the solver – UNKNOWN,
SOLVING, SAT and UNSAT. After the ipasir init call the solver is in the
UNKNOWN state and is ready to receive input in the form of clauses and
assumptions (see below). When the ipasir solve function is called the state
of the solver changes into SOLVING. When the search process is completed the
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Figure 2: The four possible states of a SAT solver according to the IPASIR interface and the
possible transitions between them. Solid edge transitions are explicitly associated to function
calls while dashed transitions happen implicitly based on the result of the search process.

state changes to SAT or UNSAT depending on the result. The search might also
get aborted (via returning a non-zero value in the callback function), then the
state of the solver changes back to UNKNOWN. Figure 2 contains a diagram
with the states and the allowed transitions between them. The label of each
edge contains the names of the functions that can achieve the given transition.

ipasir add. The formula to be solved is specified using the ipasir add function.
The clauses are added one literal at a time. Calling the ipasir add function
with a non-zero second argument adds a literal (specified by the argument) to
the current clause. If the argument is zero, then the current clause is finalized
and the next ipasir add function call will initialize a new clause and add one
literal to it. Literals are encoded as (non-zero) integers as in the DIMACS
formats. They have to be smaller or equal to INT MAX and strictly larger than
INT MIN (to avoid negation overflow). This applies to all the literal arguments
in API functions. For example adding the clauses (x1∨¬x3) and (x2) is achieved
by the following sequence of calls: ipasir add(s, 1), ipasir add(s, -3),
ipasir add(s, 0), ipasir add(s, 2), ipasir add(s, 0). Clauses added this
way cannot be removed. The addition of removable clauses can be simulated
using activation literals and assumptions10. The ipasir add function may be
called in any of the UNKNOWN, SAT and UNSAT states and it always results
in the UNKNOWN state.

10Let C1, . . . , Cm be clauses we wish to add and possibly remove later. Let a1, . . . , am be a
set of fresh (not used elsewhere) Boolean variables. We will add (C1∨a1), . . . , (Cm∨am) and
then run the solver with the assumptions ¬a1, . . . ,¬am. Removing any of the assumptions
effectively removes the corresponding clause.
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ipasir assume. Assumptions in incremental SAT solving can be viewed as tem-
porary unit clauses. Assumptions can be specified by calling the ipasir assume

function, which takes literals encoded as integers in the same way as the add
function. All the added assumptions are valid only for the next ipasir solve

call. When the ipasir solve call is finished all the assumptions are removed
and a new set of assumptions can be specified. The removal of assumptions
happens regardless of whether the search was aborted or completed. Similarly
to ipasir add the ipasir assume function may be called in the UNKNOWN,
SAT and UNSAT states and always results in the UNKNOWN state.

ipasir solve. The most important function of the interface is ipasir solve.
It is used to solve the formula specified using the ipasir add calls under the
assumptions given by the ipasir assume calls. When called, the solver changes
to the SOLVING state until the formula is solved or the search is interrupted. If
a satisfying assignment is found it returns the value 10 and the state of the solver
is changed to SAT. In the case, that the problem is proven to be unsatisfiable,
the function returns the value 20 and changes the state to UNSAT. If the search
process was interrupted the return value is 0 and the solver returns to the
UNKNOWN state. In each of the three cases the assumptions added before the
ipasir solve call are erased.

ipasir val. In the case that ipasir solve found a satisfying assignment and
therefore the solver is in the SAT state we can call the ipasir val function to re-
trieve the value of a variable (or literal). The return value of ipasir val(s,lit)

is +lit if lit is true/satisfied under the solution and −lit otherwise. The return
value might be zero in the case that the truth value of the given variable (literal)
is not assigned in the satisfying partial truth assignment. By calling ipasir val

for each variable we can retrieve the complete satisfying assignment. A call to
ipasir add or ipasir assume invalidates the current solution and changes the
state of the solver to UNKNOWN therefore calling ipasir val is not allowed
anymore.

ipasir failed. If a formula is determined to be unsatisfiable under certain as-
sumptions it is of interest to know which of the assumptions were actually used
to prove the unsatisfiability. The conjunction of all used assumptions is already
sufficient to prove unsatisfiability of the formula (see, e.g., [19]). This informa-
tion can be retrieved by calling the ipasir failed function using the assump-
tion in question as the argument. The return value is 1 if the assumption was
used and 0 otherwise. Analogously to ipasir val the function ipasir failed

may only be called in the UNSAT state, i.e., between the call of ipasir solve

(which returned 20) and the first following call of ipasir add or ipasir assume.
The reader might wonder why is it allowed to call ipasir solve from the

SAT and UNSAT states. In the case of SAT it makes, indeed, no sense while
the formula cannot change its satisfiability status without new input in the
form of clauses or new assumptions from the user. However, in the case of
UNSAT the unsatisfiability might be caused by the assumptions. Since after
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each ipasir solve call the assumptions are cleared the input has changed in a
way that the formula might be satisfiable now.

We have described all the nine functions of the IPASIR interface. Examples
of IPASIR usage can be found in Section 6.4 where we describe the benchmark
applications used in the ILT.

6.3. Participation

For the participants of the ILT we prepared a package (ipasir.zip11) con-
taining three SAT solvers (MiniSat, PicoSat and Sat4j) adapted to IPASIR and
four simple IPASIR based applications for demonstration and benchmarking
purposes. One of the adapted SAT solvers included in the package was the Java
SAT solver Sat4j. We included Sat4j to demonstrate that although IPASIR is
specified as a set of C functions it is possible to implement it in other languages
than C/C++. The package also contains a simple Java binding and Java appli-
cation to show how any IPASIR compatible SAT solver can be used in a Java
application. The description of the example applications contained in the ipasir
package, which were later also used as benchmark applications, can be found in
the next subsection.

In order to participate in the ILT the participants were required to implement
all nine functions (see Figure 1) of IPASIR following the specifications given in
the previous section. The participants were asked to prepare a makefile that
compiles their solver and generates a linux static library (.a file – object code
archive file). Detailed instructions and examples on how to do this were included
in the ipasir.zip package.

Eight solvers (solver versions) were submitted for the ILT, which we consider
a very nice number considering that the ILT was organized for the first time.
The list of participating solvers can be seen in Table 1.

6.4. Benchmarks

This section has two purposes. One is to describe the benchmark applications
used in the ILT and the other is to demonstrate the usage of the IPASIR interface
on simple examples.

In general, the benchmarks for the ILT consist of a command line application
that solves some kind of a problem and a set of inputs for it. An example is a
MaxSAT solver and a collection of MaxSAT instances.

We start with a very detailed description of the first ILT benchmark appli-
cation – Essentials. The remaining three benchmarks are described only briefly.
The source codes of all the applications can be found in the ipasir.zip package
on the website of the 2015 SAT Race [20].

11http://baldur.iti.kit.edu/sat-race-2015/downloads/ipasir.zip
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1 int pdr ( int var ) { return 2∗ var ; }
2 int ndr ( int var ) { return 2∗ var − 1 ; }
3 int dr ( int l i t ) { return l i t > 0 ? pdr ( l i t ) : ndr(− l i t ) ; }
4
5 void E s s e n t i a l s ( Formula f ) {
6 void∗ s = i p a s i r i n i t ( ) ;
7 for ( int c = 0 ; c < f . c l a u s e s ; c++) {
8 for ( int k = 0 ; k < f . c l a u s e [ c ] . s i z e ; k++) {
9 i p a s i r a d d ( s , dr ( f . c l a u s e [ c ] . l i t [ k ] ) ) ;

10 }
11 i p a s i r a d d ( s , 0 ) ;
12 }
13 for ( int v = 1 ; v <= f . v a r i a b l e s ; v++) {
14 i p a s i r a d d ( s , −pdr ( v ) ) ;
15 i p a s i r a d d ( s , −ndr ( v ) ) ;
16 i p a s i r a d d ( s , 0 ) ;
17 }
18 for ( int v = 1 ; v <= f . v a r i a b l e s ; v++) {
19 ipa s i r a s sume ( s , −pdr ( v ) ) ;
20 ipa s i r a s sume ( s , −ndr ( v ) ) ;
21 i f ( i p a s i r s o l v e ( s ) == 20) {
22 p r i n t f ( ”%d i s E s s e n t i a l \n” , v ) ;
23 } else {
24 p r i n t f ( ”%d i s not E s s e n t i a l \n” , v ) ;
25 }
26 }
27 i p a s i r r e l e a s e ( s ) ;
28 }

Figure 3: Code of the Essentials benchmark application.

6.4.1. Essentials

Essentials is a detector of variables essential for satisfiability. For a satisfiable
formula F and a variable x we say that x is essential for the satisfiability of F
if x has to be assigned to True or False in each (partial) satisfying assignment
of F .

Essentials is based on the so called dual-rail encoding of Boolean formu-
las [21] which works the following way. For each variable x occurring in a
formula F we define two new variables xT and xF . These variables represent
the fact that x is assigned to the value True (xT ) or False (xF ). If both xT
and xF are False then x is unassigned, the case that they are both True is not
allowed which can be expressed via binary clauses of the form (¬xT ∨ ¬xF ).

To construct the dual-rail encoding of a CNF formula F we replace each
positive occurrence of x by xT and each negative occurrence by xF in all the
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clauses of F for each variable x that occurs in F . Additionally we add a binary
clause of the form (¬xT ∨¬xF ) for each variable (see previous paragraph). For
example the dual rail encoding of the formula (x∨¬y∨z)∧(¬x∨¬y)∧(¬z) would
be (xT ∨yF ∨zT )∧ (xF ∨yF )∧ (zF )∧ (¬xT ∨¬xF )∧ (¬yT ∨¬yF )∧ (¬zT ∨¬zF ).

In Figure 3 we present the full code of the main function of the Essentials
application. We assume that the input formula (which is satisfiable) is already
parsed and we receive it as the parameter. The formula is represented as a
struct containing the number of variables and clauses (as integers) and an array
of clauses. Clauses are represented as structs containing the number of literals
and an array of literals represented as integers12.

In the first three lines we have helper functions computing the indices of the
dual rail variables. The function pdr represents the translation of x to xT and
ndr the translation of x to xF . The function dr translates literals by checking
whether they are positive or negative and then calling pdr or ndr respectively.

The solver is initialized on line 6. On lines 7–12 we do the dual-rail encoding
of the original clauses of the formula. On lines 13–17 we add the binary clauses
ensuring that the variables cannot be both True and False at the same time.

The checking of the essentiality property happens on lines 18–26. For each
of the variables we assume that they are not assigned. On line 19 we assume
that the variable is not assigned to True and on 20 that not to False. Then we
check the satisfiability of the formula under these assumptions. If the formula
is unsatisfiable then the variable is essential for satisfiability. Note, that in the
next iteration of the for loop the previous assumptions are removed.

The input of the Essentials application is CNF Boolean formulas – same as
SAT solvers. In the 2015 SAT Race we selected the 50 easiest instances of the
Main Track as benchmarks.

6.4.2. Partial MaxSAT Solver

The benchmark application PMaxSAT is an iterative strengthening based
partial MaxSAT solver. A partial MaxSAT formula consists of two kinds of
clauses – soft and hard. The goal of partial MaxSAT solving is to find a truth
assignment that satisfies all the hard clauses and as many as possible soft clauses
in a given formula.

The pseudo-code of PMaxSAT is displayed in Figure 4. The program returns
the maximum number of soft clauses that can be satisfied while satisfying all
the hard clauses. If the set of hard clauses is unsatisfiable it returns zero.

After the initialization of the solver we add the hard clauses using ipasir add

calls. The next step is to add the soft clauses. We add each soft clause with an
extra variable called an activation variable. The activation variable is unique
for each soft clause and does not appear anywhere in the original formula. Then
we check the satisfiability status of the formula. At this point this is equivalent

12Positive literals are positive integers having the value of the variable, negative literals are
represented as -value of the variable. For example x3 is 3, ¬x7 is −7, variables are numbered
from 1.
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1 int PMaxSAT( PMaxSatFormula f ) {
2 void∗ s = i p a s i r i n i t ( ) ;
3 add−hard−c l a u s e s ( s , f ) ;
4 add−s o f t−c l ause s−with−ac t i va t i on− l i t e r a l s ( s , f ) ;
5 int s a t S o f t s = 0 ;
6 while ( i p a s i r s o l v e ( s ) == 10) {
7 s a t S o f t s = count−sat−s o f t−c l a u s e s ( s , f ) ;
8 add−c a r d i n a l i t y−c o n s t r a i n t ( s , f , s a t S o f t s ) ;
9 }

10 i p a s i r r e l e a s e ( s ) ;
11 return s a t S o f t s ;
12 }

Figure 4: Pseudo-code of the PMaxSAT benchmark application. The program determines
how many soft clauses can be satisfied while satisfying all the hard clauses.

to checking that the hard clauses are satisfiable since all the soft clauses can be
easily satisfied by setting all the activation literals to True. If the formula is sat-
isfiable we count the number of soft clauses that are satisfied by at least one of
their original literals, i.e., not by their activation variable. We save this value as
the best solution so far and try to improve it. We do this by adding a cardinality
constraint which says that the number of activation literals set to True must
be strictly less than the best solution found so far. The cardinality constraint
is translated into CNF and added using ipasir add calls. For this translation
we employ the PBLib Library [22]. After the cardinality constraint is added we
solve the formula again. We repeat the cycle of solving and strengthening as
long as the formula is satisfiable.

The PMaxSAT takes input in the form of WCNF files which is the standard
input of MaxSAT solvers. For the ILT we used the 568 PMaxSat problems from
the Industrial Track of the 2014 International MaxSat Competition.

6.4.3. Parallel Portfolio

The next benchmark application is a simplistic parallel portfolio SAT solver.
The Portfolio application creates four instances of the incremental solver and
adds all the input clauses to each of them. In order to achieve some degree of
diversification the ordering of the clauses is randomly shuffled for each of the
solver instances. A callback function for termination is added to each of the
solver instances (by calling ipasir set terminate). The callback function is
the same for each solver and all it does is return the value of a global variable
which is initialized to zero. Any solver instance that solves the problem will
set this variable to the value 1, which results in aborting the search by the
still running solver instances. Finally four threads are created which call the
ipasir solve function of the corresponding solver instance.

This application is not really an incremental SAT application since it calls the
solve function only once (in each thread). Nevertheless it is useful for testing

16



whether the solver is functioning properly and efficiently in a multithreaded
environment.

The input of the Portfolio application is CNF Boolean formulas. As input
we used the 100 instances from the Parallel Track of the SAT Race.

6.4.4. Incremental File Interpreter

The incremental file interpreter benchmark application is the only bench-
mark in the ILT that was not created by the organizers of the 2015 SAT Race.
It was submitted by Florian Lonsing, Johannes Oetsch and Uwe Egly from the
Vienna University of Technology.

The application is used to solve arbitrary sequences of formulas incremen-
tally. For a given sequence of formulas, an input file describes how to update
a formula to obtain its successor. The application then interprets these update
instructions and translates them into IPASIR calls.

A detailed description of this approach, in particular the algorithm to gen-
erate update instructions based on a sequence of related formulas as well as the
used file format, is presented in [23].

We used 50 input files which correspond to some benchmark problems used
for the last Hardware Model Checking Competition (HWMCC 2014). Competi-
tion benchmarks are originally given as And-Inverter Graphs (AIGs). By means
of the bounded model checking (BMC) based tool aigbmc, which is part of the
AIGER package, CNFs are generated for checking AIGs incrementally. Each
CNF corresponds to one unrolling step in BMC. An input file of the benchmark-
ing application contains update instructions for the whole sequence of CNFs of
one model checking problem. Therefore this benchmark application makes it
possible to compare the incremental SAT solvers that are part of the IPASIR
framework on the CNFs of the BMC workflow.

6.5. Evaluation

When announcing the ILT we stated that the winners will be determined
based on the number of solved problems in a given time limit (like in the other
tracks). However, after selecting the actual benchmarks this did not seem com-
pletely fair. For example the partial MaxSAT benchmark has much more input
files than the other benchmarks and therefore it would influence the overall re-
sults more significantly. This is not fair, since different benchmark applications
should contribute equally to the evaluation.

Our first attempt to solve this issue was to consider the relative number
of solved inputs, i.e., the average percentage of solved inputs to the number
of all inputs in each application. This approach is problematic if some of the
applications contain inputs with high variance in the sense of solver performance.
For example an application where the performance of the solvers is dissimilar
has a much higher influence than an application where all the solvers solve
almost the same number of problems.

Another way of evaluation, which resolves the issues mentioned above, is the
ranking based comparison. We assign a rank to each solver for each application
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Figure 5: Runtimes of the top 12 solvers (and virtual best solver) in the Main Track for both
SAT and UNSAT problems. The runtimes are aggregated from the five runs.

separately (based on the number of solved instances). The solvers are then
compared based on their average rank. In this case each benchmark application
has the same influence on the final ranking. Nevertheless, this ranking does not
consider how much better or worse a given solver is compared to the others,
which might be considered unfair.

When deciding how the first three prizes would be awarded in the ILT we
considered several possible ranking methods and selected the solvers that ranked
high in all of them. The final results are given in the next section. For future
competitions the evaluation method should be fixed in the beginning.

The ILT evaluation was run on computers with two quad-core Intel Xeon
X5355 (2.66 GHz, 8 cores in total) processors and 24 GB of main memory. The
benchmark applications were executed in parallel, i.e., eight instances of a solver-
application pair were running at the same time on eight different input files.13

Two different solvers or two different applications were not allowed to run at the
same time, therefore each solver-application pair could only interfere with itself
(on different input files). The runtime limit for each application-solver-input
triplet was 10 minutes.

13Due to cache and memory bandwidth limitations, the results will likely differ from a
setting where each solver-application pair has access to the whole machine. Due to limited
compute resources, we had to take this approach, though.
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7. Competition Results

In this section we provide the results of the 2015 SAT Race. That includes
the rankings and runtimes of the participating solvers in the different competi-
tion tracks and a summary of the technical novelties that have been implemented
in the award winning solvers. We later analyze the results regarding trends. The
detailed system descriptions provided by the authors of the participating solvers
are available on the 2015 SAT Race website [20].

In the results for the Main and Parallel Tracks we included a special solver –
the virtual best solver (VBS). The VBS (by definition) achieves the best result
among the participating solvers for each benchmark. This hypothetical solver
can be imagined as the perfect portfolio, which is able to select the best solver
(among the participating solvers) for each benchmark in the competition in zero
time.

7.1. Main Track Results

Table 2 shows the ranking of the solvers of the competition’s Main Track.
The ranking is based on the number of solved instances regardless of the satisfia-
bility status. The first two prizes went to the solvers abcdSAT and MiniSAT BCD

written by Jingchao Chen from Donghua University in Shanghei (Sections 7.1.1
and 7.1.2) and the third price went to the solver RISS (Section 7.1.3) written
by Norbert Manthey from the Technical University of Dresden.

The runtime distribution of the top 12 solvers is displayed in Figure 5 for
all benchmarks and separately for SAT and UNSAT benchmarks in Figure 6.
We can observe that the solvers are very close to each other. Only the winning
solvers abcdSAT and MiniSAT BCD stand out noticeably, especially on the UN-
SAT instances. The VBS outperforms all the solvers very significantly for the
SAT problems, while for UNSAT problems it solves only a few extra instances
(however with better runtimes).

7.1.1. abcdSAT

The solver abcdSAT is built upon Glucose 2.3 and uses Lingeling 587f

as pre-processor. Major improvements are an extended Fourier-Motzkin based
variable elimination procedure that is based on cardinality constraint detec-
tion of up to ≤4-constraints. Previous approaches applied this kind of formula
simplification in conjunction with detection of up to ≤2-constraints [17]. Fur-
thermore they introduced a fast and bounded clause-based implementation of
Hyper Binary Resolution [24].

abcdSAT introduces an original approach of using the results of a preced-
ing phase of Blocked Clause Decomposition (BCD) [25] in CDCL search. For
decision levels 1 to 3 the original pickBranchLit method is overridden and a
BCD-based decision policy is used instead. Using the large blocked set and the
clause order that is imposed by their possible elimination [26] they use the first
decision literal (at level 0) as root and try to satisfy the adjacent blocked clauses
in their reverse elimination order. This localizes search in some sense regarding
possibly functional variable relations [27].
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7.1.2. Minisat BCD

Minisat BCD incorporates all the advances of abcdSAT (Section 7.1.1). The
difference lies in the applied learned clause database management policy. While
abcdSAT uses the clause management of Glucose 2.3, Minisat BCD applies the
hybrid policy of MiniSat HACK 999ED which has been very successful in the
past and is now introduced in several shapes in other winning solvers of the
2015 competition. As a clause’s LBD (Glue) value has been shown to be a good
quality measure for learned clauses [28] only the clauses with an LBD value up
to the threshold of 5 are kept permanently in the database. To establish a kind
of short-term memory and to break ties another pool of clauses is managed by
the original Minisat activity-based heuristic [29].

7.1.3. RISS

RISS is built upon MiniSAT and also incorporates the improvements that
have been introduced with Glucose 2.2. An important part of RISS is its
pre-processor Coprocessor that can perform recent formula simplification tech-
niques. Coprocessor is used for preprocessing as well as inprocessing [6].

RISS now includes a form of restricted extended resolution with gate-recogni-
tion based clause minimization techniques [30, 31]. Its learned clause removal
strategy is an individual combination of the Glucose 2.2 LBD-based and the
Minisat 2.2 activity-based strategy.

Coprocessor is now capable of adding resolution asymmetric tautologies
(RAT) [6] that subsume other clauses. Such subsuming clauses can also be
blocked clauses and covered clauses.

RISS uses an automatic configuration routine that projects 382 formula fea-
tures to 40 eigenvectors by application of Principal Component Analysis (PCA).
Based on the features of the formula one of the 40 best configurations is selected
using a k-nearest neighbor algorithm.

7.2. Parallel Track

The overview of the Parallel Track results is provided in Table 3. The first
prize went to the solver Glucose 4 (Section 7.2.1) written by Gilles Audemard
from the University of Lille-Nord and Laurent Simon from the University of
Bordeaux in France. The second and third prizes went to plingeling and
treengeling (Sections 7.2.2 and 7.2.3) written by Armin Biere from the Jo-
hannes Kepler University in Linz, Austria.

The distribution of runtimes (wall-clock time) is plotted in Figure 7. As in
the Main Track the VBS is a clear winner. By looking at the number of solved
instances in Table 3 we can see that this is again mostly due to the satisfiable
instances. As for the other solvers we can notice that they are split into two
clusters – five solvers solving over 62 instances and six solvers solving less than
38 instances. Five solvers in low-performance cluster perform particularly bad
on unsatisfiable instances. This could be due to having set the restrictions
on clause-sharing too strong or due to performing too little restarts [32]. In
contrast to the other five solvers in the low-performance cluster the parallel
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All Satisfiable Unsatisfiable
solver name #s solver name #s solver name #s

0 virt-best-solver 86 virt-best-solver 53 virt-best-solver 33
1 glucose-adapt 78 treengeling 47 glucose-adapt 32
2 plingeling 73 glucose-adapt 46 plingeling 28
3 treengeling 73 plingeling 45 glucose-default 28
4 cbpenelope 66 cbpenelope 43 treengeling 26
5 glucose-default 62 satuzk 34 crypto–auto 26
6 satuzk 38 glucose-default 34 crypto 25
7 pcasso-bb 37 pcasso-bb 29 cbpenelope 23
8 pcasso 37 pcasso 29 pcasso-bb 8
9 crypto–auto 32 paraglueminisat 25 pcasso 8
10 paraglueminisat 29 crypto–auto 6 satuzk 4
11 crypto 29 crypto 4 paraglueminisat 4

Table 3: The ranking of the solvers in the Parallel Track based on the number of solved
instances (#s). The results are given for all, satisfiable, and unsatisfiable instances.

versions of CryptoMinisat are highly competitive on unsatisfiable problems
(even among the top three solvers) but perform really bad on the given satisfiable
instances. By checking the results in the Main Track (table 2) we can see that
already the sequential version of the solver shows a similar performance gap.
So CryptoMinisat seems to be specifically tuned to find proofs in contrast to
finding counter-examples.

7.2.1. Glucose 4

The winner of the Parallel Track is the adaptive version of Glucose 4. Most
winning solvers have adopted Glucose’s LBD-based [28] ultra-rapid restarts and
a lean clause database management. While other authors use hybrid strategies
to balance the performance of their solver on unsatisfiable and satisfiable in-
stances (see [32] for details), the authors of Glucose decided to introduce a
dynamic adaptive strategy that is capable of switching heuristics online.

In contrast to other adaptive approaches that focus on problem feature ex-
traction Glucose 4 records its runtime parameters (while running in default
configuration for a constant amount of conflicts) which then are used as indica-
tors for a strategy switch.

The parallel version of Glucose a.k.a. Glucose Syrup uses a lazy clause
sharing approach [33] that shares only clauses that have been seen at least twice
in recent conflicts and imposes common restrictions on their size and LBD-value.
Glucose limits clause sharing on 32 cores even more in order to satisfy memory
constraints. Only half of the cores use the adaptive strategy while the others
stick to the default configuration.

7.2.2. Plingeling

Plingeling [34] is based on the award winning solver Lingeling [34] that
now knows 13 different optimized parameter settings for different buckets or
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families of problems. While in the sequential version the problem at hand is
classified by a k-nearest neighbor algorithm the parallel version runs all of these
experimentally determined “best” configurations.

Plingeling traditionally shares unit clauses and equivalences. Since 2013
also clauses with low LBD values are shared. Clauses containing eliminated
variables are rejected by the instances.

7.2.3. Treengeling

Treengeling [34] is based on the “Cube & Conquer” idea [35]. It uses look-
ahead for splitting the CNF instance into multiple independent sub-problems.
Those are simplified independently and split again. As soon as a sub-problem
becomes simple enough to be solved more efficiently by CDCL solving, the
original idea was to switch to CDCL solving. Treengeling improves on that
by using “Concurrent Cube & Conquer” [36], which interleaves CDCL search
with look-ahead in parallel. Actually, the simplest unsolved sub-problems are
all split (using look-ahead and cloning), simplified (through preprocessing) and
searched (CDCL) in parallel, until all sub-problems are proved to be unsatisfi-
able or one satisfiable sub-problem is found. In addition few parallel instances
of Lingeling are started using the call-back infrastructure existing in Lingeling
to implement Plingeling. These parallel solvers interact with the “Cube & Con-
quer” part in a Portfolio style manner, exporting unit clauses and importing the
negation of unsatisfiable cubes. Otherwise there is no sharing of learned clauses
among “Cube & Conquer” solver instances. For the parallel portfolio solvers
the integration of the local search solver YalSAT [34] is enabled, which is run
in intervals. Treengeling is expected to work very well for hard combinatorial
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Essential HWMC Portfolio P-MaxSat
solver #s solver #s solver #s solver #s

1 glucose 48 crypto 1454 comin-earth 12 crypto-auto 271
2 crypto 48 crypto-auto 1452 satuzk 5 crypto 266
3 crypto-auto 47 comin-sun 1434 picosat961 5 glucose 259
4 comin-sun 45 glucose 1407 comin-sun 5 comin-sun 250
5 comin-earth 45 comin-earth 1406 riss 505 4 riss 504 244
6 riss 505 44 riss 505 1372 riss 504 2 comin-earth 244
7 riss 504 44 riss 504 1370 glucose 1 riss 505 234
8 picosat961 44 picosat961 1285 crypto-auto 0 satuzk 204
9 satuzk 43 satuzk 842 crypto 0 picosat961 165

Table 4: The ranking of the Incremental Library Track solvers based on the number of solved
instances (#s) for each benchmark application separately.

problems, where sharing of learned clauses is less useful.

7.3. Incremental Library Track

As discussed in Subsection 6.5 the evaluation criteria for the ILT are not
as simple as for the other two tracks and there are several alternative ways to
define them. Since the exact evaluation criteria were not announced ahead the
actual selection of the winning solvers was done “manually” by the organizers
with the goal to be as fair as possible.

Firstly, we decided that different versions of a solver will be considered as one
solver. Then, by looking at the the rankings of the solvers for each benchmark
separately (displayed in Table 4), we decided that the prizes will be distributed
between the solvers CoMinisatPS, CryptoMiniSat and Glucose. The reason is
that the remaining solvers never appear between the top three solvers for any
of the benchmarks (the solver picosat was entering hors concours).

Based on the total number of solved problems, percentage of problems solved
and relative ranking in each benchmark category we decided to award two first
prizes to the solvers CoMinisatPS and CryptoMiniSat and the third prize to
the solver Glucose.

The solver CoMinisatPS was submitted by Chanseok Oh from New York
University, USA. The authors of CryptoMiniSat 4.4 are Mate Soos and Marius
Lindauer. Glucose is developed by Gilles Audemard from the University of
Lille-Nord and Laurent Simon from the University of Bordeaux in France. Brief
descriptions of the winning solvers follow.

7.3.1. CoMinisatPS

CoMiniSatPS comes with a three-tiered learned clause database management
that was first described by its author in [32]. The strategy keeps a core of learned
clauses with extremely low LBD value (1-3) and manages clauses with slightly
higher but still low LBD (4-6) in a so called mid-tier database that keeps only
recently used clauses. A constant amount of clauses is managed by the classical
MiniSat [29] clause activity heuristic.
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CoMiniSatPS applies a hybrid restart strategy with alternating phases of
Luby-style restarts [37, 29] and Glucose-style ultra-rapid restarts [28]. In the
ultra-rapid phase a lower variable decay factor is used than in the Luby-phase,
thus respecting the finding that ultra-rapid restarts and lower variable decay
factors both correlate positively with high performance on unsatisfiable prob-
lems [32] and vice versa.

Specific to the incremental version of CoMiniSatPS is its incremental variable
elimination procedure that has already been described in [38]. At the end of each
incremental run a phase of extreme clause learning is started and a majority of
the learned clauses that accumulated in the database during the solver run is
cleared.

7.3.2. CryptoMiniSat 4.4

CryptoMiniSat now comes with hybrid clause database management like it
was introduced by the solver SWDiA5BY which is the predecessor of CoMinisatPS
(Section 7.3.1), i.e. it keeps a core of clauses with low LBD value and manages
a constant amount of recently learned clauses by MiniSat’s activity score. Also
like in SWDiA5BY a Glucose-style restart strategy is used (with LBD-based ultra-
rapid restarts in conjunction with restart blocking phases).

CryptoMiniSat is an inprocessing SAT solver [6] and the new version comes
with optimized data-structures for that, specifically the watcher data structure
is used to store occurrence lists and data related to recognized gates.

In order to make CryptoMiniSat adaptive, the top 5 parameter configu-
rations were experimentally determined and then a classifier has been trained
with benchmark problems from the previous SAT Competitions to select the
best configuration for the problem at hand. The resulting decision tree is com-
piled into the CryptoMiniSat source code.

7.3.3. Glucose 4

For a description of the base version see Section 7.2.1. The incremental ver-
sion introduced special handling of so called selector literals (due to assumption-
based clause removal) [19]. As selector literals could not be known in advance in
the competition scenario, these optimizations specific to the incremental version
of Glucose were ineffective in the competition.

8. Analysis of Results

8.1. Essential Improvements in Most Winning Solvers

One major result of the competition is that hybrid heuristics have established
themselves widely among the best performing solvers, thus providing a trade-off
between heuristics that perform well on unsatisfiable problems and those that
perform well on satisfiable problems [32].

One of these hybrid approaches is lean clause database management that is
based on the learned clauses LBD-values, which is combined with another clause-
database of constant size that is managed by the classic activity-based cleanup
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procedure. Another widely adopted hybrid approach is the rapid Luby [37]
style restarts in combination with the ultra-rapid restarts based on LBD-values
of learned clauses.

Most winning solvers perform a kind of automatic adaption of heuristics
based on automatic feature extraction of the problem at hand or using runtime
parameters.

One novelty in this competition was introduced by the winner of the Main
Track, abcdSAT (Section 7.1.1), that makes creative use of blocked clause de-
composition to restrict variable selection for a constant amount of decision levels
to a set of variables that satisfies clauses that are adjacent in the order imposed
by blocked clause elimination. The success of this method might be due to the
strong connection between blocked clauses and functional dependencies among
variables [27] and it shows that structure based solving can elevate performance
of SAT solvers considerably.

8.2. Similarity of Solvers

We evaluated the similarity of the solvers using the notion of Spearman’s
rank correlation coefficient [39]. The basic idea of this comparison is that two
solvers are similar if the same instances are easy (resp. hard) for both. More
precisely, if we sort the list of benchmarks for solver a based on the runtimes
required to solve them and do the same for solver b then the more similar these
lists are the more similar are the solvers a and b.

Spearman’s rank correlation coefficient is defined as:

ρ = 1− 6
∑

(ra − rb)2

n(n2 − 1)
(1)

where n is the size of the sample (in our case the number of benchmarks) and
ra,rb are pairs of ranks for a given benchmark and two solvers a and b. The
sum is over the set of benchmarks.

Let us consider the following simple example. We compare three solvers a,
b and c on five benchmarks b1, . . . , b5. The measured runtimes of each solver
for each benchmark are displayed in Table 5 (columns ta, tb and tc). Based on
these runtimes we assign the ranks of the benchmarks for each solver (columns
ra, rb and rc). Next, using Equation 1, we compute for each pair of solvers the
sum of the squares of rank differences for each benchmark. These values are
multiplied by 6, divided by 120 (= 5(52 − 1)) and subtracted from 1 to obtain
the resulting correlation coefficient ρ. In our example solvers b and c are the
most similar to each other while c and a are the most different.

We calculated Spearman’s rank correlation coefficient (ρ) for all the solver
pairs in the Main and Parallel Tracks. These results are displayed in Figure 8
and Figure 9 in the form of heat-maps. The figures also contain a dendrogram to
illustrate the arrangement of solver clusters produced by hierarchical clustering
based on ρ.

By looking at the Main Track solvers (Figure 8) we can observe high sim-
ilarity mostly between the different versions of the same solver (lingeling,
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Figure 8: Heat-map and dendrogram based on the similarity of the solvers participating in the
Main Track. Similarity is defined as Spearman’s rank correlation coefficient. Darker regions
mean that the solvers are more similar.
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solv. a solv. b solv. c a vs. b b vs. c c vs. a
ta ra tb rb tc rc (ra − rb)2 (rb − rc)2 (rc − ra)2

b1 0.1 1 0.4 3 0.7 4 4 1 9
b2 0.3 2 0.2 2 0.3 2 0 0 0
b3 0.5 3 0.1 1 0.1 1 4 0 4
b4 0.7 4 0.9 5 0.8 5 1 0 1
b5 0.9 5 0.8 4 0.5 3 1 1 4

ρ = 0.50 0.90 0.10

Table 5: Spearman’s rank correlation coefficient computation example.

GlueMiniSat, Nigma) or solvers from the same author (the winning solvers
MiniSatBCD and abcdSAT by Jingchao Chen). Actually the two versions of
GlueMiniSat have ρ = 1, which means they are perfectly monotonically re-
lated. The solver most different from all the others is Ratselfax followed by
or-tools. Both these solvers are more general combinatorial optimization tools
with SAT solving being just one of the problems they can be used for. Overall,
the solvers participating in the Main Track are very similar to each other with
an average ρ of 0.786 (average over all pairs).

One possible explanation for this high similarity of SAT solvers is that it is a
negative side-effect of SAT competitions, in particular their benchmark selection
method. The benchmarks of a competition are selected to be similar to previ-
ous competitions and therefore the solvers are trying to be similar to previous
winning solvers. Indeed, most of the solvers are built on top of these success-
ful solvers such as Glucose, which itself is based on MiniSat. The benchmark
selection methods should be revised to address this issue.

On the other hand, the solvers participating in the Parallel Track (Fig-
ure 9) are much less similar with an average ρ of 0.411. High similarity is
again observed between different versions of the same solvers (CryptoMiniSat,
glucose, pcasso). Surprisingly the outliers of this track are the two versions
of CryptoMiniSat. The correlation coefficient of both CryptoMiniSat versions
is actually negative with SatUZK and Treengeling.

The decreased similarity of the solvers in the Parallel Track might be the
result of introducing a new execution environment (in the sense of relatively
high parallelism, i.e., 64 cores compared to at most 16 cores used in previous
competitions).

8.3. Stability of Performance

Thanks to the fact, that we performed five runs of each solver on each bench-
mark in the Main Track we can now analyze the difference in the performance
of the solvers across these five runs.

For each benchmark and solver we took the five runtime values and computed
their standard deviation (sd) and the more robust median absolute deviation
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Solver All Sat Unsat
Name sd mad sd mad sd mad

abcdSAT 11.8 7.1 9.1 5.6 15.3 9.0
cryptominisat 17.8 9.9 17.0 9.1 18.8 11.0
cryptominisat-autotune 17.7 9.7 16.0 9.1 19.8 10.6
dccaSatToRiss 21.4 13.5 22.2 15.8 20.1 10.3
glucose-adapt 17.4 11.2 17.8 11.6 16.9 10.6
glucose-community-switching 15.7 8.7 17.1 9.4 13.6 7.9
BreakIDGlucose2 17.7 10.4 18.2 11.5 17.1 8.8
CCAglucose2015 13.9 8.6 15.6 9.6 11.6 7.3
COMiniSatPS-Main 15.9 9.3 15.9 9.1 16.0 9.7
COMiniSatPS-Subdwarf 14.7 9.2 15.1 9.6 14.2 8.7
glucose 16.0 9.9 18.2 11.6 13.1 7.8
Glucose nbSat 19.4 12.3 18.3 12.5 21.1 12.1
Glucose nbSatRsltn 19.5 12.7 19.9 13.6 18.9 11.4
GlueMiniSat2.2.10 18.2 10.8 17.9 11.1 18.6 10.5
GlueMiniSat2.2.10-5 16.4 10.2 17.2 11.2 15.5 8.9
glueminisat-Actmini 22.7 12.3 28.0 13.5 15.0 10.6
Lingeling-sr15bal 14.8 8.9 16.6 9.9 12.5 7.6
Lingeling-sr15baq 13.9 8.6 15.6 10.3 11.8 6.6
MiniSatBCD 10.9 7.2 10.0 6.5 12.1 8.1
multi-sat-g2 0 18.4 11.3 17.1 10.5 20.6 12.6
multi-sat-g2 2 20.1 13.6 18.6 12.2 22.4 15.6
Nigma-1.2.86 21.3 12.6 20.3 11.8 22.6 13.9
Nigma-1.2.87 22.2 12.1 20.3 10.2 24.7 14.6
or-tools 21.9 12.8 19.1 11.7 25.8 14.3
Ratselfax 215 25.5 16.1 30.3 18.8 14.5 10.1
riss 505-blackbox 94.2 12.0 152.7 13.8 15.4 9.5
riss 505 18.7 11.8 20.3 12.7 16.5 10.5
satUZK-seq 13.6 8.6 11.1 7.5 17.8 10.4

Table 6: Statistical dispersion (or variation) of the runtimes for the five runs of each solver
from the Main Track. The table shows the average standard deviation (sd) and average
median absolute deviation (mad) for all the benchmark solved in at least one of the runs. The
minimum and maximum values of each column are highlighted.
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(mad), which are defined as:

sd =

√√√√ n∑
i=1

(µ− ti)2
n

mad = mediani=1...n(|M − ti|) (2)

where n is the number of values (in our case five) while µ is the average and M
the median of the runtime values.

Table 6 contains the average sd and mad over all the benchmarks. We can
observe, that the two winning solvers (abcdSAT and MinisatBCD) have very
stable performance throughout the five runs while the performance of Riss -

blackbox (which finished as third) is highly variable. Actually, for the satisfi-
able instances abcdSAT is the most stable solver while Riss - blackbox is the
least. Based on the results of abcdSAT and MinisatBCD we can draw a positive
conclusion that it is possible to have SAT solvers that consistently deliver high
performance.

9. Conclusion

Competitions of Boolean satisfiability (SAT) solvers have been organized
regularly since 2002 and they serve as the main tool for evaluating and compar-
ing state-of-the-art SAT solvers. We believe they also serve as one of the main
motivators for researchers and developers to continually invent new algorithms
and implementation techniques for SAT solving.

The aim of the 2015 SAT Race was to continue the tradition of SAT solving
competitions and also to introduce new challenges. The most significant novelty
of the 2015 SAT Race is the Incremental Library Track (ILT). For the ILT we
have designed an API (called IPASIR) that makes it possible to develop SAT
solving based applications without committing to any specific SAT solver. We
believe that this will prove to be very useful for SAT solver users and increase
the already high number of systems which use SAT solvers as their reasoning
engines. We hope that the ILT Track will be continued in the following compe-
titions and the IPASIR interface (or its extension) will get widely accepted and
adopted by the SAT community.

In this paper we provided an overview of the 2015 SAT Race. We gave a
detailed description of the new Incremental Track and the IPASIR interface. We
presented and analyzed the results of the competition and provided an overview
of the winning solvers and the new techniques they use.

9.1. Lessons Learned

The solver similarity results indicated, that the solvers are very similar to
each other. This could be a negative side effect of SAT competitions and their
benchmark selection methodology. Future benchmark selection methods should
be designed while keeping this in mind.
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The ILT had only one benchmark submission. Since there are many more
systems based on incremental SAT solving we assume that our call for bench-
marks did not reach the developers. Until the ILT becomes more traditional
these developers should be contacted directly.

The evaluation criteria for the ILT were not clearly defined before the compe-
tition. For future competitions we must design a fair and well defined evaluation
mechanism and publish it in the call for participation.
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