
Everything You Always Wanted to Know About
Blocked Sets (But Were Afraid to Ask)

Tomáš Balyo1, Andreas Fröhlich2, Marijn J. H. Heule3, Armin Biere2 ?

1 Charles University, Prague, Czech Republic
Faculty of Mathematics and Physics

2 Johannes Kepler University, Linz, Austria
Institute for Formal Models and Verification

3 The University of Texas at Austin
Department of Computer Science

Abstract. Blocked clause elimination is a powerful technique in SAT
solving. In recent work, it has been shown that it is possible to decompose
any propositional formula into two subsets (blocked sets) such that both
can be solved by blocked clause elimination. We extend this work in sev-
eral ways. First, we prove new theoretical properties of blocked sets. We
then present additional and improved ways to efficiently solve blocked
sets. Further, we propose novel decomposition algorithms for faster de-
composition or which produce blocked sets with desirable attributes. We
use decompositions to reencode CNF formulas and to obtain circuits,
such as AIGs, which can then be simplified by algorithms from circuit
synthesis and encoded back to CNF. Our experiments demonstrate that
these techniques can increase the performance of the SAT solver Lin-
geling on hard to solve application benchmarks.

1 Introduction

Boolean satisfiability (SAT) solvers have seen lots of progress in the last two
decades. They have become a core component in many different areas connected
to the analysis of systems, both in hardware and software. Also, the performance
of state-of-the-art satisfiability modulo theories (SMT) solvers often heavily re-
lies on an integrated SAT solver or, as for example when bit-blasting bit-vectors,
just encodes the SMT problem into SAT and then uses the SAT solver as reason-
ing engine. This gives motivation to develop even more efficient SAT techniques.

One crucial factor for the performance of state-of-the-art SAT solvers are
sophisticated preprocessing and inprocessing techniques [1]. Conjunctive normal
form (CNF) level simplification techniques, such as blocked clause elimination
(BCE) [2,3,4], play an important role in the solving process. A novel use of
blocked clauses was proposed in [5], which showed, that it is possible to decom-
pose any propositional formula into two so called blocked sets, both of which can

? This work is partially supported by FWF, NFN Grant S11408-N23 (RiSE), the
Grant Agency of Charles University under contract no. 600112 and by the SVV
project number 260 104, and DARPA contract number N66001-10-2-4087.

be solved solely by blocked clause elimination. This blocked clause decomposi-
tion was then used to efficiently find backbone variables [6] and implied binary
equivalences through SAT sweeping. Using this technique the performance of the
state-of-the-art SAT solver Lingeling [7] could be improved on hard application
benchmarks from the last SAT Competition 2013.

The success of these techniques gives reason to investigate blocked clauses in
more detail. In this paper, we revisit topics from previous work [5] and present
several new results. The paper is structured as follows. In Sect. 2, we first give
definitions used throughout the rest of the paper. We introduce the notion of
blocked sets, and, in Sect. 3, present new properties of blocked sets. We then dis-
cuss several new and improved ways to efficiently solve blocked sets in Sect. 4. In
Sect. 5, we revisit blocked clause decomposition (BCD), as earlier proposed in [5],
and suggest extensions to increase performance of decomposition algorithms and
to generate blocked sets with certain useful attributes. We apply these tech-
niques in Sect. 6 to extract compact circuit descriptions in AIG format from
arbitrary CNF inputs, allowing the use of sophisticated circuit simplification
techniques as implemented in state-of-the-art synthesis tools and model check-
ers like ABC [8,9]. As described in Sect. 7, this extraction mechanism can also be
used to reencode the original formula into a different CNF which can sometimes
be solved more efficiently by existing SAT solvers. All our experimental results
are discussed in Sect. 8. We conclude our paper in Sect. 9.

2 Preliminaries

In this section, we give the necessary background and definitions for existing
concepts used throughout our paper.
CNF Let F be a Boolean formula. Given a Boolean variable x, we use x and
x (alternatively ¬x) to denote the corresponding positive and negative literal,
respectively. A clause C := (x1 ∨ · · · ∨ xk) is a disjunction of literals. We say
F is in conjunctive normal form (CNF) if F := C1 ∧ · · · ∧ Cm is a conjunction
of clauses. Clauses can also be seen as a set of literals. A formula in CNF can
be seen as a set of clauses. A clause is called a unit clause if it contains exactly
one literal. A clause is a tautology if it contains both x and x for some variable
x. The sets of variables and literals occurring in a formula F are denoted by
vars(F) and lits(F), respectively. A literal l is pure within a formula F if and
only if l /∈ lits(F).
AIGs An and-inverter-graph (AIG) [10] is a directed acyclic graph that rep-
resents a structural implementation of a circuit. Each node corresponds to a
logical and-gate and each edge can either be positive or negative, represent-
ing whether the gate is negated. Since {¬,∧} is a functionally complete set of
Boolean operators, obviously all Boolean formulas can be represented by AIGs.
(Partial) Assignments An assignment for a formula F is a function α that
maps all variables in F to a value v ∈ {1, 0}. We extend α to literals, clauses and
formulas by using the common semantics of propositional logic. Therefore α(F)
corresponds to the truth value of F under the assignment α. Similarly, a partial

assignment is a function β that maps only some variables of F to v ∈ {1, 0}. The
value of the remaining variables in F is undefined and we write β(x) = ∗. Again,
we extend β to literals, clauses and formulas by using the common semantics and
simplification rules of propositional logic. Therefore β(F) denotes the resulting
formula under the partial assignment β. If we only want to assign one specific
variable, we also use Fx=v to represent the simplified formula.
Resolution The resolution rule states that, given two clauses C1 = (l ∨ a1 ∨
· · ·∨ak1

) and C2 = (l∨b1∨· · ·∨bk2
), the clause C = (a1∨· · ·∨ak1

∨b1∨· · ·∨bk2
),

called the resolvent of C1 and C2, can be inferred by resolving on the literal l.
This is denoted by C = C1 ⊗l C2. A special case of resolution where C1 or C2 is
a unit clause is called unit resolution.
Unit Propagation If a unit clause C = (x) or C = (x) is part of a formula
F , then F is equivalent to Fx=1 or Fx=0, respectively, and can be replaced by
it. This process is called unit propagation. By UP(F) we denote the fixpoint
obtained by iteratively performing unit propagation until no more unit clauses
are part of the formula.
Blocked Clauses Given a CNF formula F , a clause C, and a literal l ∈ C,
l blocks C w.r.t. F if (i) for each clause C ′ ∈ F with l ∈ C ′, C ⊗l C

′ is a
tautology, or (ii) l ∈ C, i.e., C is itself a tautology. A clause C is blocked w.r.t. a
given formula F if there is a literal that blocks C w.r.t. F . Removal of such
blocked clauses preserves satisfiability [2]. For a CNF formula F , blocked clause
elimination (BCE) repeats the following until fixpoint: If there is a blocked
clause C ∈ F w.r.t. F , let F := F \ {C}. BCE is confluent and in general
does not preserve logical equivalence [3,4]. The CNF formula resulting from
applying BCE on F is denoted by BCE(F). We say that BCE can solve a formula
F if and only if BCE(F) = ∅. Such an F is called a blocked set. We define
BS := {F | BCE(F) = ∅}. A pure literal in F is a literal which occurs only
positively. It blocks the clauses in which it occurs. As special case of blocked
clause elimination, eliminating pure literals removes clauses with pure literals
until fixpoint.

3 Properties

In this section, we revisit two monotonicity properties of blocked sets from pre-
vious work [5,4] and then prove several new properties. One basic property of
blocked sets is the following monotonicity property: If G ⊂ F and C is blocked
w.r.t. F , then C is blocked w.r.t. G [5,4]. A direct implication is given by the
following second version: If F ∈ BS and G ⊆ F then G ∈ BS.

Resolution does not affect the set of solutions of a Boolean formula. In CDCL
solvers resolution is often used to learn additional information to help in the
solving process. Therefore, it is interesting to see, that adding resolvents to a
blocked set can destroy this property, which might thus make the formula much
harder to solve:

Proposition 1. Blocked sets are not closed under resolution, not even unit res-
olution.

Proof. We give a counter-example:

F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3)

We can check that BCE(F) = ∅ by removing the clauses in the order in which
they appear in F using the first literal of each clause as blocking literal. However,
F ∧ (x1 ∨ x2) (with (x1 ∨ x2) obtained by unit resolution from the first and the
last clause) is not a blocked set anymore. ut

As being one of the most important techniques in SAT solvers, it is of inter-
est whether unit propagation can be combined with blocked clause elimination
without destroying blockedness. In contrast to (unit) resolution, it is possible
to apply unit propagation to blocked sets without the risk of obtaining a set of
clauses that is not blocked anymore:

Proposition 2. Blocked sets are closed under unit propagation.

Proof. Since F ∈ BS, BCE(F) = ∅. Let C1, . . . , Cm be the clauses of F in
the order in which they are removed by blocked clause elimination. Consider the
formula F ′ obtained from F by unit propagation of a single unit clause Ci = {x}
and the sequence of formulas Fi = {Ci, . . . , Cm}. We remove all clauses from F ′

by BCE in the same order as the corresponding clauses in F were removed by
BCE. For each Cj , we have to consider three different cases. Case 1: x was the
blocking literal of Cj . This is however actually not possible for j < i. Note that
Cj is not blocked in Fj since Ci is still in Fi and the resolvent of Cj with Ci on
x̄ is not a tautology. Similarly observe for j > i that the clause Ci is not blocked
in Fi. Finally for j = i, the literal x is not part of Ci. Case 2: x was the blocking
literal of Cj . In this case the clause is not part of F ′ anymore and therefore does
not need to be removed. Case 3: l /∈ {x, x} was the blocking literal of Cj . In
order to remove Cj , we have to show that all resolvents of Cj with other clauses
Ck ∈ Fi on l with j ≤ k ≤ m are still tautologies. Since unit propagation did
not remove any literals other than x from clauses in the formula, only resolvents
being tautologies due to containing both x and x̄ can be affected. However, in
any case, either x ∈ Cj or x ∈ Ck, and one of the two clauses has been removed
from F due to unit propagation and thus this resolution does not have to be
considered anymore. ut

Given a set of clauses F ∈ BS, we know that F has at least one satisfy-
ing assignment. We could try to find this satisfying assignment by choosing a
random unassigned variable x, setting the variable to both possible values and
checking which of the reduced formulas Fx=0 and Fx=1 is still satisfiable. One
could hope that the satisfiability of Fx=v could again be proved by showing that
BCE(Fx=v) = ∅. However, this does not hold:

Proposition 3. Blocked sets are not closed under partially assigning variables,
furthermore, a blocked set may become non-blocked even in the subspace where
this formula remains satisfiable.

Proof. Consider the following example:

F = (x3 ∨ x1 ∨ x4)∧ (x3 ∨ x2 ∨ x4)∧ (x2 ∨ x1)∧ (x1 ∨ x4)∧ (x1 ∨ x5)∧ (x5 ∨ x4)

It is easy to verify that BCE(F) = ∅ by removing the clauses in the order in
which they appear in F with each clause being blocked on its first literal. If we
now assign a value to x3, we get the following two formulas:

Fx3=0 = (x2 ∨ x4) ∧ (x2 ∨ x1) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x5 ∨ x4)

Fx3=1 = (x1 ∨ x4) ∧ (x2 ∨ x1) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5) ∧ (x5 ∨ x4)

Neither of the resulting formulas is blocked and both are satisfiable. ut

The difference between unit propagation and applying partial assignment is
that in the former we assume the unit clause to be part of the blocked set. In
this case the result after unit propagation or just applying the corresponding
assignment can not destroy blockedness, while adding an arbitrary unit clause
to a blocked set does not have this property.

4 Solving Blocked Sets

Blocked sets are always satisfiable and it is easy to find a satisfying assignment
for them [4]. However, as shown in [5] it is also possible to efficiently find mul-
tiple satisfying assignments in a bit-parallel fashion by generalizing the original
solution extraction algorithm [4].

In the original algorithm, we start from a random full truth assignment α
for a blocked set B. We then traverse the clauses C ∈ B in the reverse order
of their elimination, e.g. the clause eliminated first will be considered last. For
each clause C, we check if α(C) = 1 and, if it is not, we flip the truth value of
the blocking literal variable in α.

Our new generalized version of the reconstruction algorithm presented next,
uses ternary logic consisting of values v ∈ {1, 0, ∗}. Instead of starting from a
random (full) assignment, we start from a partial assignment β with β(x) := ∗
for all x ∈ vars(B). We then traverse the clauses C ∈ B in the same order as
the original algorithm. If the clause is satisfied under the current assignment, we
continue with the next clause. Otherwise, we do the following:

1. if there is a literal l ∈ C with variable x and β(x) = ∗,
then we set the variable to 1 or 0 which satisfies the clause.

2. otherwise, we flip the assignment of the blocking literal variable.

This algorithm is presented in Fig. 1. It will terminate with a partial satisfying
assignment (some variables might have the value ∗). The values of the ∗ variables
can be chosen arbitrarily. In this way, the algorithm finds several solutions at
the same time. If the number of ∗ variables is k then the algorithm found 2k

solutions. Note, that any unassigned variable in a partial satisfying assignment
can not be in the backbone nor part of an implied equivalence.

Solve (Blocked set B)
S1 β := [∗, ∗, . . . , ∗]
S2 for Clause C ∈ reverse(eliminationStack) do
S3 if C is satisfied under β then continue
S4 V := getUnassignedVars(C)
S5 if V = ∅ then flip the blocking literal of C in β
S6 else
S7 select x ∈ V
S8 set x in β to a value that satisfies C
S9 return β

Fig. 1. Pseudo-code of the generalized blocked set solution reconstruction algorithm.
The clauses are traversed in the reverse order of their elimination.

Making different choices on line S7 will give us different solutions. In fact,
the non-determinism allows the algorithm to find all satisfying assignments of a
blocked set. We show this in the following proposition.

Proposition 4. The generalized reconstruction algorithm can find all the solu-
tions of a blocked set.

Proof. Let β be an arbitrary satisfying assignment of a blocked set B. When the
reconstruction algorithm encounters an unsatisfied clause C, it can choose to
satisfy C using the same variable value pair as in β. The case that the blocking
literal needs to be flipped will never occur, since unsatisfied clauses with no ∗
variable will not be encountered. This is due to the fact that we set all variables
to their proper values when first changing the value from ∗. The algorithm will
terminate with the solution β (possibly some ∗ values remain). ut

The next proposition demonstrates the correctness and time complexity of
the generalized reconstruction algorithm.

Proposition 5. The generalized reconstruction algorithm always terminates in
linear time with a satisfying assignment of the blocked set.

Proof. The algorithm visits each clause exactly once and performs a constant
number of operations for each of its literals. Therefore the algorithm runs in
linear time in the size of the blocked set.

We will prove that at the end of each for-cycle iteration all the clauses that
have been traversed so far are satisfied by the assignment β. From this, the
correctness of the returned solution follows. We need to examine three cases. If
the clause is already satisfied by β or it is satisfied by setting a value of a ∗
variable, then none of the traversed clauses can become unsatisfied. Otherwise,
the clause becomes satisfied by flipping the blocked literal. In this case, we know
from the definition of the blocked set that all previous clauses which contain the
negation of the blocking literal are already satisfied by another literal. Namely,
by the literal whose negation appears in the current clause and is false here. ut

We have seen that one can easily find solutions of blocked sets using a simple
algorithm which in a way resembles a local search SAT solver (i.e. by ”flipping”
assignments to certain variables). This gives rise to the question of how state-
of-the-art stochastic local search (SLS) SAT solvers perform on blocked sets.
We conducted experiments using several well known SLS solvers and added our
own specialized local search solver which always flips the blocking literal. From
the results in Fig. 2, we can conclude that standard local search solvers struggle
with solving blocked sets. However, when only the blocking literal is flipped,
the problems are easily solved. This suggests that the crucial point in solving
blocked sets is to know which is the blocked literal of a clause and the order in
which the clauses are addressed is less important.

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
 [

s]

Problems

flip blit
CCA 2013

ProbSat
Sparrow

Fig. 2. Performance of the stochastic local search SAT solvers ProbSat [11], Spar-
row [12], CCA2013 [13], and a modified ProbSat which always flips the blocking literal.
The used instances are the 95 benchmarks described in Section 5.1 (instances from the
2013 SAT competition where unit decomposition is successful). The experiments were
run on a PC with Intel Core i7-2600 3.4GHz CPU and 16GB of memory. The time
limit for each instance was 1000 seconds.

5 Blocked Clause Decomposition

Blocked clause decomposition (BCD) [5] is the process of splitting a clause set
of a CNF formula F into two sets such that at least one of them is a blocked
set. If both sets are blocked, the decomposition is called symmetric.

Usually, we want to decompose the formula in a way that one of the blocked
sets is large (i.e. contains many clauses) while the other is small. The motivation

is that at least one of the blocked sets (the large one) should resemble the
original formula as much as possible. Therefore, we will use the size difference
of the two sets as a measure of the quality of the decomposition. We denote the
larger blocked set by L (large set) and the smaller one by R (rest of the clauses).
Symmetric BCD can be defined by the following formula:

BCD(F) = (L,R); F = L ∪R; L,R ∈ BS; |L| ≥ |R|

The simplest way of doing BCD is pure decomposition (described in [5]).
First, we start with two empty clause sets L and R. Then, for each variable
x ∈ vars(F), we do the following. Let Fx be the set of clauses of F where x
occurs positively and Fx where it occurs negatively. We add the larger of Fx and
Fx to L and the smaller to R. We remove Fx and Fx from F and continue with
the next variable. This algorithm produces two blocked sets which can be solved
by pure literal elimination, hence the name pure decomposition.

Pure decomposition can be easily implemented to run in linear time and,
therefore, is very fast on all formulas. A drawback is given by the fact that the
difference in the sizes of L and R is usually not very big. This disadvantage can
be addressed by post-processing, i.e., moving clauses from R to L as long as L
(and R) remain blocked. An obvious way of post-processing (already described
in [5]) is to move blocked (with respect to the current L) clauses from R to L.
We extend this method by also moving so called blockable clauses.

Definition 1. A clause C is blockable w.r.t. a blocked set L if each literal l ∈ C
potentially blocks C where a literal l ∈ C potentially blocks C if each clause
C ′ ∈ L containing l has a different blocking literal (its blocking literal is not l).

It is easy to observe that a blockable clause will not prevent any other clause
in the blocked set from being eliminated by blocked clause elimination and,
therefore, adding it to the blocked set will not destroy its blocked status. A
blockable clause can be easily detected if we maintain a literal occurrence list
for the clauses in the blocked set. Using this data structure, and remembering
for each clause which is its blocking literal, allows an efficient checking of the
blockable property.

Moving blocked and blockable clauses can be considered to be lightweight
post-processing methods since they are fast but often cannot move too many
clauses. Another kind of post-processing algorithm is based on the following
idea. If BCE(L ∪ S) = ∅ for some S ⊂ R, all clauses in S can be moved from R
to L. We refer to S as a candidate set. This kind of post-processing is more time
consuming but also much more powerful. Different strategies can be employed for
the selection of S such as QuickDecompose [5], which continues to move clauses
from R to L until no more clauses can be moved. L is then called a maximal
blocking set. Since QuickDecompose requires a lot of time for many instances,
we decided to use a heuristic approach called EagerMover , which is described in
Fig. 3. The algorithm tries to move 1/4 of all clauses in R until none of the 4 parts
can be moved. Trying to move smaller parts than 1/4 in each step makes the
algorithm slower but possibly more clauses can be moved. Experiments revealed
that 1/4 is a good compromise.

EagerMover (Blocked set L, R)
EM1 moved := True
EM2 while moved do
EM3 moved := False
EM4 for i := 0 to 3 do
EM5 S := R : {i · 0.25 · |R|, (i+ 1) · 0.25 · |R|}
EM6 if BCE(L ∪ S) = ∅ then
EM7 L := L ∪ S; R := R \ S; moved := True

Fig. 3. Pseudo-code of the EagerMover post-processing algorithm, R : {a, b} is the
subsequence of R starting with the a-th element until the b-th element.

5.1 Unit Decomposition

To achieve good quality decomposition, the following heuristic (called unit de-
composition in [5]) was introduced: remove unit clauses from the original formula
and test if the remaining clauses are a blocked set. If they are a blocked set, put
the unit clauses into R and we are done. If the formula is an encoding of a circuit
SAT problem, then this approach will always succeed [5]. This heuristic works
on 77 of the 300 instances of the application track of the 2013 SAT Competition.

This heuristic can be generalized, by running unit propagation on the input
clauses and removing satisfied clauses. Clauses are not simplified by removing
false literals since those might be used as blocking literals. Next, we test if the
clause set is blocked and, if it is, we put the unit clauses into R and we are done.
Our improved heuristic succeeds on 95 instances, 18 more than the original. In
the case that unit decomposition is not successful, we use pure decomposition.

After unit decomposition succeeds, there still might be some unit clauses
which can be moved from R to L. Therefore, it is useful to run some of the men-
tioned post-processing algorithms to improve the quality of the decomposition.

5.2 Solitaire Decomposition

In this section, we define a special type of blocked clause decomposition called
solitaire blocked clause decomposition (SBCD). In solitaire decomposition, we
require that the small set R contains only a single unit clause. We will use this
concept to translate a SAT problem into a circuit SAT problem (see Sect. 6).
Solitaire decomposition cannot be achieved for every formula unless we allow an
additional variable. A formal definition of solitaire decomposition follows.

Definition 2. Let F be CNF formula. SBCD(F) = (L, {l}) where L ∈ BS and
l is a literal, F and L ∪ {l} have the same set of satisfying assignments on the
variables of F .

A trivial solitaire decomposition of an arbitrary CNF is obtained by adding
a new fresh variable x to each clause of the formula and then using l := x as the
only literal in the small set:

SBCD(C1 ∧ C2 ∧ · · · ∧ Cm) = ({x ∨ C1} ∧ {x ∨ C2} ∧ · · · ∧ {x ∨ Cm}, {x})

It is easy to see that {x ∨C1} ∧ {x ∨C2} ∧ · · · ∧ {x ∨Cm} is a blocked set with
x being the blocking literal for each clause. As improvement, perform blocked
clause decomposition and then add a new fresh variable only to the clauses in the
small set R. These clauses can then be moved to L and the new R will contain
only the negation of the new variable.

6 Extracting Circuits

Using the reconstruction algorithm discussed in Sect. 4, it is possible to con-
struct a circuit representation of a blocked set. Let F be a blocked set and let
C1, . . . , Cm be the clauses of F in the order in which they are removed by blocked
clause elimination. During the reconstruction algorithm, we iterate through all
the clauses of F starting from Cm to C1 and flip the blocking literal of a clause
if and only if that clause is not satisfied, i.e., all its literals are set to 0.

For each original variable x1, . . . , xn of F , we will have several new variables
called versions. By xi,k, we denote the k-th version of xi (xi,0 is xi) and by xi,$,
the latest version of xi (xi,$ = xi,k if k is the largest integer such that xi,k is
defined). The notation is extended to literals in the same way.

Starting with Cm, we traverse the clauses in the reverse order of their elimi-
nation. For each clause C = (xi∨ yj1 ∨ · · ·∨ yjk), where xi is the blocking literal,
we create a new version of xi. We do this to represent the fact that the literal
might have been flipped and can have a different value in the following iterations.
The value of the new version is given by the following definition.

xi,$+1 := xi,$ ∨ (yj1,$ ∧ · · · ∧ yjk,$)

The following example demonstrates the definitions obtained from a blocked set.

Example 1. Let F = (x1 ∨ x3 ∨ x2)∧ (x3 ∨ x4 ∨ x1)∧ (x1 ∨ x2 ∨ x3). Using BCE,
the clauses can be eliminated in the order of their appearance with the first
literal being the blocking literal. We proceed in the reverse order and obtain the
following definitions:

x1,1 := x1,0 ∨ (x2,0 ∧ x3,0)

x3,1 := x3,0 ∨ (x4,0 ∧ x1,1)

x1,2 := x1,1 ∨ (x3,1 ∧ x2,0)

These equations can be directly implemented as a circuit or, w.l.o.g., as
an AIG. The first versions of the variables (xi,0) are the inputs of the circuit
and the higher versions are defined by the definitions. Using this construction,
together with the solitaire decomposition as defined in Sect. 5, we can translate
an arbitrary CNF (i.e. F /∈ BS) into an instance of the circuit SAT problem in the
form of an AIG as follows: The large set L of the decomposition (with L ∈ BS) is
first encoded into an AIG G as already described. Then the output is defined to
be the conjunction of G with the latest version of the unit literal corresponding to

the small set. By doing this, one can potentially apply simplification techniques
known from circuit synthesis and model checking (e.g. use ABC [9] to rewrite
the circuit) and potentially profit from the similarity of blocked sets to circuits.

7 CNF Reencodings

In this section, we describe several ways of reencoding SAT problems using the
result of blocked clause decomposition. Our input as well as our output is a CNF
formula. By reencoding, we hope to increase the speed of SAT solving. The idea
is similar to the one of circuit extraction described in Sect. 6. In comparison to
the AIG encoding, our CNF encoding is more complex and versatile.

First, we describe how to encode the progression of the solution reconstruc-
tion for one blocked set C1 ∧ · · · ∧Cm. For each variable xi, we will have several
versions as already described in Sect. 6, with xi,$ being the latest version of xi. As
we did previously, we traverse the clauses in the order Cm, . . . , C1 and introduce
a new version for the blocking literal for each clause using the definition

xi,$+1 := xi,$ ∨ (yj1,$ ∧ · · · ∧ yjk,$)

which can be expressed by the following k + 2 clauses:

(xi,$ ∨ xi,$+1) ∧ (xi,$+1 ∨ yj1,$ ∨ · · · ∨ yjk,$) ∧
k∧

l=1

(yjl,$ ∨ xi,$+1 ∨ xi,$) (1)

This formula represents the main step of the reconstruction algorithm, which
states that the blocking literal is flipped if and only if the clause is not satisfied.

While symbolically encoding the progression of the reconstruction algorithm,
we might decide not to have new versions for some of the variables. During
reconstruction this corresponds to disallow that their values are flipped. Thus
these variables need to have the right truth value from the beginning. Specifying
that xi should not have versions, means that xi,$+1 = xi,$ = xi which turns k+1
of the k+2 clauses of (1) into a tautology. The remaining clause is just a copy of
the original clause using the latest versions of the variables. If we decided that
none of the variables should have new versions, then the result of the reencoding
would simply be the original formula.

In the rest of this section we propose several options to reencode a pair of
blocked sets. The simplest way is to reencode the large blocked set L and append
the clauses of R with variables renamed according to the last versions of variables
from the reencoding of L. This can be done even for asymmetric decompositions
since we have no requirement on R. Another way is to reencode both blocked
sets and then make the last versions of the corresponding variables equal. This
can be done by renaming the last versions from one blocked set to match the last
versions in the other. As mentioned earlier, we can decide not to have versions
for some of the variables. There are several heuristics which can be used to select
these variables. In our experiments we found the following two heuristics useful.

1. Have versions only for variables that occur in both sets.
2. Have versions only for variables that occur as a blocking literal in both sets.

The entire reencoding process can be done in several ways. First, we need to
choose a decomposition and a post-processing algorithm to obtain the blocked
sets. Next, we need to decide which variables should have versions and whether to
reencode both blocked sets. The choice of the decomposition and post-processing
algorithms strongly influences the runtime but also the quality of the reencoding.
As we will see from the experiments, better decompositions usually result in
reencoded formulas that are easier to solve. The number of variables which have
versions has a strong impact on the size of the reencoded formula which also
influences the runtime of SAT solvers. Unfortunately, there is no clear choice
since different combinations work best for different benchmark formulas.

8 Experiments

The algorithms described above were implemented in a Java tool which takes
CNF formulas as input and produces an AIG or a reencoded CNF formula as
output. The tool, its source code, and log files of experiments described in this
section are available at http://ktiml.mff.cuni.cz/~balyo/bcd/.

We evaluated the proposed methods on the 300 instances from the applica-
tion track of the SAT Competition 2013. All experiments were run on a 32-node
cluster with Intel Core 2 Quad (Q9550 @2.83GHz) processors and 8GB of mem-
ory. We used a time limit of 5000 seconds and a memory limit of 7000MB, a
similar set-up as in the SAT Competition 2013.

To solve the reencoded instances, we used the SAT solver Lingeling [7], the
winner of the application track of the SAT Competition 2013. We used the syn-
thesis and verification system ABC [9] to simplify AIG circuits and the AIGER
library to convert between different AIG formats and converting AIG to CNF.

Figure 4 shows the performance of various decomposition methods. The best
decomposition can be obtained by using unit decomposition followed by the
lightweight and eager post-processing methods. Further, we observe that the
eager post-processing method can significantly increase the quality after pure
decomposition and often helps the unit decomposition. On the other hand, the
eager post-processing can increase the time of decomposition up to 1000 seconds,
which takes away a lot of time from the SAT solver.

In Fig. 5 the time required to solve the instances before and after reencod-
ing are shown, as described in Sect. 7. For the experiments, we used different
decomposition methods (see Fig. 5) followed by the simple reencoding method
(only reencode the large set and rename the small set). Versions were only intro-
duced for variables that occur as a blocking literal in both sets. For most of the
problems, Lingeling with the original formula dominates the other methods and
it is only for the hard problems (solved after 3500 seconds) that the reencoding
starts to pay off. Overall, Lingeling without reencoding solved 232 instances,
with Unit+Blockable decomposition it solved 237, and with Pure+Eager 240.

http://ktiml.mff.cuni.cz/~balyo/bcd/

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300

%
 o

f
C

la
u
se

s
in

 t
h
e
 L

a
rg

e
 S

e
t

Problems

Quality of Decomposition

Unit + Blocked + Blockable + Eager
Unit + Blocked + Blockable

Pure + Blocked + Blockable + Eager
Pure + Blocked + Blockable

Pure + Blocked

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Ti
m

e
 i
n
 S

e
co

n
d

s

Problems

Decomposition Time

Pure + Blocked + Blockable + Eager
Unit + Blocked + Blockable + Eager

Pure + Blocked + Blockable
Unit + Blocked + Blockable

Pure + Blocked

Fig. 4. The quality (percentage of the number of clauses in the large blocked set) and
runtime of several decomposition and post-processing algorithm combinations.

Figure 6 demonstrates the usefulness of the circuit extraction and simplifica-
tion approach. Similarly to the reencoding approach, this is also only useful for
harder instances (solved after 3000 seconds). For the hardest 20 problems, our
approach clearly takes over and ends up solving 7 more instances. These include
two instances which were not solved by any sequential solver in the SAT compe-
tition 2013: kummling grosmann–pesp/ctl 4291 567 8 unsat pre.cnf and kumm-
ling grosmann–pesp/ctl 4291 567 8 unsat.cnf. For this experiment, we only used
those 135 instances where we can obtain a decomposition with a certain quality,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250

Ti
m

e
 i
n
 S

e
co

n
d
s

Problems

Solving Time with and without Reencoding

Lingeling
Pure + Eager + Lingeling

Pure + Blockable + Lingeling
Unit + Eager + Lingeling

Unit + Blockable + Lingeling

Fig. 5. The time required to solve the benchmark formulas which can be solved in 5000
seconds. The time limit for the reencoded instances was decreased by the time required
for the reencoding process.

namely 90% of the clauses must be in the large set. To obtain the blocked sets
we used unit decomposition with eager post-processing.

9 Conclusion

Simplification techniques based on blocked clauses can have a big influence on
SAT solver performance. In this paper, we looked at blocked clauses in detail once
again. We showed that blocked sets are closed under unit propagation while they
are not closed under resolution or partial assignments. We proposed new ways for
finding solutions of blocked sets and modified existing reconstruction algorithms
to work with partial assignments. This enables us to find multiple solutions in
one reconstruction run. This allows to rule out backbones and implied binary
equivalences faster. Further, we analyzed the performance of local search on
blocked sets.

While existing local search solvers performed rather poorly a simple extension
improves the efficiency of local search on blocked sets significantly. We revisited
blocked clause decomposition and described several new decomposition tech-
niques as well as improved versions of existing ones. In particular, we showed
how unit decomposition heuristics can be extended to be successful on more
problems. We defined solitaire decomposition and described how it can be used
to translate SAT to circuit SAT. We proposed various reencoding techniques to
obtain different CNF representations. In the experimental section, we evaluated
the performance of the state-of-the-art SAT solver Lingeling on the reencoded

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120

Ti
m

e
 i
n
 S

e
co

n
d
s

Poblems

Solving Time with and without Circuit Simplification

Ligenling + ABC
Ligenling after ABC

Lingeling

Fig. 6. The time required to solve the benchmark formulas, which can be decomposed
with a quality of at least 90% (135 of 300 instances). The plot shows Lingeling on
the original formula and the formula obtained by AIG circuit extraction followed by
circuit simplification using the dc2 method of ABC (with a 500 seconds time limit) and
finally reencoding the simplified circuit back to CNF. The data labeled ”Lingeling +
ABC” represents the total time required by the solving, reencodings and simplification.
Lingeling alone can solve 95 instances and 102 after reencoding and simplification.

benchmarks. Our results showed that Lingeling can benefit from the reencod-
ings being able to solve more formulas in a given time limit. The performance
of solving is increased mainly for harder instances.

As future work, we want to optimize our circuit extraction techniques. If
parts of a CNF were obtained from a circuit SAT problem, the original repre-
sentation might help to solve the problem. It is unclear if or how this original
structure can best be extracted from a CNF. However, there is a close connec-
tion between blocked clause elimination and operations on the circuit structure
of a formula [3]. Therefore a better understanding of blocked sets might be an
important step into this direction.

From a theoretical point of view, it is still not clear whether or how all
solutions of a blocked set of clauses can be enumerated in polynomial time.
Although this was conjectured to be possible in [5], it still has not been proven.
While this conjecture is interesting from the theoretical point of view, it also
would have important implications in practice since it guarantees the efficiency
of algorithms on formulas containing blocked subsets with few solutions.

Finally, blocked clause decomposition and solving blocked sets needs a non-
negligible portion of time in the solving process.Therefore, further improvements
for decomposition techniques or the solving process of blocked sets will also
directly affect the number of formulas that can be solved.

References

1. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proceedings of
IJCAR 2012. Volume 7364 of LNCS., Springer (2012) 355–370

2. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96–97 (1999) 149–176

3. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In Esparza, J.,
Majumdar, R., eds.: TACAS ’10. Volume 6015 of LNCS., Springer (2010) 129–144

4. Järvisalo, M., Biere, A., Heule, M.J.H.: Simulating circuit-level simplifications on
cnf. Journal of Automated Reasoning 49(4) (2012) 583–619

5. Heule, M.J.H., Biere, A.: Blocked clause decomposition. In: Proceedings of the
19th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’13). (2013)

6. Parkes, A.J.: Clustering at the phase transition. In: In Proc. of the 14th Nat.
Conf. on AI, AAAI Press / The MIT Press (1997) 340–345

7. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013.
In: In Proceedings of SAT Competition 2013, A. Balint, A. Belov, M. J. H. Heule,
M. Järvisalo (editors), vol. B-2013-1 of Department of Computer Science Series of
Publications B pages 51-52, University of Helsinki, 2013. (2013)

8. Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting: A fresh
look at combinational logic synthesis. In Sentovich, E., ed.: Proceedings of the 43rd
Design Automation Conference (DAC 2006), ACM (2006) 532–535

9. Brayton, R.K., Mishchenko, A.: Abc: An academic industrial-strength verification
tool. In: Proc. CAV’10. (2010) 24–40

10. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 21(12) (2002)

11. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In Cimatti, A., Sebastiani, R., eds.:
SAT. Volume 7317 of LNCS., Springer (2012) 16–29

12. Balint, A., Fröhlich, A.: Improving stochastic local search for sat with a new
probability distribution. In Strichman, O., Szeider, S., eds.: SAT. Volume 6175 of
LNCS., Springer (2010) 10–15

13. Li, C., Fan, Y.: Cca2013. In: Proceedings of SAT Competition 2013: Solver and
Benchmark Descriptions. (2013)

