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Abstract. Propositional proof systems based on recently-developed re-
dundancy properties admit short refutations for many formulas tradi-
tionally considered hard. Redundancy properties are also used by proce-
dures which simplify formulas in conjunctive normal form by removing
redundant clauses. Revisiting the covered clause elimination procedure,
we prove the correctness of an explicit algorithm for identifying covered
clauses, as it has previously only been implicitly described. While other
elimination procedures produce redundancy witnesses for compactly re-
constructing solutions to the original formula, we prove that witnesses for
covered clauses are hard to compute. Further, we show that not all cov-
ered clauses are propagation redundant, the most general, polynomially-
verifiable standard redundancy property. Finally, we close a gap in the
literature by demonstrating the complexity of clause redundancy itself.
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1 Introduction

Boolean satisfiability (SAT) solvers have become successful tools for solving rea-
soning problems in a variety of applications, from formal verification [6] and
security [27] to pure mathematics [10,19,24]. Significant recent progress in the
design of SAT solvers has come as a result of exploiting the notion of clause re-
dundancy (for instance, [14,16,18]). For a propositional formula F in conjunctive
normal form (CNF), a clause C is redundant if it can be added to, or removed
from, F without affecting whether F is satisfiable [23].

In particular, redundancy forms a basis for clausal proof systems. These
systems refute an unsatisfiable CNF formula F by listing instructions to add
or delete clauses to or from F , where the addition of a clause C is permitted
only if C meets some criteria ensuring its redundancy. By eventually adding the
empty clause, the formula is proven to be unsatisfiable. Crucially, the redundancy
criteria of a system can also be used as an inference rule by a solver searching
for such refutations, or for satisfying assignments.

? Supported by the Austrian Science Fund (FWF) under project W1255-N23, the
LogiCS Doctoral College on Logical Methods in Computer Science, as well as the
LIT Artificial Intelligence Lab funded by the State of Upper Austria.
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Proof systems based on the recently introduced PR (Propagation Redun-
dancy) criteria [15] have been shown to admit short refutations of the famous
pigeonhole formulas [11,17]. These are known to have only exponential-size refu-
tations in many systems, including resolution [9] and constant-depth Frege sys-
tems [1], but have polynomial-size PR refutations. In fact, many problems typi-
cally considered hard have short PR refutations, spurring interest in these sys-
tems from the viewpoint of proof complexity [4]. Further, systems based on PR
are strong even without introducing new variables, and have the potential to
afford substantial improvements to SAT solvers (such as in [16,18]).

The PR criteria is very general, encompassing nearly all other established
redundancy criteria, and it is NP-complete to decide whether it is met by a
given clause [18]. However, when the clause is given alongside a witness, a partial
assignment providing additional evidence for the clause’s redundancy, the PR
criteria can be polynomially verified [15]. SAT solvers producing refutations in
the PR system must find and record a witness for each PR clause addition.

Redundancy is also a basis for clause elimination procedures, which simplify
a CNF formula by removing redundant clauses [12,14]. These are useful pre-
processing and inprocessing techniques that also make use of witnesses, but for
the task of solution reconstruction: correcting satisfying assignments found after
simplifying to ensure they solve the original formula. A witness for a clause C
details how to fix assignments falsifying C without falsifying other clauses in
the formula [15,17], so solvers using elimination procedures that do not preserve
formula equivalence typically provide a witness for each removed clause.

Covered clause elimination (CCE) [13] is a strong procedure which removes
covered clauses, a generalization of blocked clauses [20,25], and has been imple-
mented in various SAT solvers (for example, [2,3,8]) and the CNF preprocessing
tool Coprocessor [26]. CCE does not preserve formula equivalence, but provides
no witnesses for the clauses it removes. Instead, it uses a complex technique to
reconstruct solutions in multiple steps, requiring at times a quadratic amount of
space to reconstruct a single clause [14,21]. CCE has so far only been implicitly
described, and it is not clear how to produce witnesses for covered clauses.

In this paper we provide an explicit algorithm for identifying covered clauses,
and show that their witnesses are difficult to produce. We also demonstrate that
although covered clauses are redundant, they do not always meet the criteria
required by PR. This suggests it may be beneficial to consider redundancy prop-
erties beyond PR which allow alternative types of witnesses. There has already
been some work in this direction with the introduction of the SR (Substitution
Redundancy) property by Buss and Thapen [4].

The paper is organized as follows. In section 2 we provide necessary back-
ground and terminology, while section 3 reviews covered clause elimination, pro-
vides the algorithm for identifying covered clauses, and proves that this algorithm
and its reconstruction strategy are correct. Section 4 includes proofs about wit-
nesses for covered clauses, and shows that they are not encompassed by PR. In
section 5 we consider the complexity of deciding clause redundancy in general,
followed by a conclusion and discussion of future work in section 6.
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2 Preliminaries

A literal is a boolean variable x or its negation ¬x. A clause is a disjunction
of literals, and a formula is a conjunction of clauses. We often identify a clause
with the set of its literals, and a formula with the set of its clauses. For a set of
literals S we write ¬S to refer to the set ¬S = {¬l | l ∈ S}. The set of variables
occurring in a formula F is written var(F ). The empty clause is represented by
⊥, and the satisfied clause by >.

An assignment is a function from a set of variables to the truth values true
and false. An assignment is total for a formula F if it assigns a value for every
variable in var(F ), otherwise it is partial. An assignment is represented by the
set of literals it assigns to true. The composition of assignments τ and υ is

τ ◦ υ(x) =

{
τ(x) if x,¬x 6∈ υ
υ(x) otherwise

for a variable x in the domain of τ or υ. For a literal l, we write τl to represent
the assignment τ ◦ {l}. An assignment satisfies (resp., falsifies) a variable if
it assigns that variable true (resp., false). Assignments are lifted to functions
assigning literals, clauses, and formulas in the usual way.

Given an assignment τ and a clause C, the partial application of τ to C is
written C|τ and is defined as follows: C|τ = > if C is satisfied by τ , otherwise,
C|τ = {l | l ∈ C and ¬l 6∈ τ}. Likewise, the partial application of the assignment
τ to a formula F is written F |τ and defined by: F |τ = > if σ satisfies F , otherwise
F |τ = {C|τ | C ∈ F and C|τ 6= >}. Unit propagation refers to the iterated
application of the unit clause rule, replacing F by F |{l} for each unit clause
(l) ∈ F , until there are no unit clauses left.

We write F � G to indicate that every assignment satisfying F , and which is
total for G, satisfies G as well. Further, we write F `1 G to mean F implies G
by unit propagation: for every D ∈ G, unit propagation on ¬D ∧ F produces ⊥.

A clause C is redundant with respect to a formula F if the formulas F \ {C}
and F ∪ {C} are satisfiability-equivalent: both satisfiable, or both unsatisfi-
able [23]. The following theorem provides a characterization of clause redundancy
based on logical implication.

Theorem 1 (Heule, Kiesel, and Biere [17]). A non-empty clause C is re-
dundant with respect to a formula F (with C 6∈ F ) if and only if there is a partial
assignment ω such that ω satisfies C, and F |α � F |ω, where α = ¬C.

As a result, redundancy can be shown by providing a witnessing assignment ω
(or witness) and demonstrating that F |α � F |ω. When the logical implication
relation “�” is replaced with “`1,” the result is the definition of a propagation
redundant or PR clause, and ω is called a PR witness [15]. Determining whether
a clause is PR with respect to a formula is NP-complete [18], but since it can be
decided in polynomial time whether F `1 G for arbitrary formulas F and G, it
can be efficiently decided whether a given assignment is a PR witness.
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A clause elimination procedure iteratively identifies and removes clauses sat-
isfying a particular redundancy property from a formula, until no such clauses
remain. A simple example is subsumption elimination, which removes any clauses
C ∈ F that are subsumed by another clause D ∈ F ; that is, D ⊆ C. Subsump-
tion elimination is model-preserving, as it only removes clauses C such that any
assignment satisfying F \ {C} also satisfies F ∪ {C}.

Some clause elimination procedures are not model-preserving. Blocked clause
elimination [20,25] iteratively removes from a formula F any clauses C satisfying
the following property: C is blocked by a literal l ∈ C if for every clause D ∈ F
containing ¬l, there is some other literal k ∈ C with ¬k ∈ D. For a blocked
clause C, there may be assignments satisfying F \ {C} which falsify F ∪ {C}.
However, blocked clauses are redundant, so if F ∪ {C} is unsatisfiable, then so
is F \ {C}, thus blocked clause elimination is still satisfiability-preserving.

Clause elimination procedures which are not model-preserving must provide
a way to reconstruct solutions to the original formula out of solutions to the
reduced formula. Witnesses provide a convenient framework for reconstruction:
if C is redundant with respect to F , and τ is a total or partial assignment
satisfying F but not C, then τ ◦ω satisfies F ∪{C}, for any witness ω for C with
respect to F [7,17]. For reconstructing solutions after removing multiple clauses,
a sequence σ of witness-labeled clauses (ω : C), called a reconstruction stack, can
be maintained and used as follows [7,21].

Definition 1. Given a sequence σ of witness-labeled clauses, the reconstruction
function (w.r.t. σ) is defined recursively as follows, for an assignment τ : 1

Rε(τ) = τ, Rσ·(ω:D)(τ) =

{
Rσ(τ) if τ(D) = >
Rσ(τ ◦ ω) otherwise.

For a set of clauses S, a sequence σ of witness-labeled clauses satisfies the recon-
struction property for S, or is a reconstruction sequence for S, with respect to a
formula F if Rσ(τ) satisfies F ∪S for any assignment τ satisfying F \S. As long
as a witness is recorded for each clause C removed by a non-model-preserving
procedure, even combinations of different clause elimination procedures can be
used to simplify the same formula. Specifically, σ = (ω1 : C1) · · · (ωn : Cn) is
a reconstruction sequence for {C1, . . . , Cn} ⊆ F if ωi is a witness for Ci with
respect to F \ {C1, . . . , Ci}, for all 1 ≤ i ≤ n [7].

The following lemma results from the fact that the reconstruction function
satisfies Rσ·σ′(τ) = Rσ(Rσ′(τ)), for any sequences σ, σ′ and assignment τ [7].

Lemma 1. If σ is a reconstruction sequence for a set of clauses S with respect
to F ∪ {C}, and σ′ is a reconstruction sequence for {C} with respect to F , then
σ · σ′ is a reconstruction sequence for S with respect to F .

1 This improved variant over [7] is due to Christoph Scholl (3rd author of [7]).
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3 Covered Clause Elimination

This section reviews covered clause elimination (CCE) and its asymmetric vari-
ant (ACCE), introduced by Heule, Järvisalo, and Biere [13], and presents an
explicit algorithm implementing the more general ACCE procedure. The def-
initions as given here differ slightly from the original work, but are generally
equivalent. A proof of correctness for the algorithm and its reconstruction se-
quence are given.

CCE is a clause elimination procedure which iteratively extends a clause by
the addition of so-called “covered” literals. If at some point the extended clause
becomes blocked, the original clause is redundant and can be eliminated. To
make this precise, the set of resolution candidates in F of C upon l, written
RC(F,C, l), is defined as the collection of clauses in F with which C has a
non-tautological resolvent upon l (where “⊗l” denotes resolution):

RC(F,C, l) = {C ′ ∨ ¬l ∈ F | C ′ ∨ ¬l ⊗l C 6≡ >}.

The resolution intersection in F of C upon l, written RI(F,C, l), consists of
those literals occurring in each of the resolution candidates, apart from ¬l:

RI(F,C, l) =
(⋂

RC(F,C, l)
)
\ {¬l}.

If RI(F,C, l) 6= ∅, its literals are covered by l and can be used to extend C.

Definition 2. A literal k is covered by l ∈ C with respect to F if k ∈ RI(F,C, l).
A literal is covered by C if it is covered by some literal in C.

Covered literals can be added to a clause in a satisfiability-preserving manner,
meaning that if the extended clause C ∪ RI(F,C, l) is added to F , then C is
redundant. In fact, C is a PR clause.

Proposition 1. C is PR with respect to F ′ = F ∧ (C∪RI(F,C, l)) with witness
ω = αl, for l ∈ C and α = ¬C.

Proof. Consider a clause D|ω ∈ F ′|ω, for some D ∈ F ′. We prove that ω is a PR
witness by showing that F ′|α implies D|ω by unit propagation. First, we know
l 6∈ D, since otherwise D|ω = > would vanish in F |ω. If also ¬l 6∈ D, this means
D|ω = D|α, and therefore F ′|α `1 D|ω. Now, suppose ¬l ∈ D. Notice that D
contains no other literal k such that ¬k ∈ C, since otherwise D|ω = > here as
well. As a result D ∈ RC(F,C, l), so RI(F,C, l) ⊂ D and RI(F,C, l) \C ⊆ D|ω.
Notice RI(F,C, l) \ C = (C ∪ RI(F,C, l))|α ∈ F ′|α, therefore F ′|α `1 D|ω. ut

Consequently, C is redundant with respect to F ∪ {C ′} for any C ′ ⊇ C con-
structed by iteratively adding covered literals to C. In other words, F and
(F \ {C}) ∪ {C ′} are satisfiability-equivalent, so that C could be replaced by
C ′ in F without affecting the satisfiability of the formula. Thus if some such
extension C ′ would be blocked in F , that C ′ would be redundant, and therefore
C is redundant itself. CCE identifies and removes such clauses from F .
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Definition 3. A clause C is covered in F if an extension of C by iteratively
adding covered literals is blocked.

CCE refers to the following procedure: while some clause C in F is covered,
remove C (that is, replace F with F \ {C}).

ACCE strengthens this procedure by extending clauses using a combination
of covered literals and asymmetric literals. A literal k is asymmetric to C with
respect to F if there is a clause C ′ ∨ ¬k ∈ F such that C ′ ⊆ C. The addition of
asymmetric literals to a clause is model-preserving, so that the formulas F and
(F \ {C}) ∪ {C ∨ k} are equivalent, for any k which is asymmetric to C [12].

Definition 4. A clause C ′ ⊇ C is an ACC extension of C with respect to F if
C ′ can be constructed from C by the iterative addition of covered and asymmetric
literals. If some ACC extension of C is blocked or subsumed in F , then C is an
asymmetric covered clause (ACC).

ACCE performs the following: while some C in F is an ACC, remove C from F .
Solvers aiming to eliminate covered clauses more often implement ACCE than
plain CCE, since asymmetric literals can easily be found by unit propagation,
and ACCE is more powerful than CCE, eliminating more clauses [12,13].

The procedure ACC(F,C) in Fig. 1 provides an algorithm identifying whether
a clause C is an ACC with respect to a formula F . This procedure differs in some
ways, and includes optimizations over the original procedure as implicitly given
by the definition of ACCE. Notably, two extensions of the original clause C are
maintained: E consists of C and any added covered literals, while α tracks C
and all added literals, both covered and asymmetric. The literals in α are kept
negated, so that E ⊆ ¬α, and the clause represented by ¬α is the ACC extension
of the original clause C being computed.

The E and α extensions are maintained separately for two purposes. First,
the covered literal addition loop (lines 9–16) needs to iterate only over those
literals in E, and can ignore those in (¬α) \ E, as argued below.

Lemma 2. If k is covered by l ∈ (¬α) \ E, then k ∈ ¬α already.

Proof. If l belongs to ¬α but not to E, then there is some clause D ∨ ¬l in F
such that D ⊆ ¬α. But then D ∨ ¬l occurs in RC(F,¬α, l), and consequently
RI(F,¬α, l) ⊆ D ⊆ ¬α. Thus k ∈ RI(F,¬α, l) implies k ∈ ¬α. ut

Notice that the computation of the literals covered by l ∈ E also prevents any
of these literals already in ¬α from being added again.

The second reason for separating E and α is as follows. When a covered literal
is found, or when the extended clause is blocked, the algorithm appends a new
witness-labeled clause to the reconstruction sequence σ (lines 11 and 14). Instead
of (¬αl : α), the procedure adds the shorter witness-labeled clause (¬El : E).
The proof of statement (3) in lemma 3 below shows that this is sufficient.
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Certain details are omitted, especially concerning the addition of asymmetric
literals (lines 6–7), but notice that it is never necessary to recompute F |α entirely.
Instead the assignment falsifying each u newly added to α can simply be applied
to the existing F |α. In contrast, the for each loop (lines 9–16) should re-iterate
over the entirety of E each time, as added literals may allow new coverings:

Example 1. Let C = a ∨ b ∨ c and

F = (¬a ∨ ¬x1) ∧ (¬a ∨ x2) ∧ (¬b ∨ ¬x1) ∧ (¬b ∨ ¬x2) ∧ (¬c ∨ x1)

Initially, neither a nor b cover any literals, but c covers x1, so it can be added
to the clause. After extending, a in C ∨ x1 covers x2, and b blocks C ∨ x1 ∨ x2.

The following lemma supplies invariants for arguing about ACC(F,C).

Lemma 3. After each update to α, for the clauses represented by ¬α and E:

(1) ¬α is an ACC extension of C,
(2) F ∪ {¬α} � F ∪ {E}, and
(3) σ is a reconstruction sequence for {C} with respect to F ∪ {¬α}.

Proof. Let αi, σi, and Ei refer to the values of α, σ, and E, respectively, after
i ≥ 0 updates to α (so that αi ( αi+1 for each i, but possibly σi = σi+1 and
Ei = Ei+1). Initially, (1) and (2) hold as E = ¬α0 = C. Further, σ0 = ε is a
reconstruction sequence for {C} with respect to F ∪ {C}, so (3) holds as well.
Assuming these claims hold after update i, we show that they hold after i+ 1.

First suppose update i+ 1 is the result of executing line 7.

(1) αi+1 = αi ∪U , where u ∈ U implies (u) is a unit clause in F |αi
. Then ¬αi+1

is the extension of ¬αi by the addition of asymmetric literals ¬U . Assuming
¬αi is an ACC extension of C, then so is ¬αi+1.

(2) Asymmetric literal addition is model-preserving, so F∪{¬αi+1} � F∪{¬αi}.
Since E was not updated, Ei+1 = Ei. Assuming F ∪ {¬αi} � F ∪ {Ei}, we
get F ∪ {¬αi+1} � F ∪ {Ei+1}.

(3) Again, asymmetric literal addition is model-preserving. Assuming σi is a
reconstruction sequence for {C} with respect to F ∪ {αi}, then lemma 1
implies σi+1 = σi · ε = σi reconstructs {C} with respect to F ∪ {¬αi+1}.

Now, suppose instead update i+ 1 is executed in line 16.

(1) αi+1 = αi ∪ Φ, for some set of literals Φ 6= ∅ constructed for l ∈ E ⊆ ¬α.
Notice for k ∈ Φ that k ∈ RI(F,¬α, l), so k is covered by ¬α. Thus assuming
¬αi is a ACC extension of C, then ¬αi+1 is as well.

(2) Consider an assignment τ satisfying F ∪{¬αi+1}. If τ satisfies ¬αi ⊂ ¬αi+1

then τ satisfies F ∪ {¬αi} and by assumption, F ∪ {Ei}. Since Ei ⊂ Ei+1

in this case, τ satisfies F ∪ {Ei+1}. If instead τ satisfies some literal in
¬αi+1 \ ¬αi then τ satisfies Φ ⊆ Ei+1, so τ satisfies F ∪ {Ei+1}. Thus
F ∪ {¬αi+1} � F ∪ {Ei+1} in this case as well.
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ACC(F,C)

1 σ := ε

2 E := C

3 α := ¬C
4 repeat

5 if ⊥ ∈ F |α then return (true, σ)

6 if there are unit clauses in F |α then

7 α := α ∪ {u} for each unit u

8 else

9 for each l ∈ E
10 G := {D|α | (D ∨ ¬l) ∈ F and D|α 6= >}
11 if G = ∅ then return

(
true, σ · (¬El : E)

)
12 Φ :=

⋂
G

13 if Φ 6= ∅ then

14 σ := σ · (¬El : E)

15 E := E ∪ Φ

16 α := α ∪ ¬Φ
17 until no updates to α

18 return (false, ε)

Fig. 1. Asymmetric Covered Clause (ACC) Identification. The procedure ACC(F,C)
maintains a sequence σ of witness-labeled clauses, and two sets of literals E and α. The
main loop iteratively searches for literals which could be used to extend C and adds
their negations to α, so that the clause represented by ¬α is an ACC extension of C.
The set E records only those which could be added as covered literals. If C is an ACC,
then ACC(F,C) returns (true, σ): in line 5 if the extension ¬α becomes subsumed in F ,
or in line 11 if it becomes blocked. In either case, the witness-labeled clauses in σ form
a reconstruction sequence for the clause C. Note that lines 5–7 implement Boolean
constraint propagation (over the partial assignment α) and can make use of efficient
watched clause data structures, while line 10 has to collect all clauses containing ¬l,
which are still unsatisfied by α, and thus requires full occurrence lists.
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(3) Proposition 1 implies ((αi)l : ¬αi) is a reconstruction sequence for {¬αi}
with respect to F ∪ {¬αi+1}. As Ei ⊆ ¬αi, and F ∪ {¬αi} � F ∪ {Ei}
by assumption, then any τ falsifies ¬αi if and only if τ falsifies Ei. Since
l ∈ Ei as well, then ((¬Ei)l : Ei) is, in fact, also a reconstruction sequence
for {¬αi} with respect to F ∪ {¬αi+1}. Finally, with the assumption σi is a
reconstruction sequence for C with respect to F ∪{¬αi} and lemma 1, then
σi+1 = σi ·((¬Ei)l : Ei) is a reconstruction sequence for {C} in F ∪{¬αi+1}.

Thus both updates maintain invariants (1)–(3). ut

With the help of this lemma we can now prove the following theorem, which

shows the correctness of ACC(F,C).
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Theorem 2. For a formula F and a clause C, the procedure ACC(F,C) returns
(true, σ) if and only if C is an ACC with respect to F . Further, if ACC(F,C)
returns (true, σ), then σ is a reconstruction sequence for {C} with respect to F .

Proof. (⇒) Suppose (true, σ) is returned in line 5. Then ⊥ ∈ F |α, so there is
some D ∈ F such that D ⊆ ¬α; that is, ¬α is subsumed by D. By lemma 3 then
an ACC extension of C is subsumed in F , so C is an ACC with respect to F .
Further, subsumption elimination is model-preserving, so that lemmas 1 and 3
imply σ is a reconstruction sequence for C with respect to F .

Suppose now that (true, σ) is returned in line 11. Then for α and some l ∈ E,
all clauses in F with ¬l are satisfied by α. Since E ⊆ ¬α, then ¬α is blocked
by l. By lemma 3 then C is an ACC with respect to F . Now, αl is a witness
for ¬α with respect to F , and (αl : ¬α) is a reconstruction sequence for {¬α}
in F . Further, E ⊆ ¬α, and lemma 3 gives F ∪ {¬α} � F ∪ {E}, therefore
((¬Ei)l : Ei) is a reconstruction sequence for {¬α} in F as well. Then lemma 1
implies σ · (¬El : E) is a reconstruction sequence for C with respect to F .

(⇐) Suppose C is an ACC; that is, some C ′ = C ∨ k1 ∨ · · · ∨ kn is blocked
or subsumed in F , where k1 is an asymmetric or covered literal for C, and ki
is an asymmetric or covered literal for C ∨ k1 ∨ · · · ∨ ki−1 for i > 1. Towards a
contradiction, assume ACC(F,C) returns (false, ε). Then for the final value of
α, the clause represented by ¬α is not blocked nor subsumed in F , and hence,
C ′ 6⊆ ¬α. As C ⊆ ¬α, there must be some values of i such that ¬ki 6∈ α.

Letm refer to the least such i; that is, ¬km 6∈ α, but ¬ki ∈ α for all 1 ≤ i < m.
Thus km is asymmetric, or covered by, Cm−1 = C ∨ k1 ∨ · · · ∨ km−1.

If km is asymmetric to Cm−1, there is some clause D ∨ ¬km in F such that
D ⊆ Cm−1. By assumption, ¬km 6∈ α but ¬Cm−1 ⊆ α. Further, km 6∈ α, as
otherwise (D ∨ ¬km)|α = ⊥ and ACC(F,C) would have returned true. But
(D ∨ ¬km)|α = ¬km would be a unit in F |α and added to α by line 7.

If instead km is covered by Cm−1, then km ∈ RI(F,Cm−1, l) for some literal
l ∈ Cm−1 ⊆ ¬α. In fact l ∈ E, by lemma 2. During the lth iteration of the for
each loop, then km ∈ Φ, and ¬km would be added to α by line 16. ut

ACC(F,C) produces, for any asymmetric covered clause C in F , a reconstruc-
tion sequence σ for C with respect to F . This allows ACCE to be used during
preprocessing or inprocessing like other clause elimination procedures, append-
ing this σ to the solver’s main reconstruction stack whenever an ACC is removed.
However, the algorithm does not produce redundancy witnesses for the clauses
it removes. Instead, σ consists of possibly many witness-labeled clauses, starting
with the redundant clause C, and reconstructs solutions for C in multiple steps.

In contrast, most clause elimination procedures produce a single witness-
labeled clause (ω : C) for each removed clause C. In practice, only the part of
ω which differs from ¬C must be recorded; for most procedures this difference
includes only literals in C, so that reconstruction for {C} needs only linear space
in the size of C. In contrast, the size of σ produced by ACC(F,C) to reconstruct
{C} can be quadratic in the length of the extended clause.
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Example 2. Consider C = x0 and

Fn = (¬xn−2 ∨ xn−1 ∨ xn) ∧ (¬xn−1 ∨ ¬xn) ∧
n−2∧
i=1

(¬xi−1 ∨ xi).

The extended clause ¬α = x0 ∨ x1 ∨ · · · ∨ xn is blocked in Fn by xn−1. Then
ACC(Fn, C) returns the pair with true and the reconstruction sequence2

σ = (x0 o x0)·(x1 o x0∨x1) · · · (xn−2 o x0∨x1∨· · ·∨xn−2)·(xn−1 o x0∨x1∨· · ·∨xn).

The extended clause includes n literals, and the size of σ is O(n2).

4 Witnesses for Covered Clauses

In this section, we consider the specific problem of finding witnesses for (asym-
metric) covered clauses. As these clauses are redundant, such witnesses are guar-
anteed to exist by theorem 1, though they are not produced by ACC(F,C). More
precisely, we are interested in the witness problem for covered clauses.

Definition 5. The witness problem for a redundancy property P is as follows:
given a formula F and a clause C, if P is met by C with respect to F then return
a witness for C, or decide that P is not met by C.

For instance, the witness problem for blocked clauses is solved as follows: test
each l ∈ C to see if l blocks C in F . As soon as a blocking literal l is found then
αl is a witness for C, where α = ¬C. If no blocking literal is found, then C is
not blocked. For blocked clauses, this polynomial procedure decides whether C
is blocked or not and also determines a witness ω = αl for C.

Solving the witness problem for covered clauses is not as straightforward,
as it is not clear how a witness could be produced when deciding a clause is
covered, or from a sequence σ constructed by ACC(F,C). The following theorem
shows that this problem is as difficult as producing a satisfying assignment for
an arbitrary formula, if one exists. In particular, we present a polynomial time
reduction from the search analog of the SAT problem: given a formula F , return
a satisfying assignment of F , or decide that F is unsatisfiable.

Specifically, given a formula G, we construct a pair (F,C) as an instance to
the witness problem for covered clauses. In this construction, C is covered in F
and has some witness ω. Moreover, any witness ω for this C necessarily provides
a satisfying assignment to G, if there is one.

2 In order to simplify the presentation, only the part of the witness differing from the
negated clause is written, so that (l o C) actually stands for (¬Cl : C). The former
is in essence the original notation used in [21], while set, super or globally blocked,
as well as PR clauses [15,22,23] require the more general one used in this paper.
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Proposition 2. Given a formula G = D1 ∧ · · · ∧ Dn, let G′ = D′1 ∧ · · · ∧ D′n
refer to a variable-renamed copy of G, containing v′ everywhere G contains v,
so that var(G) ∩ var(G′) = ∅. Further, let C = k ∨ l and construct the formula:

F = (x ∨ ¬k) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧
(x ∨D1) ∧ · · · ∧ (x ∨Dn) ∧
(y ∨D′1) ∧ · · · ∧ (y ∨D′n)

for variables x, y, k, l 6∈ var(G) ∪ var(G)′. Finally, let ω be a witness for C with
respect to F . Either ω satisfies at least one of G or G′, or G is unsatisfiable.

Proof. First notice for C that x is covered by k and y is covered by l, so that
the extension (k ∨ l ∨ x ∨ y) is blocked in F (with blocking literal x or y). Thus
C is redundant in F , so a witness ω exists.

We show that ω satisfies G or G′ if and only if G is satisfiable.

(⇒) If ω satisfies G then surely G is satisfiable. If ω satisfies G′ but not G then
the assignment ωG = {x ∈ var(G) | x′ ∈ G′ and x ∈ ω} satisfies G.

(⇐) Assume G is satisfiable, and without loss of generality3 further assume
ω = {k} ◦ ω′ for some ω′ not assigning var(k). Then F |α � (F |{k})|ω′ ; that is,

F |α �
(
(x) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧ (x ∨D1) ∧ · · · ∧ (y ∨D′n)

)
|ω′ .

G is satisfiable, so there are models of F |α in which ¬x is true. However, x
occurs as a unit clause in F |{k}, so it must be the case that x ∈ ω′. Therefore
ω = {k, x} ◦ ω′′ for some ω′′ assigning neither var(k) nor var(x) such that

F |α �
(
(¬y) ∧ (y ∨ ¬l) ∧ (y ∨D′1) ∧ · · · ∧ (y ∧D′n)

)
|ω′′ .

By similar reasoning, ω′′ must assign y to false, so now ω = {k, x,¬y} ◦ ω′′′ for
some ω′′′, assigning none of var(k), var(x), or var(y), such that

F |α �
(
(¬l) ∧ (D′1) ∧ · · · ∧ (D′n)

)
|ω′′′ .

Finally, consider any clause D′i ∈ G′. We show that ω satisfies D′i. As ω is
a witness, F |α � F |ω, so that (D′i)|ω is true in all models of F |α, including
models which assign y to true. In particular, let τ be a model of G; then (D′i)|ω
is satisfied by τ ∪ {¬x, y} ∪ ν, for every assignment ν over var(G′). Because
var(D′i) ⊆ var(G′), then (D′i)|ω ≡ >. Therefore G′|ω ≡ >. ut

Proposition 2 suggests there is likely no polynomial procedure for computing
witnesses for covered clauses. The existence of witnesses is the basis for solution
reconstruction, but witnesses which cannot be efficiently computed make the use
of non-model-preserving clause elimination procedures more challenging; that is,
we are not aware of any polynomial algorithm for generating a compact (sub-
quadratic) reconstruction sequence (see also example 2).

3 If k 6∈ ω, then ω = {l} ◦ ω′ for some ω′ not assigning var(l) and the argument is
symmetric, ending with G|ω = >. Note that by definition ω satisfies C thus k or l.
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As PR clauses are defined by witnesses, procedures deciding PR generally
solve the witness problem for PR. For example, the PR reduct [16] provides a for-
mula whose satisfying assignments encode PR witnesses, if they exist. However,
this does not produce witnesses for covered clauses, which are not encompassed
by PR. In other words, although any clause extended by a single covered literal
addition is a PR clause by proposition 1, this is not true for covered clauses.

Theorem 3. Covered clauses are not all propagation redundant.

Proof. By counterexample. Consider the clause C = k ∨ l and the formula

F = (x ∨ ¬k) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬l) ∧
(x ∨ a ∨ b) ∧ (x ∨ a ∨ ¬b) ∧ (x ∨ ¬a ∨ b) ∧ (x ∨ ¬a ∨ ¬b) ∧
(y ∨ c ∨ d) ∧ (y ∨ c ∨ ¬d) ∧ (y ∨ ¬c ∨ d) ∧ (y ∨ ¬c ∨ ¬d).

The extension C ∨ x∨ y is blocked with respect to F , so C is covered. However,
C is not PR with respect to F . To see this, suppose to the contrary that ω is a
PR witness for C. Similar to the reasoning in the proof of theorem 2, assume,
without loss of generality, that ω = {k} ◦ ω′ for some ω′ not assigning k. Notice
that (x) ∈ F |k, but unit propagation on ¬x ∧ F |α stops without producing ⊥.
Therefore x ∈ ω′, and ω = {k, x} ◦ω′′ for some ω′′ assigning neither k nor x. By
similar reasoning, it must be the case that ¬y ∈ ω′′, so that ω = {k, x,¬y}◦ω′′′.
Now, (c ∨ d) ∈ F |{k,x,¬y}, but once more, unit propagation on F |α ∧ ¬c ∧ ¬d
does not produce ⊥, so either c or d belongs to ω′′′. Without loss of generality,
assume c ∈ ω′′′ so that ω = {k, x,¬y, c}◦ω′′′′. Finally, both d and ¬d are clauses
in F ′|{k,x,¬y,c}, but neither are implied by F |α by unit propagation. However, if
either d or ¬d belongs to ω, then ⊥ ∈ F |ω. As unit propagation on F |α alone
does not produce ⊥, this is a contradiction. ut

Notice the formula in theorem 3 can be seen as an instance of the formula in
proposition 2, with G as (a∨ b)∧ (a∨¬b)∧ (¬a∨ b)∧ (¬a∨¬b). In fact, as long
as unit propagation on G does not derive ⊥, then G could be any, arbitrarily
hard, unsatisfiable formula (such as an instance of the pigeonhole principle).

5 Complexity of Redundancy

In the previous section we introduced the witness problem for a redundancy
property (definition 5) and showed that it is not trivial, even when the redun-
dancy property itself can be efficiently decided. Further, the witness problem for
PR clauses is solvable by encoding it into SAT [16].

Note that PR is considered to be a very general redundancy property. The
proof of theorem 1 in [15,17] shows that if F is satisfiable and C redundant,
then F ∧ C is satisfiable by definition. In addition, any satisfying assignment τ
of F ∧ C is a PR witness for C with respect to F . This yields the following:

Proposition 3. Let F be a satisfiable formula. A clause C is redundant with
respect to F if and only if it is a PR clause with respect to F .
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While not all covered clauses are PR, this motivates the question of whether
witnesses for all redundancy properties can be encoded as an instance to SAT,
and solved similarly. In this section we show that this is likely not the case by
demonstrating the complexity of the redundancy problem: given a clause C and
a formula F , is C redundant with respect to F?

Deciding whether a clause is PR belongs to NP: assignments can be chosen
non-deterministically and efficiently verified as PR witnesses, since the relation
`1 is polynomially decidable [18]. For clause redundancy in general, it is not
clear that this holds, as the corresponding problem is co-NP-complete.

Proposition 4. Deciding whether an assignment ω is a witness for a clause C
with respect to a formula F is complete for co-NP.

Proof. The problem belongs to co-NP since F |α � F |ω whenever ¬(F |α) ∨ F |ω
is a tautology. In the following we show a reduction from the tautology problem.
Given a formula F , construct the formula F ′ as below, for x 6∈ var(F ). Further,
let C ′ = x, so that α = ¬x, and let also ω = x.

F ′ =
∧
C∈F

(C ∨ ¬x)

Then F ′|α = > and F ′|ω = F . Therefore F ′|α � F ′|ω if and only if > � F . ut

Theorem 4 below shows that the irredundancy problem, the complement of
the redundancy problem, is complete for the class DP, the class of languages
that are the intersection of a language in NP and a language in co-NP [28]:

DP = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ co-NP}.

This class was originally introduced to classify certain problems which are hard
for both NP and co-NP, but do not seem to be complete for either, and it
characterizes a variety of optimization problems. It is the second level of the
Boolean hierarchy over NP, which is the completion of NP under Boolean oper-
ations [5,29]. We provide a reduction from the canonical DP-complete problem,
SAT-UNSAT: given formulas F and G, is F satisfiable and G unsatisfiable?

Theorem 4. The irredundancy problem is DP-complete.

Proof. Notice that the irredundancy problem can be expressed as

IRR = { (F,C) | F is satisfiable, and F ∧ C is unsatisfiable}
= { (F,C) | F ∈ SAT} ∩ {(F,C) | F ∧ C ∈ UNSAT}.

That is, IRR is the intersection of a language in NP and a language in co-NP,
and so the irredundancy problem belongs to DP.

Now, let (F,G) be an instance to SAT-UNSAT. Construct the formula F ′ as
follows, for x 6∈ var(F ) ∪ var(G):

F ′ =
∧
C∈F

(C ∨ x) ∧
∧
D∈G

(D ∨ ¬x).
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Further, let C ′ = x. We demonstrate that (F,G) ∈ SAT-UNSAT if and only if
C ′ is irredundant with respect to F ′.

(⇐) Suppose C ′ is irredundant with respect to F ′. In other words, F ′ is satisfi-
able but F ′∧C ′ is unsatisfiable. Since F ′∧C ′ is unsatisfiable, it must be the case
that F ′|{x} is unsatisfiable; however, F ′ is satisfiable, therefore F ′|{¬x} must be
satisfiable. Since F ′|{¬x} = F and F ′|{x} = G, then (F,G) ∈ SAT-UNSAT.

(⇒) Now, suppose F is satisfiable and G is unsatisfiable. Then some assign-
ment τ over var(F ) satisfies F . As a result, τ ∪ {¬x} satisfies F ′. Because G
is unsatisfiable, there is no assignment satisfying F ′|{x} = G. This means there
is no σ satisfying both F ′ and C ′ = x, and so F ′ ∧ C ′ is unsatisfiable as well.
Therefore C ′ is irredundant with respect to F ′. ut

Consequently the redundancy problem is complete for co-DP. This suggests
that sufficient SAT encodings of the clause redundancy problem, and its corre-
sponding witness problem, are not possible.

6 Conclusion

We revisit a strong clause elimination procedure, covered clause elimination,
and provide an explicit algorithm for both deciding its redundancy property and
reconstructing solutions after its use. Covered clause elimination is unique in that
it does not produce redundancy witnesses for clauses it eliminates, and uses a
complex, multi-step reconstruction strategy. We prove that while witnesses exist
for covered clauses, computing such a witness is as hard as finding a satisfying
assignment for an arbitrary formula.

For PR, a very general redundancy property used by strong proof systems,
witnesses can be found through encodings into SAT. We show that covered
clauses are not described by PR, and SAT encodings for finding general redun-
dancy witnesses likely do not exist, as deciding clause redundancy is hard for
the class DP, the second level of the Boolean hierarchy over NP.

Directions for future work include the development of redundancy properties
beyond PR, and investigating their use for solution reconstruction after clause
elimination, as well as in proof systems. Extending redundancy notions by us-
ing a structure for witnesses other than partial assignments may provide more
generality while remaining polynomially verifiable.

We are also interested in developing notions of redundancy for adding or
removing more than a single clause at a time, and exploring proof systems and
simplification techniques which make use of non-clausal redundancy properties.
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